mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
67c619ba3e
"this" pointer for any subclass of User, you could static_cast it to User* and then reinterpret_cast that to Use* to get the end of the operand list. This isn't a safe assumption in general, because the static_cast might adjust the "this" pointer. Fixed by having these OperandTraits classes take an extra template parameter, which is the subclass of User. This is groundwork for PR889. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123235 91177308-0d34-0410-b5e6-96231b3b80d8
846 lines
30 KiB
C++
846 lines
30 KiB
C++
//===-- ConstantsContext.h - Constants-related Context Interals -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines various helper methods and classes used by
|
|
// LLVMContextImpl for creating and managing constants.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CONSTANTSCONTEXT_H
|
|
#define LLVM_CONSTANTSCONTEXT_H
|
|
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Operator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <map>
|
|
|
|
namespace llvm {
|
|
template<class ValType>
|
|
struct ConstantTraits;
|
|
|
|
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
|
|
/// behind the scenes to implement unary constant exprs.
|
|
class UnaryConstantExpr : public ConstantExpr {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
public:
|
|
// allocate space for exactly one operand
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 1);
|
|
}
|
|
UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
|
|
: ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
|
|
Op<0>() = C;
|
|
}
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
|
|
/// BinaryConstantExpr - This class is private to Constants.cpp, and is used
|
|
/// behind the scenes to implement binary constant exprs.
|
|
class BinaryConstantExpr : public ConstantExpr {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
public:
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
|
|
unsigned Flags)
|
|
: ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
|
|
Op<0>() = C1;
|
|
Op<1>() = C2;
|
|
SubclassOptionalData = Flags;
|
|
}
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
|
|
/// SelectConstantExpr - This class is private to Constants.cpp, and is used
|
|
/// behind the scenes to implement select constant exprs.
|
|
class SelectConstantExpr : public ConstantExpr {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
public:
|
|
// allocate space for exactly three operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 3);
|
|
}
|
|
SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
|
|
: ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
|
|
Op<0>() = C1;
|
|
Op<1>() = C2;
|
|
Op<2>() = C3;
|
|
}
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
|
|
/// ExtractElementConstantExpr - This class is private to
|
|
/// Constants.cpp, and is used behind the scenes to implement
|
|
/// extractelement constant exprs.
|
|
class ExtractElementConstantExpr : public ConstantExpr {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
public:
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
ExtractElementConstantExpr(Constant *C1, Constant *C2)
|
|
: ConstantExpr(cast<VectorType>(C1->getType())->getElementType(),
|
|
Instruction::ExtractElement, &Op<0>(), 2) {
|
|
Op<0>() = C1;
|
|
Op<1>() = C2;
|
|
}
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
|
|
/// InsertElementConstantExpr - This class is private to
|
|
/// Constants.cpp, and is used behind the scenes to implement
|
|
/// insertelement constant exprs.
|
|
class InsertElementConstantExpr : public ConstantExpr {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
public:
|
|
// allocate space for exactly three operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 3);
|
|
}
|
|
InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
|
|
: ConstantExpr(C1->getType(), Instruction::InsertElement,
|
|
&Op<0>(), 3) {
|
|
Op<0>() = C1;
|
|
Op<1>() = C2;
|
|
Op<2>() = C3;
|
|
}
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
|
|
/// ShuffleVectorConstantExpr - This class is private to
|
|
/// Constants.cpp, and is used behind the scenes to implement
|
|
/// shufflevector constant exprs.
|
|
class ShuffleVectorConstantExpr : public ConstantExpr {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
public:
|
|
// allocate space for exactly three operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 3);
|
|
}
|
|
ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
|
|
: ConstantExpr(VectorType::get(
|
|
cast<VectorType>(C1->getType())->getElementType(),
|
|
cast<VectorType>(C3->getType())->getNumElements()),
|
|
Instruction::ShuffleVector,
|
|
&Op<0>(), 3) {
|
|
Op<0>() = C1;
|
|
Op<1>() = C2;
|
|
Op<2>() = C3;
|
|
}
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
|
|
/// ExtractValueConstantExpr - This class is private to
|
|
/// Constants.cpp, and is used behind the scenes to implement
|
|
/// extractvalue constant exprs.
