mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 06:33:21 +00:00
fe14568a81
nodes that are not shadow nodes This fixes em3d to be _correct_ if not optimial git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2274 91177308-0d34-0410-b5e6-96231b3b80d8
366 lines
12 KiB
C++
366 lines
12 KiB
C++
//===- FunctionRepBuilder.cpp - Build the local datastructure graph -------===//
|
|
//
|
|
// Build the local datastructure graph for a single method.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "FunctionRepBuilder.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/ConstantVals.h"
|
|
#include "Support/STLExtras.h"
|
|
#include <algorithm>
|
|
|
|
// synthesizeNode - Create a new shadow node that is to be linked into this
|
|
// chain..
|
|
// FIXME: This should not take a FunctionRepBuilder as an argument!
|
|
//
|
|
ShadowDSNode *DSNode::synthesizeNode(const Type *Ty,
|
|
FunctionRepBuilder *Rep) {
|
|
// If we are a derived shadow node, defer to our parent to synthesize the node
|
|
if (ShadowDSNode *Th = dyn_cast<ShadowDSNode>(this))
|
|
if (Th->getShadowParent())
|
|
return Th->getShadowParent()->synthesizeNode(Ty, Rep);
|
|
|
|
// See if we have already synthesized a node of this type...
|
|
for (unsigned i = 0, e = SynthNodes.size(); i != e; ++i)
|
|
if (SynthNodes[i].first == Ty) return SynthNodes[i].second;
|
|
|
|
// No we haven't. Do so now and add it to our list of saved nodes...
|
|
ShadowDSNode *SN = Rep->makeSynthesizedShadow(Ty, this);
|
|
SynthNodes.push_back(make_pair(Ty, SN));
|
|
return SN;
|
|
}
|
|
|
|
ShadowDSNode *FunctionRepBuilder::makeSynthesizedShadow(const Type *Ty,
|
|
DSNode *Parent) {
|
|
ShadowDSNode *Result = new ShadowDSNode(Ty, F->getFunction()->getParent(),
|
|
Parent);
|
|
ShadowNodes.push_back(Result);
|
|
return Result;
|
|
}
|
|
|
|
|
|
|
|
// visitOperand - If the specified instruction operand is a global value, add
|
|
// a node for it...
|
|
//
|
|
void InitVisitor::visitOperand(Value *V) {
|
|
if (!Rep->ValueMap.count(V)) // Only process it once...
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
GlobalDSNode *N = new GlobalDSNode(GV);
|
|
Rep->GlobalNodes.push_back(N);
|
|
Rep->ValueMap[V].add(N);
|
|
Rep->addAllUsesToWorkList(GV);
|
|
|
|
// FIXME: If the global variable has fields, we should add critical
|
|
// shadow nodes to represent them!
|
|
}
|
|
}
|
|
|
|
|
|
// visitCallInst - Create a call node for the callinst, and create as shadow
|
|
// node if the call returns a pointer value. Check to see if the call node
|
|
// uses any global variables...
|
|
//
|
|
void InitVisitor::visitCallInst(CallInst *CI) {
|
|
CallDSNode *C = new CallDSNode(CI);
|
|
Rep->CallNodes.push_back(C);
|
|
Rep->CallMap[CI] = C;
|
|
|
|
if (PointerType *PT = dyn_cast<PointerType>(CI->getType())) {
|
|
// Create a critical shadow node to represent the memory object that the
|
|
// return value points to...
|
|
ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
|
|
Func->getParent());
|
|
Rep->ShadowNodes.push_back(Shad);
|
|
|
|
// The return value of the function is a pointer to the shadow value
|
|
// just created...
|
|
//
|
|
C->getLink(0).add(Shad);
|
|
|
|
// The call instruction returns a pointer to the shadow block...
|
|
Rep->ValueMap[CI].add(Shad, CI);
|
|
|
|
// If the call returns a value with pointer type, add all of the users
|
|
// of the call instruction to the work list...
