mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
abb38fe8de
the JIT object (including XFAIL an ARM test that now needs fixing). Also renames internal function for consistency. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182085 91177308-0d34-0410-b5e6-96231b3b80d8
665 lines
25 KiB
C++
665 lines
25 KiB
C++
//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the abstract interface that implements execution support
|
|
// for LLVM.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
|
|
#define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
|
|
|
|
#include "llvm-c/ExecutionEngine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/ValueMap.h"
|
|
#include "llvm/MC/MCCodeGenInfo.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Mutex.h"
|
|
#include "llvm/Support/ValueHandle.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
struct GenericValue;
|
|
class Constant;
|
|
class DataLayout;
|
|
class ExecutionEngine;
|
|
class Function;
|
|
class GlobalVariable;
|
|
class GlobalValue;
|
|
class JITEventListener;
|
|
class JITMemoryManager;
|
|
class MachineCodeInfo;
|
|
class Module;
|
|
class MutexGuard;
|
|
class ObjectCache;
|
|
class RTDyldMemoryManager;
|
|
class Triple;
|
|
class Type;
|
|
|
|
/// \brief Helper class for helping synchronize access to the global address map
|
|
/// table.
|
|
class ExecutionEngineState {
|
|
public:
|
|
struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
|
|
typedef ExecutionEngineState *ExtraData;
|
|
static sys::Mutex *getMutex(ExecutionEngineState *EES);
|
|
static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
|
|
static void onRAUW(ExecutionEngineState *, const GlobalValue *,
|
|
const GlobalValue *);
|
|
};
|
|
|
|
typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
|
|
GlobalAddressMapTy;
|
|
|
|
private:
|
|
ExecutionEngine &EE;
|
|
|
|
/// GlobalAddressMap - A mapping between LLVM global values and their
|
|
/// actualized version...
|
|
GlobalAddressMapTy GlobalAddressMap;
|
|
|
|
/// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
|
|
/// used to convert raw addresses into the LLVM global value that is emitted
|
|
/// at the address. This map is not computed unless getGlobalValueAtAddress
|
|
/// is called at some point.
|
|
std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
|
|
|
|
public:
|
|
ExecutionEngineState(ExecutionEngine &EE);
|
|
|
|
GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
|
|
return GlobalAddressMap;
|
|
}
|
|
|
|
std::map<void*, AssertingVH<const GlobalValue> > &
|
|
getGlobalAddressReverseMap(const MutexGuard &) {
|
|
return GlobalAddressReverseMap;
|
|
}
|
|
|
|
/// \brief Erase an entry from the mapping table.
|
|
///
|
|
/// \returns The address that \p ToUnmap was happed to.
|
|
void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
|
|
};
|
|
|
|
/// \brief Abstract interface for implementation execution of LLVM modules,
|
|
/// designed to support both interpreter and just-in-time (JIT) compiler
|
|
/// implementations.
|
|
class ExecutionEngine {
|
|
/// The state object holding the global address mapping, which must be
|
|
/// accessed synchronously.
|
|
//
|
|
// FIXME: There is no particular need the entire map needs to be
|
|
// synchronized. Wouldn't a reader-writer design be better here?
|
|
ExecutionEngineState EEState;
|
|
|
|
/// The target data for the platform for which execution is being performed.
|
|
const DataLayout *TD;
|
|
|
|
/// Whether lazy JIT compilation is enabled.
|
|
bool CompilingLazily;
|
|
|
|
/// Whether JIT compilation of external global variables is allowed.
|
|
bool GVCompilationDisabled;
|
|
|
|
/// Whether the JIT should perform lookups of external symbols (e.g.,
|
|
/// using dlsym).
|
|
bool SymbolSearchingDisabled;
|
|
|
|
friend class EngineBuilder; // To allow access to JITCtor and InterpCtor.
|
|
|
|
protected:
|
|
/// The list of Modules that we are JIT'ing from. We use a SmallVector to
|
|
/// optimize for the case where there is only one module.