|
|
class ExtractValueConstantExpr : public ConstantExpr {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
public:
|
|
// allocate space for exactly one operand
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 1);
|
|
}
|
|
ExtractValueConstantExpr(Constant *Agg,
|
|
const SmallVector<unsigned, 4> &IdxList,
|
|
const Type *DestTy)
|
|
: ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
|
|
Indices(IdxList) {
|
|
Op<0>() = Agg;
|
|
}
|
|
|
|
/// Indices - These identify which value to extract.
|
|
const SmallVector<unsigned, 4> Indices;
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
|
|
/// InsertValueConstantExpr - This class is private to
|
|
/// Constants.cpp, and is used behind the scenes to implement
|
|
/// insertvalue constant exprs.
|
|
class InsertValueConstantExpr : public ConstantExpr {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
public:
|
|
// allocate space for exactly one operand
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
InsertValueConstantExpr(Constant *Agg, Constant *Val,
|
|
const SmallVector<unsigned, 4> &IdxList,
|
|
const Type *DestTy)
|
|
: ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
|
|
Indices(IdxList) {
|
|
Op<0>() = Agg;
|
|
Op<1>() = Val;
|
|
}
|
|
|
|
/// Indices - These identify the position for the insertion.
|
|
const SmallVector<unsigned, 4> Indices;
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
|
|
|
|
/// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
|
|
/// used behind the scenes to implement getelementpr constant exprs.
|
|
class GetElementPtrConstantExpr : public ConstantExpr {
|
|
GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
|
|
const Type *DestTy);
|
|
public:
|
|
static GetElementPtrConstantExpr *Create(Constant *C,
|
|
const std::vector<Constant*>&IdxList,
|
|
const Type *DestTy,
|
|
unsigned Flags) {
|
|
GetElementPtrConstantExpr *Result =
|
|
new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
|
|
Result->SubclassOptionalData = Flags;
|
|
return Result;
|
|
}
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
|
|
// CompareConstantExpr - This class is private to Constants.cpp, and is used
|
|
// behind the scenes to implement ICmp and FCmp constant expressions. This is
|
|
// needed in order to store the predicate value for these instructions.
|
|
struct CompareConstantExpr : public ConstantExpr {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
// allocate space for exactly two operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 2);
|
|
}
|
|
unsigned short predicate;
|
|
CompareConstantExpr(const Type *ty, Instruction::OtherOps opc,
|
|
unsigned short pred, Constant* LHS, Constant* RHS)
|
|
: ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
|
|
Op<0>() = LHS;
|
|
Op<1>() = RHS;
|
|
}
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<UnaryConstantExpr> :
|
|
public FixedNumOperandTraits<UnaryConstantExpr, 1> {
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
|
|
|
|
template <>
|
|
struct OperandTraits<BinaryConstantExpr> :
|
|
public FixedNumOperandTraits<BinaryConstantExpr, 2> {
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
|
|
|
|
template <>
|
|
struct OperandTraits<SelectConstantExpr> :
|
|
public FixedNumOperandTraits<SelectConstantExpr, 3> {
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
|
|
|
|
template <>
|
|
struct OperandTraits<ExtractElementConstantExpr> :
|
|
public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
|
|
|
|
template <>
|
|
struct OperandTraits<InsertElementConstantExpr> :
|
|
public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
|
|
|
|
template <>
|
|
struct OperandTraits<ShuffleVectorConstantExpr> :
|
|