|
|
Rep->addAllUsesToWorkList(CI);
|
|
}
|
|
|
|
// Loop over all of the operands of the call instruction (except the first
|
|
// one), to look for global variable references...
|
|
//
|
|
for_each(CI->op_begin(), CI->op_end(),
|
|
bind_obj(this, &InitVisitor::visitOperand));
|
|
}
|
|
|
|
|
|
// visitAllocationInst - Create an allocation node for the allocation. Since
|
|
// allocation instructions do not take pointer arguments, they cannot refer to
|
|
// global vars...
|
|
//
|
|
void InitVisitor::visitAllocationInst(AllocationInst *AI) {
|
|
AllocDSNode *N = new AllocDSNode(AI);
|
|
Rep->AllocNodes.push_back(N);
|
|
|
|
Rep->ValueMap[AI].add(N, AI);
|
|
|
|
// Add all of the users of the malloc instruction to the work list...
|
|
Rep->addAllUsesToWorkList(AI);
|
|
}
|
|
|
|
|
|
// Visit all other instruction types. Here we just scan, looking for uses of
|
|
// global variables...
|
|
//
|
|
void InitVisitor::visitInstruction(Instruction *I) {
|
|
for_each(I->op_begin(), I->op_end(),
|
|
bind_obj(this, &InitVisitor::visitOperand));
|
|
}
|
|
|
|
|
|
// addAllUsesToWorkList - Add all of the instructions users of the specified
|
|
// value to the work list for further processing...
|
|
//
|
|
void FunctionRepBuilder::addAllUsesToWorkList(Value *V) {
|
|
//cerr << "Adding all uses of " << V << "\n";
|
|
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
|
|
Instruction *Inst = cast<Instruction>(*I);
|
|
// When processing global values, it's possible that the instructions on
|
|
// the use list are not all in this method. Only add the instructions
|
|
// that _are_ in this method.
|
|
//
|
|
if (Inst->getParent()->getParent() == F->getFunction())
|
|
// Only let an instruction occur on the work list once...
|
|
if (std::find(WorkList.begin(), WorkList.end(), Inst) == WorkList.end())
|
|
WorkList.push_back(Inst);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void FunctionRepBuilder::initializeWorkList(Function *Func) {
|
|
// Add all of the arguments to the method to the graph and add all users to
|
|
// the worklists...
|
|
//
|
|
for (Function::ArgumentListType::iterator I = Func->getArgumentList().begin(),
|
|
E = Func->getArgumentList().end(); I != E; ++I) {
|
|
Value *Arg = (Value*)(*I);
|
|
// Only process arguments that are of pointer type...
|
|
if (PointerType *PT = dyn_cast<PointerType>(Arg->getType())) {
|
|
// Add a shadow value for it to represent what it is pointing to and add
|
|
// this to the value map...
|
|
ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
|
|
Func->getParent());
|
|
ShadowNodes.push_back(Shad);
|
|
ValueMap[Arg].add(PointerVal(Shad), Arg);
|
|
|
|
// Make sure that all users of the argument are processed...
|
|
addAllUsesToWorkList(Arg);
|
|
}
|
|
}
|
|
|
|
// Iterate over the instructions in the method. Create nodes for malloc and
|
|
// call instructions. Add all uses of these to the worklist of instructions
|
|
// to process.
|
|
//
|
|
InitVisitor IV(this, Func);
|
|
IV.visit(Func);
|
|
}
|
|
|
|
|
|
|
|
|
|
PointerVal FunctionRepBuilder::getIndexedPointerDest(const PointerVal &InP,
|
|
const MemAccessInst *MAI) {
|
|
unsigned Index = InP.Index;
|
|
const Type *SrcTy = MAI->getPointerOperand()->getType();
|
|
|
|
for (MemAccessInst::const_op_iterator I = MAI->idx_begin(),
|
|
E = MAI->idx_end(); I != E; ++I)
|
|
if ((*I)->getType() == Type::UByteTy) { // Look for struct indices...