|
|
SmallVector<Module*, 1> Modules;
|
|
|
|
void setDataLayout(const DataLayout *td) { TD = td; }
|
|
|
|
/// getMemoryforGV - Allocate memory for a global variable.
|
|
virtual char *getMemoryForGV(const GlobalVariable *GV);
|
|
|
|
// To avoid having libexecutionengine depend on the JIT and interpreter
|
|
// libraries, the execution engine implementations set these functions to ctor
|
|
// pointers at startup time if they are linked in.
|
|
static ExecutionEngine *(*JITCtor)(
|
|
Module *M,
|
|
std::string *ErrorStr,
|
|
JITMemoryManager *JMM,
|
|
bool GVsWithCode,
|
|
TargetMachine *TM);
|
|
static ExecutionEngine *(*MCJITCtor)(
|
|
Module *M,
|
|
std::string *ErrorStr,
|
|
RTDyldMemoryManager *MCJMM,
|
|
bool GVsWithCode,
|
|
TargetMachine *TM);
|
|
static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
|
|
|
|
/// LazyFunctionCreator - If an unknown function is needed, this function
|
|
/// pointer is invoked to create it. If this returns null, the JIT will
|
|
/// abort.
|
|
void *(*LazyFunctionCreator)(const std::string &);
|
|
|
|
/// ExceptionTableRegister - If Exception Handling is set, the JIT will
|
|
/// register dwarf tables with this function.
|
|
typedef void (*EERegisterFn)(void*);
|
|
EERegisterFn ExceptionTableRegister;
|
|
EERegisterFn ExceptionTableDeregister;
|
|
/// This maps functions to their exception tables frames.
|
|
DenseMap<const Function*, void*> AllExceptionTables;
|
|
|
|
|
|
public:
|
|
/// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
|
|
/// JITEmitter classes. It must be held while changing the internal state of
|
|
/// any of those classes.
|
|
sys::Mutex lock;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// ExecutionEngine Startup
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
virtual ~ExecutionEngine();
|
|
|
|
/// create - This is the factory method for creating an execution engine which
|
|
/// is appropriate for the current machine. This takes ownership of the
|
|
/// module.
|
|
///
|
|
/// \param GVsWithCode - Allocating globals with code breaks
|
|
/// freeMachineCodeForFunction and is probably unsafe and bad for performance.
|
|
/// However, we have clients who depend on this behavior, so we must support
|
|
/// it. Eventually, when we're willing to break some backwards compatibility,
|
|
/// this flag should be flipped to false, so that by default
|
|
/// freeMachineCodeForFunction works.
|
|
static ExecutionEngine *create(Module *M,
|
|
bool ForceInterpreter = false,
|
|
std::string *ErrorStr = 0,
|
|
CodeGenOpt::Level OptLevel =
|
|
CodeGenOpt::Default,
|
|
bool GVsWithCode = true);
|
|
|
|
/// createJIT - This is the factory method for creating a JIT for the current
|
|
/// machine, it does not fall back to the interpreter. This takes ownership
|
|
/// of the Module and JITMemoryManager if successful.
|
|
///
|
|
/// Clients should make sure to initialize targets prior to calling this
|
|
/// function.
|
|
static ExecutionEngine *createJIT(Module *M,
|
|
std::string *ErrorStr = 0,
|
|
JITMemoryManager *JMM = 0,
|
|
CodeGenOpt::Level OptLevel =
|
|
CodeGenOpt::Default,
|
|
bool GVsWithCode = true,
|
|
Reloc::Model RM = Reloc::Default,
|
|
CodeModel::Model CMM =
|
|
CodeModel::JITDefault);
|
|
|
|
/// addModule - Add a Module to the list of modules that we can JIT from.
|
|
/// Note that this takes ownership of the Module: when the ExecutionEngine is
|
|
/// destroyed, it destroys the Module as well.