public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
|
|
|
|
template <>
|
|
struct OperandTraits<ExtractValueConstantExpr> :
|
|
public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
|
|
|
|
template <>
|
|
struct OperandTraits<InsertValueConstantExpr> :
|
|
public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
|
|
|
|
template <>
|
|
struct OperandTraits<GetElementPtrConstantExpr> :
|
|
public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
|
|
|
|
|
|
template <>
|
|
struct OperandTraits<CompareConstantExpr> :
|
|
public FixedNumOperandTraits<CompareConstantExpr, 2> {
|
|
};
|
|
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
|
|
|
|
struct ExprMapKeyType {
|
|
typedef SmallVector<unsigned, 4> IndexList;
|
|
|
|
ExprMapKeyType(unsigned opc,
|
|
const std::vector<Constant*> &ops,
|
|
unsigned short flags = 0,
|
|
unsigned short optionalflags = 0,
|
|
const IndexList &inds = IndexList())
|
|
: opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
|
|
operands(ops), indices(inds) {}
|
|
uint8_t opcode;
|
|
uint8_t subclassoptionaldata;
|
|
uint16_t subclassdata;
|
|
std::vector<Constant*> operands;
|
|
IndexList indices;
|
|
bool operator==(const ExprMapKeyType& that) const {
|
|
return this->opcode == that.opcode &&
|
|
this->subclassdata == that.subclassdata &&
|
|
this->subclassoptionaldata == that.subclassoptionaldata &&
|
|
this->operands == that.operands &&
|
|
this->indices == that.indices;
|
|
}
|
|
bool operator<(const ExprMapKeyType & that) const {
|
|
if (this->opcode != that.opcode) return this->opcode < that.opcode;
|
|
if (this->operands != that.operands) return this->operands < that.operands;
|
|
if (this->subclassdata != that.subclassdata)
|
|
return this->subclassdata < that.subclassdata;
|
|
if (this->subclassoptionaldata != that.subclassoptionaldata)
|
|
return this->subclassoptionaldata < that.subclassoptionaldata;
|
|
if (this->indices != that.indices) return this->indices < that.indices;
|
|
return false;
|
|
}
|
|
|
|
bool operator!=(const ExprMapKeyType& that) const {
|
|
return !(*this == that);
|
|
}
|
|
};
|
|
|
|
struct InlineAsmKeyType {
|
|
InlineAsmKeyType(StringRef AsmString,
|
|
StringRef Constraints, bool hasSideEffects,
|
|
bool isAlignStack)
|
|
: asm_string(AsmString), constraints(Constraints),
|
|
has_side_effects(hasSideEffects), is_align_stack(isAlignStack) {}
|
|
std::string asm_string;
|
|
std::string constraints;
|
|
bool has_side_effects;
|
|
bool is_align_stack;
|
|
bool operator==(const InlineAsmKeyType& that) const {
|
|
return this->asm_string == that.asm_string &&
|
|
this->constraints == that.constraints &&
|
|
this->has_side_effects == that.has_side_effects &&
|
|
this->is_align_stack == that.is_align_stack;
|
|
}
|
|
bool operator<(const InlineAsmKeyType& that) const {
|
|
if (this->asm_string != that.asm_string)
|
|
return this->asm_string < that.asm_string;
|
|
if (this->constraints != that.constraints)
|
|
return this->constraints < that.constraints;
|
|
if (this->has_side_effects != that.has_side_effects)
|
|
return this->has_side_effects < that.has_side_effects;
|
|
if (this->is_align_stack != that.is_align_stack)
|
|
return this->is_align_stack < that.is_align_stack;
|
|
return false;
|
|
}
|
|
|
|
bool operator!=(const InlineAsmKeyType& that) const {
|
|
return !(*this == that);
|
|
}
|
|
};
|
|
|
|
// The number of operands for each ConstantCreator::create method is
|
|
// determined by the ConstantTraits template.
|
|
// ConstantCreator - A class that is used to create constants by
|
|
// ConstantUniqueMap*. This class should be partially specialized if there is
|
|
// something strange that needs to be done to interface to the ctor for the
|
|
// constant.
