mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	* Only apply divide bypass optimization when not optimizing for size. * Fixed bug caused by constant for 0 value of type Int32, used dividend type to generate the constant instead. * For atom x86-64 apply the divide bypass to use 16-bit divides instead of 64-bit divides when operand values are small enough. * Added lit tests for 64-bit divide bypass. Patch by Tyler Nowicki! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176442 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			263 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- BypassSlowDivision.cpp - Bypass slow division ---------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains an optimization for div and rem on architectures that
 | 
						|
// execute short instructions significantly faster than longer instructions.
 | 
						|
// For example, on Intel Atom 32-bit divides are slow enough that during
 | 
						|
// runtime it is profitable to check the value of the operands, and if they are
 | 
						|
// positive and less than 256 use an unsigned 8-bit divide.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "bypass-slow-division"
 | 
						|
#include "llvm/Transforms/Utils/BypassSlowDivision.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct DivOpInfo {
 | 
						|
    bool SignedOp;
 | 
						|
    Value *Dividend;
 | 
						|
    Value *Divisor;
 | 
						|
 | 
						|
    DivOpInfo(bool InSignedOp, Value *InDividend, Value *InDivisor)
 | 
						|
      : SignedOp(InSignedOp), Dividend(InDividend), Divisor(InDivisor) {}
 | 
						|
  };
 | 
						|
 | 
						|
  struct DivPhiNodes {
 | 
						|
    PHINode *Quotient;
 | 
						|
    PHINode *Remainder;
 | 
						|
 | 
						|
    DivPhiNodes(PHINode *InQuotient, PHINode *InRemainder)
 | 
						|
      : Quotient(InQuotient), Remainder(InRemainder) {}
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct DenseMapInfo<DivOpInfo> {
 | 
						|
    static bool isEqual(const DivOpInfo &Val1, const DivOpInfo &Val2) {
 | 
						|
      return Val1.SignedOp == Val2.SignedOp &&
 | 
						|
             Val1.Dividend == Val2.Dividend &&
 | 
						|
             Val1.Divisor == Val2.Divisor;
 | 
						|
    }
 | 
						|
 | 
						|
    static DivOpInfo getEmptyKey() {
 | 
						|
      return DivOpInfo(false, 0, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    static DivOpInfo getTombstoneKey() {
 | 
						|
      return DivOpInfo(true, 0, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    static unsigned getHashValue(const DivOpInfo &Val) {
 | 
						|
      return (unsigned)(reinterpret_cast<uintptr_t>(Val.Dividend) ^
 | 
						|
                        reinterpret_cast<uintptr_t>(Val.Divisor)) ^
 | 
						|
                        (unsigned)Val.SignedOp;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  typedef DenseMap<DivOpInfo, DivPhiNodes> DivCacheTy;
 | 
						|
}
 | 
						|
 | 
						|
// insertFastDiv - Substitutes the div/rem instruction with code that checks the
 | 
						|
// value of the operands and uses a shorter-faster div/rem instruction when
 | 
						|
// possible and the longer-slower div/rem instruction otherwise.
 | 
						|
static bool insertFastDiv(Function &F,
 | 
						|
                          Function::iterator &I,
 | 
						|
                          BasicBlock::iterator &J,
 | 
						|
                          IntegerType *BypassType,
 | 
						|
                          bool UseDivOp,
 | 
						|
                          bool UseSignedOp,
 | 
						|
                          DivCacheTy &PerBBDivCache) {
 | 
						|
  // Get instruction operands
 | 
						|
  Instruction *Instr = J;
 | 
						|
  Value *Dividend = Instr->getOperand(0);
 | 
						|
  Value *Divisor = Instr->getOperand(1);
 | 
						|
 | 
						|
  if (isa<ConstantInt>(Divisor) ||
 | 
						|
      (isa<ConstantInt>(Dividend) && isa<ConstantInt>(Divisor))) {
 | 
						|
    // Operations with immediate values should have
 | 
						|
    // been solved and replaced during compile time.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Basic Block is split before divide
 | 
						|
  BasicBlock *MainBB = I;
 | 
						|
  BasicBlock *SuccessorBB = I->splitBasicBlock(J);
 | 
						|
  ++I; //advance iterator I to successorBB
 | 
						|
 | 
						|
  // Add new basic block for slow divide operation
 | 
						|
  BasicBlock *SlowBB = BasicBlock::Create(F.getContext(), "",
 | 
						|
                                          MainBB->getParent(), SuccessorBB);
 | 
						|