|
|
virtual void addModule(Module *M) {
|
|
Modules.push_back(M);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
const DataLayout *getDataLayout() const { return TD; }
|
|
|
|
/// removeModule - Remove a Module from the list of modules. Returns true if
|
|
/// M is found.
|
|
virtual bool removeModule(Module *M);
|
|
|
|
/// FindFunctionNamed - Search all of the active modules to find the one that
|
|
/// defines FnName. This is very slow operation and shouldn't be used for
|
|
/// general code.
|
|
Function *FindFunctionNamed(const char *FnName);
|
|
|
|
/// runFunction - Execute the specified function with the specified arguments,
|
|
/// and return the result.
|
|
virtual GenericValue runFunction(Function *F,
|
|
const std::vector<GenericValue> &ArgValues) = 0;
|
|
|
|
/// getPointerToNamedFunction - This method returns the address of the
|
|
/// specified function by using the dlsym function call. As such it is only
|
|
/// useful for resolving library symbols, not code generated symbols.
|
|
///
|
|
/// If AbortOnFailure is false and no function with the given name is
|
|
/// found, this function silently returns a null pointer. Otherwise,
|
|
/// it prints a message to stderr and aborts.
|
|
///
|
|
virtual void *getPointerToNamedFunction(const std::string &Name,
|
|
bool AbortOnFailure = true) = 0;
|
|
|
|
/// mapSectionAddress - map a section to its target address space value.
|
|
/// Map the address of a JIT section as returned from the memory manager
|
|
/// to the address in the target process as the running code will see it.
|
|
/// This is the address which will be used for relocation resolution.
|
|
virtual void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) {
|
|
llvm_unreachable("Re-mapping of section addresses not supported with this "
|
|
"EE!");
|
|
}
|
|
|
|
/// finalizeObject - ensure the module is fully processed and is usable.
|
|
///
|
|
/// It is the user-level function for completing the process of making the
|
|
/// object usable for execution. It should be called after sections within an
|
|
/// object have been relocated using mapSectionAddress. When this method is
|
|
/// called the MCJIT execution engine will reapply relocations for a loaded
|
|
/// object. This method has no effect for the legacy JIT engine or the
|
|
/// interpeter.
|
|
virtual void finalizeObject() {}
|
|
|
|
/// runStaticConstructorsDestructors - This method is used to execute all of
|
|
/// the static constructors or destructors for a program.
|
|
///
|
|
/// \param isDtors - Run the destructors instead of constructors.
|
|
void runStaticConstructorsDestructors(bool isDtors);
|
|
|
|
/// runStaticConstructorsDestructors - This method is used to execute all of
|
|
/// the static constructors or destructors for a particular module.
|
|
///
|
|
/// \param isDtors - Run the destructors instead of constructors.
|
|
void runStaticConstructorsDestructors(Module *module, bool isDtors);
|
|
|
|
|
|
/// runFunctionAsMain - This is a helper function which wraps runFunction to
|
|
/// handle the common task of starting up main with the specified argc, argv,
|
|
/// and envp parameters.
|
|
int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
|
|
const char * const * envp);
|
|
|
|
|
|
/// addGlobalMapping - Tell the execution engine that the specified global is
|
|
/// at the specified location. This is used internally as functions are JIT'd
|
|
/// and as global variables are laid out in memory. It can and should also be
|
|
/// used by clients of the EE that want to have an LLVM global overlay
|
|
/// existing data in memory. Mappings are automatically removed when their
|
|
/// GlobalValue is destroyed.
|
|
void addGlobalMapping(const GlobalValue *GV, void *Addr);
|
|
|
|
/// clearAllGlobalMappings - Clear all global mappings and start over again,
|
|
/// for use in dynamic compilation scenarios to move globals.
|
|
void clearAllGlobalMappings();
|
|
|
|
/// clearGlobalMappingsFromModule - Clear all global mappings that came from a
|
|
/// particular module, because it has been removed from the JIT.
