mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-26 07:34:06 +00:00
b7e0289fb3
Minimum latency determines per-cycle scheduling groups. Expected latency determines critical path and cost. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158021 91177308-0d34-0410-b5e6-96231b3b80d8
237 lines
9.0 KiB
C++
237 lines
9.0 KiB
C++
//===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCInstrItineraries.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <cctype>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetInstrInfo
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetInstrInfo::~TargetInstrInfo() {
|
|
}
|
|
|
|
const TargetRegisterClass*
|
|
TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
|
|
const TargetRegisterInfo *TRI,
|
|
const MachineFunction &MF) const {
|
|
if (OpNum >= MCID.getNumOperands())
|
|
return 0;
|
|
|
|
short RegClass = MCID.OpInfo[OpNum].RegClass;
|
|
if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
|
|
return TRI->getPointerRegClass(MF, RegClass);
|
|
|
|
// Instructions like INSERT_SUBREG do not have fixed register classes.
|
|
if (RegClass < 0)
|
|
return 0;
|
|
|
|
// Otherwise just look it up normally.
|
|
return TRI->getRegClass(RegClass);
|
|
}
|
|
|
|
unsigned
|
|
TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
|
|
const MachineInstr *MI) const {
|
|
if (!ItinData || ItinData->isEmpty())
|
|
return 1;
|
|
|
|
unsigned Class = MI->getDesc().getSchedClass();
|
|
unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
|
|
if (UOps)
|
|
return UOps;
|
|
|
|
// The # of u-ops is dynamically determined. The specific target should
|
|
// override this function to return the right number.
|
|
return 1;
|
|
}
|
|
|
|
/// Return the default expected latency for a def based on it's opcode.
|
|
unsigned TargetInstrInfo::defaultDefLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr *DefMI) const {
|
|
if (DefMI->mayLoad())
|
|
return ItinData->Props.LoadLatency;
|
|
if (isHighLatencyDef(DefMI->getOpcode()))
|
|
return ItinData->Props.HighLatency;
|
|
return 1;
|
|
}
|
|
|
|
/// Both DefMI and UseMI must be valid. By default, call directly to the
|
|
/// itinerary. This may be overriden by the target.
|
|
int
|
|
TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr *DefMI, unsigned DefIdx,
|
|
const MachineInstr *UseMI,
|
|
unsigned UseIdx) const {
|
|
unsigned DefClass = DefMI->getDesc().getSchedClass();
|
|
unsigned UseClass = UseMI->getDesc().getSchedClass();
|
|
return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
|
|
}
|
|
|
|
/// computeOperandLatency - Compute and return the latency of the given data
|
|
/// dependent def and use. DefMI must be a valid def. UseMI may be NULL for an
|
|
/// unknown use. Depending on the subtarget's itinerary properties, this may or
|
|
/// may not need to call getOperandLatency().
|
|
///
|
|
/// FindMin may be set to get the minimum vs. expected latency. Minimum
|
|
/// latency is used for scheduling groups, while expected latency is for
|
|
/// instruction cost and critical path.
|
|
///
|
|
/// For most subtargets, we don't need DefIdx or UseIdx to compute min latency.
|
|
/// DefMI must be a valid definition, but UseMI may be NULL for an unknown use.
|
|
unsigned TargetInstrInfo::
|
|
computeOperandLatency(const InstrItineraryData *ItinData,
|
|
const TargetRegisterInfo *TRI,
|
|
const MachineInstr *DefMI, const MachineInstr *UseMI,
|
|
unsigned Reg, bool FindMin) const {
|
|
|
|
// Default to one cycle for missing itinerary. Empty itineraries still have
|
|
// a properties. We have one hard-coded exception for loads, to preserve
|
|
// existing behavior.
|
|
if (!ItinData)
|
|
return DefMI->mayLoad() ? 2 : 1;
|
|
|
|
// Return a latency based on the itinerary properties and defining instruction
|
|
// if possible. Some common subtargets don't require per-operand latency,
|
|
// especially for minimum latencies.
|
|
if (FindMin) {
|
|
// If MinLatency is valid, call getInstrLatency. This uses Stage latency if
|
|
// it exists before defaulting to MinLatency.
|
|
if (ItinData->Props.MinLatency >= 0)
|
|
return getInstrLatency(ItinData, DefMI);
|
|
|
|
// If MinLatency is invalid, OperandLatency is interpreted as MinLatency.