|
|
StructType *STy = cast<StructType>(SrcTy);
|
|
unsigned StructIdx = cast<ConstantUInt>(*I)->getValue();
|
|
for (unsigned i = 0; i != StructIdx; ++i)
|
|
Index += countPointerFields(STy->getContainedType(i));
|
|
|
|
// Advance SrcTy to be the new element type...
|
|
SrcTy = STy->getContainedType(StructIdx);
|
|
} else {
|
|
// Otherwise, stepping into array or initial pointer, just increment type
|
|
SrcTy = cast<SequentialType>(SrcTy)->getElementType();
|
|
}
|
|
|
|
return PointerVal(InP.Node, Index);
|
|
}
|
|
|
|
static PointerValSet &getField(const PointerVal &DestPtr) {
|
|
assert(DestPtr.Node != 0);
|
|
return DestPtr.Node->getLink(DestPtr.Index);
|
|
}
|
|
|
|
|
|
// Reprocessing a GEP instruction is the result of the pointer operand
|
|
// changing. This means that the set of possible values for the GEP
|
|
// needs to be expanded.
|
|
//
|
|
void FunctionRepBuilder::visitGetElementPtrInst(GetElementPtrInst *GEP) {
|
|
PointerValSet &GEPPVS = ValueMap[GEP]; // PointerValSet to expand
|
|
|
|
// Get the input pointer val set...
|
|
const PointerValSet &SrcPVS = ValueMap[GEP->getOperand(0)];
|
|
|
|
bool Changed = false; // Process each input value... propogating it.
|
|
for (unsigned i = 0, e = SrcPVS.size(); i != e; ++i) {
|
|
// Calculate where the resulting pointer would point based on an
|
|
// input of 'Val' as the pointer type... and add it to our outgoing
|
|
// value set. Keep track of whether or not we actually changed
|
|
// anything.
|
|
//
|
|
Changed |= GEPPVS.add(getIndexedPointerDest(SrcPVS[i], GEP));
|
|
}
|
|
|
|
// If our current value set changed, notify all of the users of our
|
|
// value.
|
|
//
|
|
if (Changed) addAllUsesToWorkList(GEP);
|
|
}
|
|
|
|
void FunctionRepBuilder::visitReturnInst(ReturnInst *RI) {
|
|
RetNode.add(ValueMap[RI->getOperand(0)]);
|
|
}
|
|
|
|
void FunctionRepBuilder::visitLoadInst(LoadInst *LI) {
|
|
// Only loads that return pointers are interesting...
|
|
const PointerType *DestTy = dyn_cast<PointerType>(LI->getType());
|
|
if (DestTy == 0) return;
|
|
|
|
const PointerValSet &SrcPVS = ValueMap[LI->getOperand(0)];
|
|
PointerValSet &LIPVS = ValueMap[LI];
|
|
|
|
bool Changed = false;
|
|
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
|
|
PointerVal Ptr = getIndexedPointerDest(SrcPVS[si], LI);
|
|
PointerValSet &Field = getField(Ptr);
|
|
|
|
if (Field.size()) { // Field loaded wasn't null?
|
|
Changed |= LIPVS.add(Field);
|
|
} else {
|
|
// If we are loading a null field out of a shadow node, we need to
|
|
// synthesize a new shadow node and link it in...
|
|
//
|
|
ShadowDSNode *SynthNode =
|
|
Ptr.Node->synthesizeNode(DestTy->getElementType(), this);
|
|
Field.add(SynthNode);
|
|
|
|
Changed |= LIPVS.add(Field);
|
|
}
|
|
}
|
|
|
|
if (Changed) addAllUsesToWorkList(LI);
|
|
}
|
|
|
|
void FunctionRepBuilder::visitStoreInst(StoreInst *SI) {
|
|
// The only stores that are interesting are stores the store pointers
|
|
// into data structures...
|
|
//
|
|
if (!isa<PointerType>(SI->getOperand(0)->getType())) return;
|
|
if (!ValueMap.count(SI->getOperand(0))) return; // Src scalar has no values!