|
|
void clearGlobalMappingsFromModule(Module *M);
|
|
|
|
/// updateGlobalMapping - Replace an existing mapping for GV with a new
|
|
/// address. This updates both maps as required. If "Addr" is null, the
|
|
/// entry for the global is removed from the mappings. This returns the old
|
|
/// value of the pointer, or null if it was not in the map.
|
|
void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
|
|
|
|
/// getPointerToGlobalIfAvailable - This returns the address of the specified
|
|
/// global value if it is has already been codegen'd, otherwise it returns
|
|
/// null.
|
|
void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
|
|
|
|
/// getPointerToGlobal - This returns the address of the specified global
|
|
/// value. This may involve code generation if it's a function.
|
|
void *getPointerToGlobal(const GlobalValue *GV);
|
|
|
|
/// getPointerToFunction - The different EE's represent function bodies in
|
|
/// different ways. They should each implement this to say what a function
|
|
/// pointer should look like. When F is destroyed, the ExecutionEngine will
|
|
/// remove its global mapping and free any machine code. Be sure no threads
|
|
/// are running inside F when that happens.
|
|
virtual void *getPointerToFunction(Function *F) = 0;
|
|
|
|
/// getPointerToBasicBlock - The different EE's represent basic blocks in
|
|
/// different ways. Return the representation for a blockaddress of the
|
|
/// specified block.
|
|
virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
|
|
|
|
/// getPointerToFunctionOrStub - If the specified function has been
|
|
/// code-gen'd, return a pointer to the function. If not, compile it, or use
|
|
/// a stub to implement lazy compilation if available. See
|
|
/// getPointerToFunction for the requirements on destroying F.
|
|
virtual void *getPointerToFunctionOrStub(Function *F) {
|
|
// Default implementation, just codegen the function.
|
|
return getPointerToFunction(F);
|
|
}
|
|
|
|
// The JIT overrides a version that actually does this.
|
|
virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
|
|
|
|
/// getGlobalValueAtAddress - Return the LLVM global value object that starts
|
|
/// at the specified address.
|
|
///
|
|
const GlobalValue *getGlobalValueAtAddress(void *Addr);
|
|
|
|
/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
|
|
/// Ptr is the address of the memory at which to store Val, cast to
|
|
/// GenericValue *. It is not a pointer to a GenericValue containing the
|
|
/// address at which to store Val.
|
|
void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
|
|
Type *Ty);
|
|
|
|
void InitializeMemory(const Constant *Init, void *Addr);
|
|
|
|
/// recompileAndRelinkFunction - This method is used to force a function which
|
|
/// has already been compiled to be compiled again, possibly after it has been
|
|
/// modified. Then the entry to the old copy is overwritten with a branch to
|
|
/// the new copy. If there was no old copy, this acts just like
|
|
/// VM::getPointerToFunction().
|
|
virtual void *recompileAndRelinkFunction(Function *F) = 0;
|
|
|
|
/// freeMachineCodeForFunction - Release memory in the ExecutionEngine
|
|
/// corresponding to the machine code emitted to execute this function, useful
|
|
/// for garbage-collecting generated code.
|
|
virtual void freeMachineCodeForFunction(Function *F) = 0;
|
|
|
|
/// getOrEmitGlobalVariable - Return the address of the specified global
|
|
/// variable, possibly emitting it to memory if needed. This is used by the
|
|
/// Emitter.
|
|
virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
|
|
return getPointerToGlobal((const GlobalValue *)GV);
|
|
}
|
|
|
|
/// Registers a listener to be called back on various events within
|
|
/// the JIT. See JITEventListener.h for more details. Does not
|
|
/// take ownership of the argument. The argument may be NULL, in
|
|
/// which case these functions do nothing.
|
|
virtual void RegisterJITEventListener(JITEventListener *) {}
|
|
virtual void UnregisterJITEventListener(JITEventListener *) {}
|
|
|
|
/// Sets the pre-compiled object cache. The ownership of the ObjectCache is
|
|
/// not changed. Supported by MCJIT but not JIT.
