llvm-6502/lib/Transforms/IPO/ArgumentPromotion.cpp
Duncan Sands 1df9859c40 There are two ways of checking for a given type, for example isa<PointerType>(T)
and T->isPointerTy().  Convert most instances of the first form to the second form.
Requested by Chris.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96344 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-16 11:11:14 +00:00

876 lines
36 KiB
C++

//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass promotes "by reference" arguments to be "by value" arguments. In
// practice, this means looking for internal functions that have pointer
// arguments. If it can prove, through the use of alias analysis, that an
// argument is *only* loaded, then it can pass the value into the function
// instead of the address of the value. This can cause recursive simplification
// of code and lead to the elimination of allocas (especially in C++ template
// code like the STL).
//
// This pass also handles aggregate arguments that are passed into a function,
// scalarizing them if the elements of the aggregate are only loaded. Note that
// by default it refuses to scalarize aggregates which would require passing in
// more than three operands to the function, because passing thousands of
// operands for a large array or structure is unprofitable! This limit can be
// configured or disabled, however.
//
// Note that this transformation could also be done for arguments that are only
// stored to (returning the value instead), but does not currently. This case
// would be best handled when and if LLVM begins supporting multiple return
// values from functions.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "argpromotion"
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/CallGraphSCCPass.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include <set>
using namespace llvm;
STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated");
namespace {
/// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
///
struct ArgPromotion : public CallGraphSCCPass {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AliasAnalysis>();
CallGraphSCCPass::getAnalysisUsage(AU);
}
virtual bool runOnSCC(std::vector<CallGraphNode *> &SCC);
static char ID; // Pass identification, replacement for typeid
explicit ArgPromotion(unsigned maxElements = 3)
: CallGraphSCCPass(&ID), maxElements(maxElements) {}
/// A vector used to hold the indices of a single GEP instruction
typedef std::vector<uint64_t> IndicesVector;
private:
CallGraphNode *PromoteArguments(CallGraphNode *CGN);
bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
CallGraphNode *DoPromotion(Function *F,
SmallPtrSet<Argument*, 8> &ArgsToPromote,
SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
/// The maximum number of elements to expand, or 0 for unlimited.
unsigned maxElements;
};
}
char ArgPromotion::ID = 0;
static RegisterPass<ArgPromotion>
X("argpromotion", "Promote 'by reference' arguments to scalars");
Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
return new ArgPromotion(maxElements);
}
bool ArgPromotion::runOnSCC(std::vector<CallGraphNode *> &SCC) {
bool Changed = false, LocalChange;
do { // Iterate until we stop promoting from this SCC.
LocalChange = false;
// Attempt to promote arguments from all functions in this SCC.
for (unsigned i = 0, e = SCC.size(); i != e; ++i)
if (CallGraphNode *CGN = PromoteArguments(SCC[i])) {
LocalChange = true;
SCC[i] = CGN;
}
Changed |= LocalChange; // Remember that we changed something.
} while (LocalChange);
return Changed;
}
/// PromoteArguments - This method checks the specified function to see if there
/// are any promotable arguments and if it is safe to promote the function (for
/// example, all callers are direct). If safe to promote some arguments, it
/// calls the DoPromotion method.
///
CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
Function *F = CGN->getFunction();
// Make sure that it is local to this module.
if (!F || !F->hasLocalLinkage()) return 0;
// First check: see if there are any pointer arguments! If not, quick exit.
SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
unsigned ArgNo = 0;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I, ++ArgNo)
if (I->getType()->isPointerTy())
PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
if (PointerArgs.empty()) return 0;
// Second check: make sure that all callers are direct callers. We can't
// transform functions that have indirect callers.
if (F->hasAddressTaken())
return 0;
// Check to see which arguments are promotable. If an argument is promotable,
// add it to ArgsToPromote.
SmallPtrSet<Argument*, 8> ArgsToPromote;
SmallPtrSet<Argument*, 8> ByValArgsToTransform;
for (unsigned i = 0; i != PointerArgs.size(); ++i) {
bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
// If this is a byval argument, and if the aggregate type is small, just
// pass the elements, which is always safe.