|
|
// For empty itineraries, short-cirtuit the check and default to one cycle.
|
|
if (ItinData->isEmpty())
|
|
return 1;
|
|
}
|
|
else if(ItinData->isEmpty())
|
|
return defaultDefLatency(ItinData, DefMI);
|
|
|
|
// ...operand lookup required
|
|
|
|
// Find the definition of the register in the defining instruction.
|
|
int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
|
|
if (DefIdx != -1) {
|
|
const MachineOperand &MO = DefMI->getOperand(DefIdx);
|
|
if (MO.isReg() && MO.isImplicit() &&
|
|
DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
|
|
// This is an implicit def, getOperandLatency() won't return the correct
|
|
// latency. e.g.
|
|
// %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
|
|
// %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
|
|
// What we want is to compute latency between def of %D6/%D7 and use of
|
|
// %Q3 instead.
|
|
unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
|
|
if (DefMI->getOperand(Op2).isReg())
|
|
DefIdx = Op2;
|
|
}
|
|
// For all uses of the register, calculate the maxmimum latency
|
|
int OperLatency = -1;
|
|
|
|
// UseMI is null, then it must be a scheduling barrier.
|
|
if (!UseMI) {
|
|
unsigned DefClass = DefMI->getDesc().getSchedClass();
|
|
OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
|
|
}
|
|
else {
|
|
for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = UseMI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned MOReg = MO.getReg();
|
|
if (MOReg != Reg)
|
|
continue;
|
|
|
|
int UseCycle = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, i);
|
|
OperLatency = std::max(OperLatency, UseCycle);
|
|
}
|
|
}
|
|
// If we found an operand latency, we're done.
|
|
if (OperLatency >= 0)
|
|
return OperLatency;
|
|
}
|
|
// No operand latency was found.
|
|
unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
|
|
// Expected latency is the max of the stage latency and itinerary props.
|
|
if (!FindMin)
|
|
InstrLatency = std::max(InstrLatency, defaultDefLatency(ItinData, DefMI));
|
|
return InstrLatency;
|
|
}
|
|
|
|
unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr *MI,
|
|
unsigned *PredCost) const {
|
|
// Default to one cycle for no itinerary. However, an "empty" itinerary may
|
|
// still have a MinLatency property, which getStageLatency checks.
|
|
if (!ItinData)
|
|
return 1;
|
|
|
|
return ItinData->getStageLatency(MI->getDesc().getSchedClass());
|
|
}
|
|
|
|
bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr *DefMI,
|
|
unsigned DefIdx) const {
|
|
if (!ItinData || ItinData->isEmpty())
|
|
return false;
|
|
|
|
unsigned DefClass = DefMI->getDesc().getSchedClass();
|
|
int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
|
|
return (DefCycle != -1 && DefCycle <= 1);
|
|
}
|
|
|
|
/// insertNoop - Insert a noop into the instruction stream at the specified
|
|
/// point.
|
|
void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const {
|
|
llvm_unreachable("Target didn't implement insertNoop!");
|
|
}
|
|
|
|
|
|
/// Measure the specified inline asm to determine an approximation of its
|
|
/// length.
|
|
/// Comments (which run till the next SeparatorString or newline) do not
|
|
/// count as an instruction.
|
|
/// Any other non-whitespace text is considered an instruction, with
|
|
/// multiple instructions separated by SeparatorString or newlines.
|
|
/// Variable-length instructions are not handled here; this function
|
|
/// may be overloaded in the target code to do that.
|
|
unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
|
|
const MCAsmInfo &MAI) const {
|
|
|
|
|
|
// Count the number of instructions in the asm.
|
|
bool atInsnStart = true;
|
|
unsigned Length = 0;
|
|
for (; *Str; ++Str) {
|
|
if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
|
|
strlen(MAI.getSeparatorString())) == 0)
|
|
atInsnStart = true;
|
|
if (atInsnStart && !std::isspace(*Str)) {
|
|
Length += MAI.getMaxInstLength();
|
|
atInsnStart = false;
|
|
}
|
|
if (atInsnStart && strncmp(Str, MAI.getCommentString(),
|
|
strlen(MAI.getCommentString())) == 0)
|
|
atInsnStart = false;
|
|
}
|
|
|
|
return Length;
|
|
}
|