  SlowBB->moveBefore(SuccessorBB);
 | 
						|
  IRBuilder<> SlowBuilder(SlowBB, SlowBB->begin());
 | 
						|
  Value *SlowQuotientV;
 | 
						|
  Value *SlowRemainderV;
 | 
						|
  if (UseSignedOp) {
 | 
						|
    SlowQuotientV = SlowBuilder.CreateSDiv(Dividend, Divisor);
 | 
						|
    SlowRemainderV = SlowBuilder.CreateSRem(Dividend, Divisor);
 | 
						|
  } else {
 | 
						|
    SlowQuotientV = SlowBuilder.CreateUDiv(Dividend, Divisor);
 | 
						|
    SlowRemainderV = SlowBuilder.CreateURem(Dividend, Divisor);
 | 
						|
  }
 | 
						|
  SlowBuilder.CreateBr(SuccessorBB);
 | 
						|
 | 
						|
  // Add new basic block for fast divide operation
 | 
						|
  BasicBlock *FastBB = BasicBlock::Create(F.getContext(), "",
 | 
						|
                                          MainBB->getParent(), SuccessorBB);
 | 
						|
  FastBB->moveBefore(SlowBB);
 | 
						|
  IRBuilder<> FastBuilder(FastBB, FastBB->begin());
 | 
						|
  Value *ShortDivisorV = FastBuilder.CreateCast(Instruction::Trunc, Divisor,
 | 
						|
                                                BypassType);
 | 
						|
  Value *ShortDividendV = FastBuilder.CreateCast(Instruction::Trunc, Dividend,
 | 
						|
                                                 BypassType);
 | 
						|
 | 
						|
  // udiv/urem because optimization only handles positive numbers
 | 
						|
  Value *ShortQuotientV = FastBuilder.CreateExactUDiv(ShortDividendV,
 | 
						|
                                                      ShortDivisorV);
 | 
						|
  Value *ShortRemainderV = FastBuilder.CreateURem(ShortDividendV,
 | 
						|
                                                  ShortDivisorV);
 | 
						|
  Value *FastQuotientV = FastBuilder.CreateCast(Instruction::ZExt,
 | 
						|
                                                ShortQuotientV,
 | 
						|
                                                Dividend->getType());
 | 
						|
  Value *FastRemainderV = FastBuilder.CreateCast(Instruction::ZExt,
 | 
						|
                                                 ShortRemainderV,
 | 
						|
                                                 Dividend->getType());
 | 
						|
  FastBuilder.CreateBr(SuccessorBB);
 | 
						|
 | 
						|
  // Phi nodes for result of div and rem
 | 
						|
  IRBuilder<> SuccessorBuilder(SuccessorBB, SuccessorBB->begin());
 | 
						|
  PHINode *QuoPhi = SuccessorBuilder.CreatePHI(Instr->getType(), 2);
 | 
						|
  QuoPhi->addIncoming(SlowQuotientV, SlowBB);
 | 
						|
  QuoPhi->addIncoming(FastQuotientV, FastBB);
 | 
						|
  PHINode *RemPhi = SuccessorBuilder.CreatePHI(Instr->getType(), 2);
 | 
						|
  RemPhi->addIncoming(SlowRemainderV, SlowBB);
 | 
						|
  RemPhi->addIncoming(FastRemainderV, FastBB);
 | 
						|
 | 
						|
  // Replace Instr with appropriate phi node
 | 
						|
  if (UseDivOp)
 | 
						|
    Instr->replaceAllUsesWith(QuoPhi);
 | 
						|
  else
 | 
						|
    Instr->replaceAllUsesWith(RemPhi);
 | 
						|
  Instr->eraseFromParent();
 | 
						|
 | 
						|
  // Combine operands into a single value with OR for value testing below
 | 
						|
  MainBB->getInstList().back().eraseFromParent();
 | 
						|
  IRBuilder<> MainBuilder(MainBB, MainBB->end());
 | 
						|
  Value *OrV = MainBuilder.CreateOr(Dividend, Divisor);
 | 
						|
 | 
						|
  // BitMask is inverted to check if the operands are
 | 
						|
  // larger than the bypass type
 | 
						|
  uint64_t BitMask = ~BypassType->getBitMask();
 | 
						|
  Value *AndV = MainBuilder.CreateAnd(OrV, BitMask);
 | 
						|
 | 
						|
  // Compare operand values and branch
 | 
						|
  Value *ZeroV = ConstantInt::getSigned(Dividend->getType(), 0);
 | 
						|
  Value *CmpV = MainBuilder.CreateICmpEQ(AndV, ZeroV);
 | 
						|
  MainBuilder.CreateCondBr(CmpV, FastBB, SlowBB);
 | 
						|
 | 
						|
  // point iterator J at first instruction of successorBB
 | 
						|
  J = I->begin();
 | 
						|
 | 
						|
  // Cache phi nodes to be used later in place of other instances
 | 
						|
  // of div or rem with the same sign, dividend, and divisor
 | 
						|
  DivOpInfo Key(UseSignedOp, Dividend, Divisor);
 | 
						|
  DivPhiNodes Value(QuoPhi, RemPhi);
 | 
						|
  PerBBDivCache.insert(std::pair<DivOpInfo, DivPhiNodes>(Key, Value));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// reuseOrInsertFastDiv - Reuses previously computed dividend or remainder if
 | 
						|
// operands and operation are identical. Otherwise call insertFastDiv to perform
 | 
						|
// the optimization and cache the resulting dividend and remainder.