Argument *PtrArg = PointerArgs[i].first;
if (isByVal) {
const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
if (maxElements > 0 && STy->getNumElements() > maxElements) {
DEBUG(dbgs() << "argpromotion disable promoting argument '"
<< PtrArg->getName() << "' because it would require adding more"
<< " than " << maxElements << " arguments to the function.\n");
} else {
// If all the elements are single-value types, we can promote it.
bool AllSimple = true;
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
if (!STy->getElementType(i)->isSingleValueType()) {
AllSimple = false;
break;
}
// Safe to transform, don't even bother trying to "promote" it.
// Passing the elements as a scalar will allow scalarrepl to hack on
// the new alloca we introduce.
if (AllSimple) {
ByValArgsToTransform.insert(PtrArg);
continue;
}
}
}
}
// Otherwise, see if we can promote the pointer to its value.
if (isSafeToPromoteArgument(PtrArg, isByVal))
ArgsToPromote.insert(PtrArg);
}
// No promotable pointer arguments.
if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
return 0;
return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
}
/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
/// to load.
static bool IsAlwaysValidPointer(Value *V) {
if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
return IsAlwaysValidPointer(GEP->getOperand(0));
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
if (CE->getOpcode() == Instruction::GetElementPtr)
return IsAlwaysValidPointer(CE->getOperand(0));
return false;
}
/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
/// all callees pass in a valid pointer for the specified function argument.
static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
Function *Callee = Arg->getParent();
unsigned ArgNo = std::distance(Callee->arg_begin(),
Function::arg_iterator(Arg));
// Look at all call sites of the function. At this pointer we know we only
// have direct callees.
for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
UI != E; ++UI) {
CallSite CS = CallSite::get(*UI);
assert(CS.getInstruction() && "Should only have direct calls!");
if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
return false;
}
return true;
}
/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
/// that is greater than or equal to the size of prefix, and each of the
/// elements in Prefix is the same as the corresponding elements in Longer.
///
/// This means it also returns true when Prefix and Longer are equal!
static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
const ArgPromotion::IndicesVector &Longer) {
if (Prefix.size() > Longer.size())
return false;
for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
if (Prefix[i] != Longer[i])
return false;
return true;
}
/// Checks if Indices, or a prefix of Indices, is in Set.
static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
std::set<ArgPromotion::IndicesVector> &Set) {
std::set<ArgPromotion::IndicesVector>::iterator Low;
Low = Set.upper_bound(Indices);
if (Low != Set.begin())
Low--;
// Low is now the last element smaller than or equal to Indices. This means
// it points to a prefix of Indices (possibly Indices itself), if such
// prefix exists.
//
// This load is safe if any prefix of its operands is safe to load.
return Low != Set.end() && IsPrefix(*Low, Indices);
}
/// Mark the given indices (ToMark) as safe in the given set of indices
/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
/// already. Furthermore, any indices that Indices is itself a prefix of, are
/// removed from Safe (since they are implicitely safe because of Indices now).
static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
std::set<ArgPromotion::IndicesVector> &Safe) {
std::set<ArgPromotion::IndicesVector>::iterator Low;
Low = Safe.upper_bound(ToMark);
// Guard against the case where Safe is empty
if (Low != Safe.begin())
Low--;
// Low is now the last element smaller than or equal to Indices. This
// means it points to a prefix of Indices (possibly Indices itself), if
// such prefix exists.
if (Low != Safe.end()) {
if (IsPrefix(*Low, ToMark))
// If there is already a prefix of these indices (or exactly these
// indices) marked a safe, don't bother adding these indices
return;
// Increment Low, so we can use it as a "insert before" hint
++Low;
}
// Insert
Low = Safe.insert(Low, ToMark);
++Low;
// If there we're a prefix of longer index list(s), remove those
std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
while (Low != End && IsPrefix(ToMark, *Low)) {
std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
++Low;
Safe.erase(Remove);
}
}
/// isSafeToPromoteArgument - As you might guess from the name of this method,
/// it checks to see if it is both safe and useful to promote the argument.
/// This method limits promotion of aggregates to only promote up to three
/// elements of the aggregate in order to avoid exploding the number of
/// arguments passed in.
bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
typedef std::set<IndicesVector> GEPIndicesSet;
// Quick exit for unused arguments
if (Arg->use_empty())
return true;
// We can only promote this argument if all of the uses are loads, or are GEP
// instructions (with constant indices) that are subsequently loaded.