|
|
virtual void setObjectCache(ObjectCache *) {
|
|
llvm_unreachable("No support for an object cache");
|
|
}
|
|
|
|
/// DisableLazyCompilation - When lazy compilation is off (the default), the
|
|
/// JIT will eagerly compile every function reachable from the argument to
|
|
/// getPointerToFunction. If lazy compilation is turned on, the JIT will only
|
|
/// compile the one function and emit stubs to compile the rest when they're
|
|
/// first called. If lazy compilation is turned off again while some lazy
|
|
/// stubs are still around, and one of those stubs is called, the program will
|
|
/// abort.
|
|
///
|
|
/// In order to safely compile lazily in a threaded program, the user must
|
|
/// ensure that 1) only one thread at a time can call any particular lazy
|
|
/// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
|
|
/// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
|
|
/// lazy stub. See http://llvm.org/PR5184 for details.
|
|
void DisableLazyCompilation(bool Disabled = true) {
|
|
CompilingLazily = !Disabled;
|
|
}
|
|
bool isCompilingLazily() const {
|
|
return CompilingLazily;
|
|
}
|
|
// Deprecated in favor of isCompilingLazily (to reduce double-negatives).
|
|
// Remove this in LLVM 2.8.
|
|
bool isLazyCompilationDisabled() const {
|
|
return !CompilingLazily;
|
|
}
|
|
|
|
/// DisableGVCompilation - If called, the JIT will abort if it's asked to
|
|
/// allocate space and populate a GlobalVariable that is not internal to
|
|
/// the module.
|
|
void DisableGVCompilation(bool Disabled = true) {
|
|
GVCompilationDisabled = Disabled;
|
|
}
|
|
bool isGVCompilationDisabled() const {
|
|
return GVCompilationDisabled;
|
|
}
|
|
|
|
/// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
|
|
/// symbols with dlsym. A client can still use InstallLazyFunctionCreator to
|
|
/// resolve symbols in a custom way.
|
|
void DisableSymbolSearching(bool Disabled = true) {
|
|
SymbolSearchingDisabled = Disabled;
|
|
}
|
|
bool isSymbolSearchingDisabled() const {
|
|
return SymbolSearchingDisabled;
|
|
}
|
|
|
|
/// InstallLazyFunctionCreator - If an unknown function is needed, the
|
|
/// specified function pointer is invoked to create it. If it returns null,
|
|
/// the JIT will abort.
|
|
void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
|
|
LazyFunctionCreator = P;
|
|
}
|
|
|
|
/// InstallExceptionTableRegister - The JIT will use the given function
|
|
/// to register the exception tables it generates.
|
|
void InstallExceptionTableRegister(EERegisterFn F) {
|
|
ExceptionTableRegister = F;
|
|
}
|
|
void InstallExceptionTableDeregister(EERegisterFn F) {
|
|
ExceptionTableDeregister = F;
|
|
}
|
|
|
|
/// RegisterTable - Registers the given pointer as an exception table. It
|
|
/// uses the ExceptionTableRegister function.
|
|
void RegisterTable(const Function *fn, void* res) {
|
|
if (ExceptionTableRegister) {
|
|
ExceptionTableRegister(res);
|
|
AllExceptionTables[fn] = res;
|
|
}
|
|
}
|
|
|
|
/// DeregisterTable - Deregisters the exception frame previously registered
|
|
/// for the given function.
|
|
void DeregisterTable(const Function *Fn) {
|
|
if (ExceptionTableDeregister) {
|
|
DenseMap<const Function*, void*>::iterator frame =
|
|
AllExceptionTables.find(Fn);
|
|
if(frame != AllExceptionTables.end()) {
|
|
ExceptionTableDeregister(frame->second);
|
|
AllExceptionTables.erase(frame);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// DeregisterAllTables - Deregisters all previously registered pointers to an
|
|
/// exception tables. It uses the ExceptionTableoDeregister function.