|
|
//
|
|
template<typename T, typename Alloc>
|
|
struct ConstantTraits< std::vector<T, Alloc> > {
|
|
static unsigned uses(const std::vector<T, Alloc>& v) {
|
|
return v.size();
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantTraits<Constant *> {
|
|
static unsigned uses(Constant * const & v) {
|
|
return 1;
|
|
}
|
|
};
|
|
|
|
template<class ConstantClass, class TypeClass, class ValType>
|
|
struct ConstantCreator {
|
|
static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
|
|
return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
|
|
}
|
|
};
|
|
|
|
template<class ConstantClass>
|
|
struct ConstantKeyData {
|
|
typedef void ValType;
|
|
static ValType getValType(ConstantClass *C) {
|
|
llvm_unreachable("Unknown Constant type!");
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
|
|
static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V,
|
|
unsigned short pred = 0) {
|
|
if (Instruction::isCast(V.opcode))
|
|
return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
|
|
if ((V.opcode >= Instruction::BinaryOpsBegin &&
|
|
V.opcode < Instruction::BinaryOpsEnd))
|
|
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
|
|
V.subclassoptionaldata);
|
|
if (V.opcode == Instruction::Select)
|
|
return new SelectConstantExpr(V.operands[0], V.operands[1],
|
|
V.operands[2]);
|
|
if (V.opcode == Instruction::ExtractElement)
|
|
return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
|
|
if (V.opcode == Instruction::InsertElement)
|
|
return new InsertElementConstantExpr(V.operands[0], V.operands[1],
|
|
V.operands[2]);
|
|
if (V.opcode == Instruction::ShuffleVector)
|
|
return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
|
|
V.operands[2]);
|
|
if (V.opcode == Instruction::InsertValue)
|
|
return new InsertValueConstantExpr(V.operands[0], V.operands[1],
|
|
V.indices, Ty);
|
|
if (V.opcode == Instruction::ExtractValue)
|
|
return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
|
|
if (V.opcode == Instruction::GetElementPtr) {
|
|
std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
|
|
return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
|
|
V.subclassoptionaldata);
|
|
}
|
|
|
|
// The compare instructions are weird. We have to encode the predicate
|
|
// value and it is combined with the instruction opcode by multiplying
|
|
// the opcode by one hundred. We must decode this to get the predicate.
|
|
if (V.opcode == Instruction::ICmp)
|
|
return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
|
|
V.operands[0], V.operands[1]);
|
|
if (V.opcode == Instruction::FCmp)
|
|
return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
|
|
V.operands[0], V.operands[1]);
|
|
llvm_unreachable("Invalid ConstantExpr!");
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantKeyData<ConstantExpr> {
|
|
typedef ExprMapKeyType ValType;
|
|
static ValType getValType(ConstantExpr *CE) {
|
|
std::vector<Constant*> Operands;
|
|
Operands.reserve(CE->getNumOperands());
|
|
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
|
|
Operands.push_back(cast<Constant>(CE->getOperand(i)));
|
|
return ExprMapKeyType(CE->getOpcode(), Operands,
|
|
CE->isCompare() ? CE->getPredicate() : 0,
|
|
CE->getRawSubclassOptionalData(),
|
|
CE->hasIndices() ?
|
|
CE->getIndices() : SmallVector<unsigned, 4>());
|
|
}
|
|
};
|
|
|
|
// ConstantAggregateZero does not take extra "value" argument...
