llvm-6502/lib/Analysis/DataStructure/FunctionRepBuilder.cpp
Chris Lattner fe14568a81 Make data structure acurately get ALL edges, even loads of null fields of
nodes that are not shadow nodes

This fixes em3d to be _correct_ if not optimial


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2274 91177308-0d34-0410-b5e6-96231b3b80d8
2002-04-17 03:24:59 +00:00

366 lines
12 KiB
C++

//===- FunctionRepBuilder.cpp - Build the local datastructure graph -------===//
//
// Build the local datastructure graph for a single method.
//
//===----------------------------------------------------------------------===//
#include "FunctionRepBuilder.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/iMemory.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
#include "llvm/DerivedTypes.h"
#include "llvm/ConstantVals.h"
#include "Support/STLExtras.h"
#include <algorithm>
// synthesizeNode - Create a new shadow node that is to be linked into this
// chain..
// FIXME: This should not take a FunctionRepBuilder as an argument!
//
ShadowDSNode *DSNode::synthesizeNode(const Type *Ty,
FunctionRepBuilder *Rep) {
// If we are a derived shadow node, defer to our parent to synthesize the node
if (ShadowDSNode *Th = dyn_cast<ShadowDSNode>(this))
if (Th->getShadowParent())
return Th->getShadowParent()->synthesizeNode(Ty, Rep);
// See if we have already synthesized a node of this type...
for (unsigned i = 0, e = SynthNodes.size(); i != e; ++i)
if (SynthNodes[i].first == Ty) return SynthNodes[i].second;
// No we haven't. Do so now and add it to our list of saved nodes...
ShadowDSNode *SN = Rep->makeSynthesizedShadow(Ty, this);
SynthNodes.push_back(make_pair(Ty, SN));
return SN;
}
ShadowDSNode *FunctionRepBuilder::makeSynthesizedShadow(const Type *Ty,
DSNode *Parent) {
ShadowDSNode *Result = new ShadowDSNode(Ty, F->getFunction()->getParent(),
Parent);
ShadowNodes.push_back(Result);
return Result;
}
// visitOperand - If the specified instruction operand is a global value, add
// a node for it...
//
void InitVisitor::visitOperand(Value *V) {
if (!Rep->ValueMap.count(V)) // Only process it once...
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
GlobalDSNode *N = new GlobalDSNode(GV);
Rep->GlobalNodes.push_back(N);
Rep->ValueMap[V].add(N);
Rep->addAllUsesToWorkList(GV);
// FIXME: If the global variable has fields, we should add critical
// shadow nodes to represent them!
}
}
// visitCallInst - Create a call node for the callinst, and create as shadow
// node if the call returns a pointer value. Check to see if the call node
// uses any global variables...
//
void InitVisitor::visitCallInst(CallInst *CI) {
CallDSNode *C = new CallDSNode(CI);
Rep->CallNodes.push_back(C);
Rep->CallMap[CI] = C;
if (PointerType *PT = dyn_cast<PointerType>(CI->getType())) {
// Create a critical shadow node to represent the memory object that the
// return value points to...
ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
Func->getParent());
Rep->ShadowNodes.push_back(Shad);
// The return value of the function is a pointer to the shadow value
// just created...
//
C->getLink(0).add(Shad);
// The call instruction returns a pointer to the shadow block...
Rep->ValueMap[CI].add(Shad, CI);
// If the call returns a value with pointer type, add all of the users
// of the call instruction to the work list...
Rep->addAllUsesToWorkList(CI);
}
// Loop over all of the operands of the call instruction (except the first
// one), to look for global variable references...
//
for_each(CI->op_begin(), CI->op_end(),
bind_obj(this, &InitVisitor::visitOperand));
}
// visitAllocationInst - Create an allocation node for the allocation. Since
// allocation instructions do not take pointer arguments, they cannot refer to
// global vars...
//
void InitVisitor::visitAllocationInst(AllocationInst *AI) {
AllocDSNode *N = new AllocDSNode(AI);
Rep->AllocNodes.push_back(N);
Rep->ValueMap[AI].add(N, AI);
// Add all of the users of the malloc instruction to the work list...
Rep->addAllUsesToWorkList(AI);
}
// Visit all other instruction types. Here we just scan, looking for uses of
// global variables...