|
|
void DeregisterAllTables();
|
|
|
|
protected:
|
|
explicit ExecutionEngine(Module *M);
|
|
|
|
void emitGlobals();
|
|
|
|
void EmitGlobalVariable(const GlobalVariable *GV);
|
|
|
|
GenericValue getConstantValue(const Constant *C);
|
|
void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
|
|
Type *Ty);
|
|
};
|
|
|
|
namespace EngineKind {
|
|
// These are actually bitmasks that get or-ed together.
|
|
enum Kind {
|
|
JIT = 0x1,
|
|
Interpreter = 0x2
|
|
};
|
|
const static Kind Either = (Kind)(JIT | Interpreter);
|
|
}
|
|
|
|
/// EngineBuilder - Builder class for ExecutionEngines. Use this by
|
|
/// stack-allocating a builder, chaining the various set* methods, and
|
|
/// terminating it with a .create() call.
|
|
class EngineBuilder {
|
|
private:
|
|
Module *M;
|
|
EngineKind::Kind WhichEngine;
|
|
std::string *ErrorStr;
|
|
CodeGenOpt::Level OptLevel;
|
|
RTDyldMemoryManager *MCJMM;
|
|
JITMemoryManager *JMM;
|
|
bool AllocateGVsWithCode;
|
|
TargetOptions Options;
|
|
Reloc::Model RelocModel;
|
|
CodeModel::Model CMModel;
|
|
std::string MArch;
|
|
std::string MCPU;
|
|
SmallVector<std::string, 4> MAttrs;
|
|
bool UseMCJIT;
|
|
|
|
/// InitEngine - Does the common initialization of default options.
|
|
void InitEngine() {
|
|
WhichEngine = EngineKind::Either;
|
|
ErrorStr = NULL;
|
|
OptLevel = CodeGenOpt::Default;
|
|
MCJMM = NULL;
|
|
JMM = NULL;
|
|
Options = TargetOptions();
|
|
AllocateGVsWithCode = false;
|
|
RelocModel = Reloc::Default;
|
|
CMModel = CodeModel::JITDefault;
|
|
UseMCJIT = false;
|
|
}
|
|
|
|
public:
|
|
/// EngineBuilder - Constructor for EngineBuilder. If create() is called and
|
|
/// is successful, the created engine takes ownership of the module.
|
|
EngineBuilder(Module *m) : M(m) {
|
|
InitEngine();
|
|
}
|
|
|
|
/// setEngineKind - Controls whether the user wants the interpreter, the JIT,
|
|
/// or whichever engine works. This option defaults to EngineKind::Either.
|
|
EngineBuilder &setEngineKind(EngineKind::Kind w) {
|
|
WhichEngine = w;
|
|
return *this;
|
|
}
|
|
|
|
/// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
|
|
/// clients to customize their memory allocation policies for the MCJIT. This
|
|
/// is only appropriate for the MCJIT; setting this and configuring the builder
|
|
/// to create anything other than MCJIT will cause a runtime error. If create()
|
|
/// is called and is successful, the created engine takes ownership of the
|
|
/// memory manager. This option defaults to NULL. Using this option nullifies
|
|
/// the setJITMemoryManager() option.
|
|
EngineBuilder &setMCJITMemoryManager(RTDyldMemoryManager *mcjmm) {
|
|
MCJMM = mcjmm;
|
|
JMM = NULL;
|
|
return *this;
|
|
}
|
|
|
|
/// setJITMemoryManager - Sets the JIT memory manager to use. This allows
|
|
/// clients to customize their memory allocation policies. This is only
|
|
/// appropriate for either JIT or MCJIT; setting this and configuring the
|
|
/// builder to create an interpreter will cause a runtime error. If create()
|
|
/// is called and is successful, the created engine takes ownership of the
|
|
/// memory manager. This option defaults to NULL. This option overrides
|
|
/// setMCJITMemoryManager() as well.