|
|
template<class ValType>
|
|
struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
|
|
static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
|
|
return new ConstantAggregateZero(Ty);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantKeyData<ConstantVector> {
|
|
typedef std::vector<Constant*> ValType;
|
|
static ValType getValType(ConstantVector *CP) {
|
|
std::vector<Constant*> Elements;
|
|
Elements.reserve(CP->getNumOperands());
|
|
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
|
|
Elements.push_back(CP->getOperand(i));
|
|
return Elements;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantKeyData<ConstantAggregateZero> {
|
|
typedef char ValType;
|
|
static ValType getValType(ConstantAggregateZero *C) {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantKeyData<ConstantArray> {
|
|
typedef std::vector<Constant*> ValType;
|
|
static ValType getValType(ConstantArray *CA) {
|
|
std::vector<Constant*> Elements;
|
|
Elements.reserve(CA->getNumOperands());
|
|
for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
|
|
Elements.push_back(cast<Constant>(CA->getOperand(i)));
|
|
return Elements;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantKeyData<ConstantStruct> {
|
|
typedef std::vector<Constant*> ValType;
|
|
static ValType getValType(ConstantStruct *CS) {
|
|
std::vector<Constant*> Elements;
|
|
Elements.reserve(CS->getNumOperands());
|
|
for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
|
|
Elements.push_back(cast<Constant>(CS->getOperand(i)));
|
|
return Elements;
|
|
}
|
|
};
|
|
|
|
// ConstantPointerNull does not take extra "value" argument...
|
|
template<class ValType>
|
|
struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
|
|
static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
|
|
return new ConstantPointerNull(Ty);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantKeyData<ConstantPointerNull> {
|
|
typedef char ValType;
|
|
static ValType getValType(ConstantPointerNull *C) {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
// UndefValue does not take extra "value" argument...
|
|
template<class ValType>
|
|
struct ConstantCreator<UndefValue, Type, ValType> {
|
|
static UndefValue *create(const Type *Ty, const ValType &V) {
|
|
return new UndefValue(Ty);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantKeyData<UndefValue> {
|
|
typedef char ValType;
|
|
static ValType getValType(UndefValue *C) {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
|
|
static InlineAsm *create(const PointerType *Ty, const InlineAsmKeyType &Key) {
|
|
return new InlineAsm(Ty, Key.asm_string, Key.constraints,
|
|
Key.has_side_effects, Key.is_align_stack);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
struct ConstantKeyData<InlineAsm> {
|
|
typedef InlineAsmKeyType ValType;
|
|
static ValType getValType(InlineAsm *Asm) {
|
|
return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
|
|
Asm->hasSideEffects(), Asm->isAlignStack());
|
|
}
|
|
};
|
|
|
|
template<class ValType, class TypeClass, class ConstantClass,
|
|
bool HasLargeKey = false /*true for arrays and structs*/ >
|
|
class ConstantUniqueMap : public AbstractTypeUser {
|
|
public:
|
|
typedef std::pair<const TypeClass*, ValType> MapKey;
|
|
typedef std::map<MapKey, ConstantClass *> MapTy;
|
|
typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
|
|
typedef std::map<const DerivedType*, typename MapTy::iterator>
|
|
AbstractTypeMapTy;
|
|
private:
|
|
/// Map - This is the main map from the element descriptor to the Constants.
|
|
/// This is the primary way we avoid creating two of the same shape
|
|
/// constant.
|
|
MapTy Map;
|
|
|
|
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
|
|
/// from the constants to their element in Map. This is important for
|
|
/// removal of constants from the array, which would otherwise have to scan
|
|
/// through the map with very large keys.
|
|
InverseMapTy InverseMap;
|
|
|
|
/// AbstractTypeMap - Map for abstract type constants.
|
|
///
|
|
AbstractTypeMapTy AbstractTypeMap;
|
|
|
|
public:
|
|
typename MapTy::iterator map_begin() { return Map.begin(); }
|
|
typename MapTy::iterator map_end() { return Map.end(); }
|
|
|
|
void freeConstants() {
|
|
for (typename MapTy::iterator I=Map.begin(), E=Map.end();
|
|
I != E; ++I) {
|
|
// Asserts that use_empty().
|
|
delete I->second;
|
|
}
|
|
}
|
|
|
|
/// InsertOrGetItem - Return an iterator for the specified element.
|
|
/// If the element exists in the map, the returned iterator points to the
|
|
/// entry and Exists=true. If not, the iterator points to the newly
|
|
/// inserted entry and returns Exists=false. Newly inserted entries have
|
|
/// I->second == 0, and should be filled in.