//
void InitVisitor::visitInstruction(Instruction *I) {
for_each(I->op_begin(), I->op_end(),
bind_obj(this, &InitVisitor::visitOperand));
}
// addAllUsesToWorkList - Add all of the instructions users of the specified
// value to the work list for further processing...
//
void FunctionRepBuilder::addAllUsesToWorkList(Value *V) {
//cerr << "Adding all uses of " << V << "\n";
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
Instruction *Inst = cast<Instruction>(*I);
// When processing global values, it's possible that the instructions on
// the use list are not all in this method. Only add the instructions
// that _are_ in this method.
//
if (Inst->getParent()->getParent() == F->getFunction())
// Only let an instruction occur on the work list once...
if (std::find(WorkList.begin(), WorkList.end(), Inst) == WorkList.end())
WorkList.push_back(Inst);
}
}
void FunctionRepBuilder::initializeWorkList(Function *Func) {
// Add all of the arguments to the method to the graph and add all users to
// the worklists...
//
for (Function::ArgumentListType::iterator I = Func->getArgumentList().begin(),
E = Func->getArgumentList().end(); I != E; ++I) {
Value *Arg = (Value*)(*I);
// Only process arguments that are of pointer type...
if (PointerType *PT = dyn_cast<PointerType>(Arg->getType())) {
// Add a shadow value for it to represent what it is pointing to and add
// this to the value map...
ShadowDSNode *Shad = new ShadowDSNode(PT->getElementType(),
Func->getParent());
ShadowNodes.push_back(Shad);
ValueMap[Arg].add(PointerVal(Shad), Arg);
// Make sure that all users of the argument are processed...
addAllUsesToWorkList(Arg);
}
}
// Iterate over the instructions in the method. Create nodes for malloc and
// call instructions. Add all uses of these to the worklist of instructions
// to process.
//
InitVisitor IV(this, Func);
IV.visit(Func);
}
PointerVal FunctionRepBuilder::getIndexedPointerDest(const PointerVal &InP,
const MemAccessInst *MAI) {
unsigned Index = InP.Index;
const Type *SrcTy = MAI->getPointerOperand()->getType();
for (MemAccessInst::const_op_iterator I = MAI->idx_begin(),
E = MAI->idx_end(); I != E; ++I)
if ((*I)->getType() == Type::UByteTy) { // Look for struct indices...
StructType *STy = cast<StructType>(SrcTy);
unsigned StructIdx = cast<ConstantUInt>(*I)->getValue();
for (unsigned i = 0; i != StructIdx; ++i)
Index += countPointerFields(STy->getContainedType(i));
// Advance SrcTy to be the new element type...
SrcTy = STy->getContainedType(StructIdx);
} else {
// Otherwise, stepping into array or initial pointer, just increment type
SrcTy = cast<SequentialType>(SrcTy)->getElementType();
}
return PointerVal(InP.Node, Index);
}
static PointerValSet &getField(const PointerVal &DestPtr) {
assert(DestPtr.Node != 0);
return DestPtr.Node->getLink(DestPtr.Index);
}
// Reprocessing a GEP instruction is the result of the pointer operand
// changing. This means that the set of possible values for the GEP
// needs to be expanded.
//
void FunctionRepBuilder::visitGetElementPtrInst(GetElementPtrInst *GEP) {
PointerValSet &GEPPVS = ValueMap[GEP]; // PointerValSet to expand
// Get the input pointer val set...
const PointerValSet &SrcPVS = ValueMap[GEP->getOperand(0)];
bool Changed = false; // Process each input value... propogating it.
for (unsigned i = 0, e = SrcPVS.size(); i != e; ++i) {
// Calculate where the resulting pointer would point based on an
// input of 'Val' as the pointer type... and add it to our outgoing
// value set. Keep track of whether or not we actually changed
// anything.
//
Changed |= GEPPVS.add(getIndexedPointerDest(SrcPVS[i], GEP));
}
// If our current value set changed, notify all of the users of our
// value.
//
if (Changed) addAllUsesToWorkList(GEP);
}
void FunctionRepBuilder::visitReturnInst(ReturnInst *RI) {
RetNode.add(ValueMap[RI->getOperand(0)]);
}
void FunctionRepBuilder::visitLoadInst(LoadInst *LI) {
// Only loads that return pointers are interesting...
const PointerType *DestTy = dyn_cast<PointerType>(LI->getType());
if (DestTy == 0) return;
const PointerValSet &SrcPVS = ValueMap[LI->getOperand(0)];
PointerValSet &LIPVS = ValueMap[LI];
bool Changed = false;
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
PointerVal Ptr = getIndexedPointerDest(SrcPVS[si], LI);
PointerValSet &Field = getField(Ptr);
if (Field.size()) { // Field loaded wasn't null?