//
// Promoting the argument causes it to be loaded in the caller
// unconditionally. This is only safe if we can prove that either the load
// would have happened in the callee anyway (ie, there is a load in the entry
// block) or the pointer passed in at every call site is guaranteed to be
// valid.
// In the former case, invalid loads can happen, but would have happened
// anyway, in the latter case, invalid loads won't happen. This prevents us
// from introducing an invalid load that wouldn't have happened in the
// original code.
//
// This set will contain all sets of indices that are loaded in the entry
// block, and thus are safe to unconditionally load in the caller.
GEPIndicesSet SafeToUnconditionallyLoad;
// This set contains all the sets of indices that we are planning to promote.
// This makes it possible to limit the number of arguments added.
GEPIndicesSet ToPromote;
// If the pointer is always valid, any load with first index 0 is valid.
if(isByVal || AllCalleesPassInValidPointerForArgument(Arg))
SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
// First, iterate the entry block and mark loads of (geps of) arguments as
// safe.
BasicBlock *EntryBlock = Arg->getParent()->begin();
// Declare this here so we can reuse it
IndicesVector Indices;
for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
I != E; ++I)
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
Value *V = LI->getPointerOperand();
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
V = GEP->getPointerOperand();
if (V == Arg) {
// This load actually loads (part of) Arg? Check the indices then.
Indices.reserve(GEP->getNumIndices());
for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
II != IE; ++II)
if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
Indices.push_back(CI->getSExtValue());
else
// We found a non-constant GEP index for this argument? Bail out
// right away, can't promote this argument at all.
return false;
// Indices checked out, mark them as safe
MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
Indices.clear();
}
} else if (V == Arg) {
// Direct loads are equivalent to a GEP with a single 0 index.
MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
}
}
// Now, iterate all uses of the argument to see if there are any uses that are
// not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
SmallVector<LoadInst*, 16> Loads;
IndicesVector Operands;
for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
UI != E; ++UI) {
Operands.clear();
if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
if (LI->isVolatile()) return false; // Don't hack volatile loads
Loads.push_back(LI);
// Direct loads are equivalent to a GEP with a zero index and then a load.
Operands.push_back(0);
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
if (GEP->use_empty()) {
// Dead GEP's cause trouble later. Just remove them if we run into
// them.
getAnalysis<AliasAnalysis>().deleteValue(GEP);
GEP->eraseFromParent();
// TODO: This runs the above loop over and over again for dead GEPS
// Couldn't we just do increment the UI iterator earlier and erase the
// use?
return isSafeToPromoteArgument(Arg, isByVal);
}
// Ensure that all of the indices are constants.
for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
i != e; ++i)
if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
Operands.push_back(C->getSExtValue());
else
return false; // Not a constant operand GEP!
// Ensure that the only users of the GEP are load instructions.
for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
UI != E; ++UI)
if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
if (LI->isVolatile()) return false; // Don't hack volatile loads
Loads.push_back(LI);
} else {
// Other uses than load?
return false;
}
} else {
return false; // Not a load or a GEP.
}
// Now, see if it is safe to promote this load / loads of this GEP. Loading
// is safe if Operands, or a prefix of Operands, is marked as safe.
if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
return false;
// See if we are already promoting a load with these indices. If not, check
// to make sure that we aren't promoting too many elements. If so, nothing
// to do.
if (ToPromote.find(Operands) == ToPromote.end()) {
if (maxElements > 0 && ToPromote.size() == maxElements) {
DEBUG(dbgs() << "argpromotion not promoting argument '"
<< Arg->getName() << "' because it would require adding more "
<< "than " << maxElements << " arguments to the function.\n");
// We limit aggregate promotion to only promoting up to a fixed number
// of elements of the aggregate.
return false;
}
ToPromote.insert(Operands);
}
}
if (Loads.empty()) return true; // No users, this is a dead argument.
// Okay, now we know that the argument is only used by load instructions and
// it is safe to unconditionally perform all of them. Use alias analysis to
// check to see if the pointer is guaranteed to not be modified from entry of
// the function to each of the load instructions.