|
|
|
|
const PointerValSet &SrcPVS = ValueMap[SI->getOperand(0)];
|
|
const PointerValSet &PtrPVS = ValueMap[SI->getOperand(1)];
|
|
|
|
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
|
|
const PointerVal &SrcPtr = SrcPVS[si];
|
|
for (unsigned pi = 0, pe = PtrPVS.size(); pi != pe; ++pi) {
|
|
PointerVal Dest = getIndexedPointerDest(PtrPVS[pi], SI);
|
|
|
|
#if 0
|
|
cerr << "Setting Dest:\n";
|
|
Dest.print(cerr);
|
|
cerr << "to point to Src:\n";
|
|
SrcPtr.print(cerr);
|
|
#endif
|
|
|
|
// Add SrcPtr into the Dest field...
|
|
if (getField(Dest).add(SrcPtr)) {
|
|
// If we modified the dest field, then invalidate everyone that points
|
|
// to Dest.
|
|
const std::vector<Value*> &Ptrs = Dest.Node->getPointers();
|
|
for (unsigned i = 0, e = Ptrs.size(); i != e; ++i)
|
|
addAllUsesToWorkList(Ptrs[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void FunctionRepBuilder::visitCallInst(CallInst *CI) {
|
|
CallDSNode *DSN = CallMap[CI];
|
|
unsigned PtrNum = 0;
|
|
for (unsigned i = 0, e = CI->getNumOperands(); i != e; ++i)
|
|
if (isa<PointerType>(CI->getOperand(i)->getType()))
|
|
DSN->addArgValue(PtrNum++, ValueMap[CI->getOperand(i)]);
|
|
}
|
|
|
|
void FunctionRepBuilder::visitPHINode(PHINode *PN) {
|
|
assert(isa<PointerType>(PN->getType()) && "Should only update ptr phis");
|
|
|
|
PointerValSet &PN_PVS = ValueMap[PN];
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
Changed |= PN_PVS.add(ValueMap[PN->getIncomingValue(i)],
|
|
PN->getIncomingValue(i));
|
|
|
|
if (Changed) addAllUsesToWorkList(PN);
|
|
}
|
|
|
|
|
|
|
|
|
|
// FunctionDSGraph constructor - Perform the global analysis to determine
|
|
// what the data structure usage behavior or a method looks like.
|
|
//
|
|
FunctionDSGraph::FunctionDSGraph(Function *F) : Func(F) {
|
|
FunctionRepBuilder Builder(this);
|
|
AllocNodes = Builder.getAllocNodes();
|
|
ShadowNodes = Builder.getShadowNodes();
|
|
GlobalNodes = Builder.getGlobalNodes();
|
|
CallNodes = Builder.getCallNodes();
|
|
RetNode = Builder.getRetNode();
|
|
ValueMap = Builder.getValueMap();
|
|
|
|
// Remove all entries in the value map that consist of global values pointing
|
|
// at things. They can only point to their node, so there is no use keeping
|
|
// them.
|
|
//
|
|
for (map<Value*, PointerValSet>::iterator I = ValueMap.begin(),
|
|
E = ValueMap.end(); I != E;)
|
|
if (isa<GlobalValue>(I->first)) {
|
|
#if MAP_DOESNT_HAVE_BROKEN_ERASE_MEMBER
|
|
I = ValueMap.erase(I);
|
|
#else
|
|
ValueMap.erase(I); // This is really lame.
|
|
I = ValueMap.begin(); // GCC's stdc++ lib doesn't return an it!
|
|
#endif
|
|
} else
|
|
++I;
|
|
|
|
bool Changed = true;
|
|
while (Changed) {
|
|
// Eliminate shadow nodes that are not distinguishable from some other
|
|
// node in the graph...
|
|
//
|
|
Changed = UnlinkUndistinguishableNodes();
|
|
|
|
// Eliminate shadow nodes that are now extraneous due to linking...
|
|
Changed |= RemoveUnreachableNodes();
|
|
}
|
|
}
|