Changed |= LIPVS.add(Field);
} else {
// If we are loading a null field out of a shadow node, we need to
// synthesize a new shadow node and link it in...
//
ShadowDSNode *SynthNode =
Ptr.Node->synthesizeNode(DestTy->getElementType(), this);
Field.add(SynthNode);
Changed |= LIPVS.add(Field);
}
}
if (Changed) addAllUsesToWorkList(LI);
}
void FunctionRepBuilder::visitStoreInst(StoreInst *SI) {
// The only stores that are interesting are stores the store pointers
// into data structures...
//
if (!isa<PointerType>(SI->getOperand(0)->getType())) return;
if (!ValueMap.count(SI->getOperand(0))) return; // Src scalar has no values!
const PointerValSet &SrcPVS = ValueMap[SI->getOperand(0)];
const PointerValSet &PtrPVS = ValueMap[SI->getOperand(1)];
for (unsigned si = 0, se = SrcPVS.size(); si != se; ++si) {
const PointerVal &SrcPtr = SrcPVS[si];
for (unsigned pi = 0, pe = PtrPVS.size(); pi != pe; ++pi) {
PointerVal Dest = getIndexedPointerDest(PtrPVS[pi], SI);
#if 0
cerr << "Setting Dest:\n";
Dest.print(cerr);
cerr << "to point to Src:\n";
SrcPtr.print(cerr);
#endif
// Add SrcPtr into the Dest field...
if (getField(Dest).add(SrcPtr)) {
// If we modified the dest field, then invalidate everyone that points
// to Dest.
const std::vector<Value*> &Ptrs = Dest.Node->getPointers();
for (unsigned i = 0, e = Ptrs.size(); i != e; ++i)
addAllUsesToWorkList(Ptrs[i]);
}
}
}
}
void FunctionRepBuilder::visitCallInst(CallInst *CI) {
CallDSNode *DSN = CallMap[CI];
unsigned PtrNum = 0;
for (unsigned i = 0, e = CI->getNumOperands(); i != e; ++i)
if (isa<PointerType>(CI->getOperand(i)->getType()))
DSN->addArgValue(PtrNum++, ValueMap[CI->getOperand(i)]);
}
void FunctionRepBuilder::visitPHINode(PHINode *PN) {
assert(isa<PointerType>(PN->getType()) && "Should only update ptr phis");
PointerValSet &PN_PVS = ValueMap[PN];
bool Changed = false;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Changed |= PN_PVS.add(ValueMap[PN->getIncomingValue(i)],
PN->getIncomingValue(i));
if (Changed) addAllUsesToWorkList(PN);
}
// FunctionDSGraph constructor - Perform the global analysis to determine
// what the data structure usage behavior or a method looks like.
//
FunctionDSGraph::FunctionDSGraph(Function *F) : Func(F) {
FunctionRepBuilder Builder(this);
AllocNodes = Builder.getAllocNodes();
ShadowNodes = Builder.getShadowNodes();
GlobalNodes = Builder.getGlobalNodes();
CallNodes = Builder.getCallNodes();
RetNode = Builder.getRetNode();
ValueMap = Builder.getValueMap();
// Remove all entries in the value map that consist of global values pointing
// at things. They can only point to their node, so there is no use keeping
// them.
//
for (map<Value*, PointerValSet>::iterator I = ValueMap.begin(),
E = ValueMap.end(); I != E;)
if (isa<GlobalValue>(I->first)) {
#if MAP_DOESNT_HAVE_BROKEN_ERASE_MEMBER
I = ValueMap.erase(I);
#else
ValueMap.erase(I); // This is really lame.
I = ValueMap.begin(); // GCC's stdc++ lib doesn't return an it!
#endif
} else
++I;
bool Changed = true;
while (Changed) {
// Eliminate shadow nodes that are not distinguishable from some other
// node in the graph...
//
Changed = UnlinkUndistinguishableNodes();
// Eliminate shadow nodes that are now extraneous due to linking...
Changed |= RemoveUnreachableNodes();
}
}