// Because there could be several/many load instructions, remember which
// blocks we know to be transparent to the load.
SmallPtrSet<BasicBlock*, 16> TranspBlocks;
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
TargetData *TD = getAnalysisIfAvailable<TargetData>();
if (!TD) return false; // Without TargetData, assume the worst.
for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
// Check to see if the load is invalidated from the start of the block to
// the load itself.
LoadInst *Load = Loads[i];
BasicBlock *BB = Load->getParent();
const PointerType *LoadTy =
cast<PointerType>(Load->getPointerOperand()->getType());
unsigned LoadSize =(unsigned)TD->getTypeStoreSize(LoadTy->getElementType());
if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
return false; // Pointer is invalidated!
// Now check every path from the entry block to the load for transparency.
// To do this, we perform a depth first search on the inverse CFG from the
// loading block.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
I = idf_ext_begin(*PI, TranspBlocks),
E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
if (AA.canBasicBlockModify(**I, Arg, LoadSize))
return false;
}
// If the path from the entry of the function to each load is free of
// instructions that potentially invalidate the load, we can make the
// transformation!
return true;
}
/// DoPromotion - This method actually performs the promotion of the specified
/// arguments, and returns the new function. At this point, we know that it's
/// safe to do so.
CallGraphNode *ArgPromotion::DoPromotion(Function *F,
SmallPtrSet<Argument*, 8> &ArgsToPromote,
SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
// Start by computing a new prototype for the function, which is the same as
// the old function, but has modified arguments.
const FunctionType *FTy = F->getFunctionType();
std::vector<const Type*> Params;
typedef std::set<IndicesVector> ScalarizeTable;
// ScalarizedElements - If we are promoting a pointer that has elements
// accessed out of it, keep track of which elements are accessed so that we
// can add one argument for each.
//
// Arguments that are directly loaded will have a zero element value here, to
// handle cases where there are both a direct load and GEP accesses.
//
std::map<Argument*, ScalarizeTable> ScalarizedElements;
// OriginalLoads - Keep track of a representative load instruction from the
// original function so that we can tell the alias analysis implementation
// what the new GEP/Load instructions we are inserting look like.
std::map<IndicesVector, LoadInst*> OriginalLoads;
// Attributes - Keep track of the parameter attributes for the arguments
// that we are *not* promoting. For the ones that we do promote, the parameter
// attributes are lost
SmallVector<AttributeWithIndex, 8> AttributesVec;
const AttrListPtr &PAL = F->getAttributes();
// Add any return attributes.
if (Attributes attrs = PAL.getRetAttributes())
AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
// First, determine the new argument list
unsigned ArgIndex = 1;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
++I, ++ArgIndex) {
if (ByValArgsToTransform.count(I)) {
// Simple byval argument? Just add all the struct element types.
const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
const StructType *STy = cast<StructType>(AgTy);
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Params.push_back(STy->getElementType(i));
++NumByValArgsPromoted;
} else if (!ArgsToPromote.count(I)) {
// Unchanged argument
Params.push_back(I->getType());
if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
} else if (I->use_empty()) {
// Dead argument (which are always marked as promotable)
++NumArgumentsDead;
} else {
// Okay, this is being promoted. This means that the only uses are loads
// or GEPs which are only used by loads
// In this table, we will track which indices are loaded from the argument
// (where direct loads are tracked as no indices).
ScalarizeTable &ArgIndices = ScalarizedElements[I];
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
++UI) {
Instruction *User = cast<Instruction>(*UI);
assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
IndicesVector Indices;
Indices.reserve(User->getNumOperands() - 1);
// Since loads will only have a single operand, and GEPs only a single
// non-index operand, this will record direct loads without any indices,
// and gep+loads with the GEP indices.
for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
II != IE; ++II)
Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
// GEPs with a single 0 index can be merged with direct loads
if (Indices.size() == 1 && Indices.front() == 0)
Indices.clear();
ArgIndices.insert(Indices);
LoadInst *OrigLoad;
if (LoadInst *L = dyn_cast<LoadInst>(User))
OrigLoad = L;
else
// Take any load, we will use it only to update Alias Analysis
OrigLoad = cast<LoadInst>(User->use_back());
OriginalLoads[Indices] = OrigLoad;
}
// Add a parameter to the function for each element passed in.