 | 
						|
static bool reuseOrInsertFastDiv(Function &F,
 | 
						|
                                 Function::iterator &I,
 | 
						|
                                 BasicBlock::iterator &J,
 | 
						|
                                 IntegerType *BypassType,
 | 
						|
                                 bool UseDivOp,
 | 
						|
                                 bool UseSignedOp,
 | 
						|
                                 DivCacheTy &PerBBDivCache) {
 | 
						|
  // Get instruction operands
 | 
						|
  Instruction *Instr = J;
 | 
						|
  DivOpInfo Key(UseSignedOp, Instr->getOperand(0), Instr->getOperand(1));
 | 
						|
  DivCacheTy::iterator CacheI = PerBBDivCache.find(Key);
 | 
						|
 | 
						|
  if (CacheI == PerBBDivCache.end()) {
 | 
						|
    // If previous instance does not exist, insert fast div
 | 
						|
    return insertFastDiv(F, I, J, BypassType, UseDivOp, UseSignedOp,
 | 
						|
                         PerBBDivCache);
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace operation value with previously generated phi node
 | 
						|
  DivPhiNodes &Value = CacheI->second;
 | 
						|
  if (UseDivOp) {
 | 
						|
    // Replace all uses of div instruction with quotient phi node
 | 
						|
    J->replaceAllUsesWith(Value.Quotient);
 | 
						|
  } else {
 | 
						|
    // Replace all uses of rem instruction with remainder phi node
 | 
						|
    J->replaceAllUsesWith(Value.Remainder);
 | 
						|
  }
 | 
						|
 | 
						|
  // Advance to next operation
 | 
						|
  ++J;
 | 
						|
 | 
						|
  // Remove redundant operation
 | 
						|
  Instr->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// bypassSlowDivision - This optimization identifies DIV instructions that can
 | 
						|
// be profitably bypassed and carried out with a shorter, faster divide.
 | 
						|
bool llvm::bypassSlowDivision(Function &F,
 | 
						|
                              Function::iterator &I,
 | 
						|
                              const DenseMap<unsigned int, unsigned int> &BypassWidths) {
 | 
						|
  DivCacheTy DivCache;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (BasicBlock::iterator J = I->begin(); J != I->end(); J++) {
 | 
						|
 | 
						|
    // Get instruction details
 | 
						|
    unsigned Opcode = J->getOpcode();
 | 
						|
    bool UseDivOp = Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
 | 
						|
    bool UseRemOp = Opcode == Instruction::SRem || Opcode == Instruction::URem;
 | 
						|
    bool UseSignedOp = Opcode == Instruction::SDiv ||
 | 
						|
                       Opcode == Instruction::SRem;
 | 
						|
 | 
						|
    // Only optimize div or rem ops
 | 
						|
    if (!UseDivOp && !UseRemOp)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip division on vector types, only optimize integer instructions
 | 
						|
    if (!J->getType()->isIntegerTy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Get bitwidth of div/rem instruction
 | 
						|
    IntegerType *T = cast<IntegerType>(J->getType());
 | 
						|
    unsigned int bitwidth = T->getBitWidth();
 | 
						|
 | 
						|
    // Continue if bitwidth is not bypassed
 | 
						|
    DenseMap<unsigned int, unsigned int>::const_iterator BI = BypassWidths.find(bitwidth);
 | 
						|
    if (BI == BypassWidths.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Get type for div/rem instruction with bypass bitwidth
 | 
						|
    IntegerType *BT = IntegerType::get(J->getContext(), BI->second);
 | 
						|
 | 
						|
    MadeChange |= reuseOrInsertFastDiv(F, I, J, BT, UseDivOp,
 | 
						|
                                       UseSignedOp, DivCache);
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 |