|
|
EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
|
|
MCJMM = NULL;
|
|
JMM = jmm;
|
|
return *this;
|
|
}
|
|
|
|
/// setErrorStr - Set the error string to write to on error. This option
|
|
/// defaults to NULL.
|
|
EngineBuilder &setErrorStr(std::string *e) {
|
|
ErrorStr = e;
|
|
return *this;
|
|
}
|
|
|
|
/// setOptLevel - Set the optimization level for the JIT. This option
|
|
/// defaults to CodeGenOpt::Default.
|
|
EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
|
|
OptLevel = l;
|
|
return *this;
|
|
}
|
|
|
|
/// setTargetOptions - Set the target options that the ExecutionEngine
|
|
/// target is using. Defaults to TargetOptions().
|
|
EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
|
|
Options = Opts;
|
|
return *this;
|
|
}
|
|
|
|
/// setRelocationModel - Set the relocation model that the ExecutionEngine
|
|
/// target is using. Defaults to target specific default "Reloc::Default".
|
|
EngineBuilder &setRelocationModel(Reloc::Model RM) {
|
|
RelocModel = RM;
|
|
return *this;
|
|
}
|
|
|
|
/// setCodeModel - Set the CodeModel that the ExecutionEngine target
|
|
/// data is using. Defaults to target specific default
|
|
/// "CodeModel::JITDefault".
|
|
EngineBuilder &setCodeModel(CodeModel::Model M) {
|
|
CMModel = M;
|
|
return *this;
|
|
}
|
|
|
|
/// setAllocateGVsWithCode - Sets whether global values should be allocated
|
|
/// into the same buffer as code. For most applications this should be set
|
|
/// to false. Allocating globals with code breaks freeMachineCodeForFunction
|
|
/// and is probably unsafe and bad for performance. However, we have clients
|
|
/// who depend on this behavior, so we must support it. This option defaults
|
|
/// to false so that users of the new API can safely use the new memory
|
|
/// manager and free machine code.
|
|
EngineBuilder &setAllocateGVsWithCode(bool a) {
|
|
AllocateGVsWithCode = a;
|
|
return *this;
|
|
}
|
|
|
|
/// setMArch - Override the architecture set by the Module's triple.
|
|
EngineBuilder &setMArch(StringRef march) {
|
|
MArch.assign(march.begin(), march.end());
|
|
return *this;
|
|
}
|
|
|
|
/// setMCPU - Target a specific cpu type.
|
|
EngineBuilder &setMCPU(StringRef mcpu) {
|
|
MCPU.assign(mcpu.begin(), mcpu.end());
|
|
return *this;
|
|
}
|
|
|
|
/// setUseMCJIT - Set whether the MC-JIT implementation should be used
|
|
/// (experimental).
|
|
EngineBuilder &setUseMCJIT(bool Value) {
|
|
UseMCJIT = Value;
|
|
return *this;
|
|
}
|
|
|
|
/// setMAttrs - Set cpu-specific attributes.
|
|
template<typename StringSequence>
|
|
EngineBuilder &setMAttrs(const StringSequence &mattrs) {
|
|
MAttrs.clear();
|
|
MAttrs.append(mattrs.begin(), mattrs.end());
|
|
return *this;
|
|
}
|
|
|
|
TargetMachine *selectTarget();
|
|
|
|
/// selectTarget - Pick a target either via -march or by guessing the native
|
|
/// arch. Add any CPU features specified via -mcpu or -mattr.
|
|
TargetMachine *selectTarget(const Triple &TargetTriple,
|
|
StringRef MArch,
|
|
StringRef MCPU,
|
|
const SmallVectorImpl<std::string>& MAttrs);
|
|
|
|
ExecutionEngine *create() {
|
|
return create(selectTarget());
|
|
}
|
|
|
|
ExecutionEngine *create(TargetMachine *TM);
|
|
};
|
|
|
|
// Create wrappers for C Binding types (see CBindingWrapping.h).
|
|
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|