for (ScalarizeTable::iterator SI = ArgIndices.begin(),
E = ArgIndices.end(); SI != E; ++SI) {
// not allowed to dereference ->begin() if size() is 0
Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
SI->begin(),
SI->end()));
assert(Params.back());
}
if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
++NumArgumentsPromoted;
else
++NumAggregatesPromoted;
}
}
// Add any function attributes.
if (Attributes attrs = PAL.getFnAttributes())
AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
const Type *RetTy = FTy->getReturnType();
// Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
// have zero fixed arguments.
bool ExtraArgHack = false;
if (Params.empty() && FTy->isVarArg()) {
ExtraArgHack = true;
Params.push_back(Type::getInt32Ty(F->getContext()));
}
// Construct the new function type using the new arguments.
FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
// Create the new function body and insert it into the module.
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
NF->copyAttributesFrom(F);
DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
<< "From: " << *F);
// Recompute the parameter attributes list based on the new arguments for
// the function.
NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
AttributesVec.end()));
AttributesVec.clear();
F->getParent()->getFunctionList().insert(F, NF);
NF->takeName(F);
// Get the alias analysis information that we need to update to reflect our
// changes.
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
// Get the callgraph information that we need to update to reflect our
// changes.
CallGraph &CG = getAnalysis<CallGraph>();
// Get a new callgraph node for NF.
CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
// Loop over all of the callers of the function, transforming the call sites
// to pass in the loaded pointers.
//
SmallVector<Value*, 16> Args;
while (!F->use_empty()) {
CallSite CS = CallSite::get(F->use_back());
Instruction *Call = CS.getInstruction();
const AttrListPtr &CallPAL = CS.getAttributes();
// Add any return attributes.
if (Attributes attrs = CallPAL.getRetAttributes())
AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
// Loop over the operands, inserting GEP and loads in the caller as
// appropriate.
CallSite::arg_iterator AI = CS.arg_begin();
ArgIndex = 1;
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
I != E; ++I, ++AI, ++ArgIndex)
if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
Args.push_back(*AI); // Unmodified argument
if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
} else if (ByValArgsToTransform.count(I)) {
// Emit a GEP and load for each element of the struct.
const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
const StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = {
ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
(*AI)->getName()+"."+utostr(i),
Call);
// TODO: Tell AA about the new values?
Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
}
} else if (!I->use_empty()) {
// Non-dead argument: insert GEPs and loads as appropriate.
ScalarizeTable &ArgIndices = ScalarizedElements[I];
// Store the Value* version of the indices in here, but declare it now
// for reuse
std::vector<Value*> Ops;
for (ScalarizeTable::iterator SI = ArgIndices.begin(),
E = ArgIndices.end(); SI != E; ++SI) {
Value *V = *AI;
LoadInst *OrigLoad = OriginalLoads[*SI];
if (!SI->empty()) {
Ops.reserve(SI->size());
const Type *ElTy = V->getType();
for (IndicesVector::const_iterator II = SI->begin(),
IE = SI->end(); II != IE; ++II) {
// Use i32 to index structs, and i64 for others (pointers/arrays).
// This satisfies GEP constraints.
const Type *IdxTy = (ElTy->isStructTy() ?
Type::getInt32Ty(F->getContext()) :
Type::getInt64Ty(F->getContext()));
Ops.push_back(ConstantInt::get(IdxTy, *II));
// Keep track of the type we're currently indexing
ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
}
// And create a GEP to extract those indices
V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
V->getName()+".idx", Call);
Ops.clear();
AA.copyValue(OrigLoad->getOperand(0), V);
}
Args.push_back(new LoadInst(V, V->getName()+".val", Call));
AA.copyValue(OrigLoad, Args.back());
}
}
if (ExtraArgHack)
Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
// Push any varargs arguments on the list
for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
Args.push_back(*AI);
if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
}
// Add any function attributes.
if (Attributes attrs = CallPAL.getFnAttributes())
AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
Instruction *New;
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
Args.begin(), Args.end(), "", Call);
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
AttributesVec.end()));
} else {
New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
AttributesVec.end()));
if (cast<CallInst>(Call)->isTailCall())
cast<CallInst>(New)->setTailCall();
}
Args.clear();
AttributesVec.clear();
// Update the alias analysis implementation to know that we are replacing
// the old call with a new one.
AA.replaceWithNewValue(Call, New);
// Update the callgraph to know that the callsite has been transformed.
CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
CalleeNode->replaceCallEdge(Call, New, NF_CGN);
if (!Call->use_empty()) {
Call->replaceAllUsesWith(New);
New->takeName(Call);
}
// Finally, remove the old call from the program, reducing the use-count of
// F.
Call->eraseFromParent();
}
// Since we have now created the new function, splice the body of the old
// function right into the new function, leaving the old rotting hulk of the
// function empty.
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
// Loop over the argument list, transfering uses of the old arguments over to
// the new arguments, also transfering over the names as well.
//
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
I2 = NF->arg_begin(); I != E; ++I) {
if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
// If this is an unmodified argument, move the name and users over to the
// new version.
I->replaceAllUsesWith(I2);
I2->takeName(I);
AA.replaceWithNewValue(I, I2);
++I2;
continue;
}
if (ByValArgsToTransform.count(I)) {
// In the callee, we create an alloca, and store each of the new incoming
// arguments into the alloca.
Instruction *InsertPt = NF->begin()->begin();
// Just add all the struct element types.
const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
const StructType *STy = cast<StructType>(AgTy);
Value *Idxs[2] = {
ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
Value *Idx =
GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
TheAlloca->getName()+"."+Twine(i),
InsertPt);
I2->setName(I->getName()+"."+Twine(i));
new StoreInst(I2++, Idx, InsertPt);
}
// Anything that used the arg should now use the alloca.
I->replaceAllUsesWith(TheAlloca);
TheAlloca->takeName(I);
AA.replaceWithNewValue(I, TheAlloca);
continue;
}
if (I->use_empty()) {
AA.deleteValue(I);
continue;
}
// Otherwise, if we promoted this argument, then all users are load
// instructions (or GEPs with only load users), and all loads should be
// using the new argument that we added.
ScalarizeTable &ArgIndices = ScalarizedElements[I];
while (!I->use_empty()) {
if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
assert(ArgIndices.begin()->empty() &&
"Load element should sort to front!");
I2->setName(I->getName()+".val");
LI->replaceAllUsesWith(I2);
AA.replaceWithNewValue(LI, I2);
LI->eraseFromParent();
DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
<< "' in function '" << F->getName() << "'\n");
} else {
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
IndicesVector Operands;
Operands.reserve(GEP->getNumIndices());
for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
II != IE; ++II)
Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
// GEPs with a single 0 index can be merged with direct loads
if (Operands.size() == 1 && Operands.front() == 0)
Operands.clear();
Function::arg_iterator TheArg = I2;
for (ScalarizeTable::iterator It = ArgIndices.begin();
*It != Operands; ++It, ++TheArg) {
assert(It != ArgIndices.end() && "GEP not handled??");
}
std::string NewName = I->getName();
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
NewName += "." + utostr(Operands[i]);
}
NewName += ".val";
TheArg->setName(NewName);
DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
<< "' of function '" << NF->getName() << "'\n");
// All of the uses must be load instructions. Replace them all with
// the argument specified by ArgNo.
while (!GEP->use_empty()) {
LoadInst *L = cast<LoadInst>(GEP->use_back());
L->replaceAllUsesWith(TheArg);
AA.replaceWithNewValue(L, TheArg);
L->eraseFromParent();
}
AA.deleteValue(GEP);
GEP->eraseFromParent();
}
}
// Increment I2 past all of the arguments added for this promoted pointer.
for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
++I2;
}
// Notify the alias analysis implementation that we inserted a new argument.
if (ExtraArgHack)
AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
NF->arg_begin());
// Tell the alias analysis that the old function is about to disappear.
AA.replaceWithNewValue(F, NF);
NF_CGN->stealCalledFunctionsFrom(CG[F]);
// Now that the old function is dead, delete it.
delete CG.removeFunctionFromModule(F);
return NF_CGN;
}