|
|
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
|
|
&InsertVal,
|
|
bool &Exists) {
|
|
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
|
|
Exists = !IP.second;
|
|
return IP.first;
|
|
}
|
|
|
|
private:
|
|
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
|
|
if (HasLargeKey) {
|
|
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
|
|
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
|
|
IMI->second->second == CP &&
|
|
"InverseMap corrupt!");
|
|
return IMI->second;
|
|
}
|
|
|
|
typename MapTy::iterator I =
|
|
Map.find(MapKey(static_cast<const TypeClass*>(CP->getRawType()),
|
|
ConstantKeyData<ConstantClass>::getValType(CP)));
|
|
if (I == Map.end() || I->second != CP) {
|
|
// FIXME: This should not use a linear scan. If this gets to be a
|
|
// performance problem, someone should look at this.
|
|
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
|
|
/* empty */;
|
|
}
|
|
return I;
|
|
}
|
|
|
|
void AddAbstractTypeUser(const Type *Ty, typename MapTy::iterator I) {
|
|
// If the type of the constant is abstract, make sure that an entry
|
|
// exists for it in the AbstractTypeMap.
|
|
if (Ty->isAbstract()) {
|
|
const DerivedType *DTy = static_cast<const DerivedType *>(Ty);
|
|
typename AbstractTypeMapTy::iterator TI = AbstractTypeMap.find(DTy);
|
|
|
|
if (TI == AbstractTypeMap.end()) {
|
|
// Add ourselves to the ATU list of the type.
|
|
cast<DerivedType>(DTy)->addAbstractTypeUser(this);
|
|
|
|
AbstractTypeMap.insert(TI, std::make_pair(DTy, I));
|
|
}
|
|
}
|
|
}
|
|
|
|
ConstantClass* Create(const TypeClass *Ty, const ValType &V,
|
|
typename MapTy::iterator I) {
|
|
ConstantClass* Result =
|
|
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
|
|
|
|
assert(Result->getType() == Ty && "Type specified is not correct!");
|
|
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
|
|
|
|
if (HasLargeKey) // Remember the reverse mapping if needed.
|
|
InverseMap.insert(std::make_pair(Result, I));
|
|
|
|
AddAbstractTypeUser(Ty, I);
|
|
|
|
return Result;
|
|
}
|
|
public:
|
|
|
|
/// getOrCreate - Return the specified constant from the map, creating it if
|
|
/// necessary.
|
|
ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
|
|
MapKey Lookup(Ty, V);
|
|
ConstantClass* Result = 0;
|
|
|
|
typename MapTy::iterator I = Map.find(Lookup);
|
|
// Is it in the map?
|
|
if (I != Map.end())
|
|
Result = I->second;
|
|
|
|
if (!Result) {
|
|
// If no preexisting value, create one now...
|
|
Result = Create(Ty, V, I);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
void UpdateAbstractTypeMap(const DerivedType *Ty,
|
|
typename MapTy::iterator I) {
|
|
assert(AbstractTypeMap.count(Ty) &&
|
|
"Abstract type not in AbstractTypeMap?");
|
|
typename MapTy::iterator &ATMEntryIt = AbstractTypeMap[Ty];
|
|
if (ATMEntryIt == I) {
|
|
// Yes, we are removing the representative entry for this type.
|
|
// See if there are any other entries of the same type.
|
|
typename MapTy::iterator TmpIt = ATMEntryIt;
|
|
|
|
// First check the entry before this one...
|
|
if (TmpIt != Map.begin()) {
|
|
--TmpIt;
|
|
if (TmpIt->first.first != Ty) // Not the same type, move back...
|
|
++TmpIt;
|
|
}
|
|
|
|
// If we didn't find the same type, try to move forward...
|
|
if (TmpIt == ATMEntryIt) {
|
|
++TmpIt;
|
|
if (TmpIt == Map.end() || TmpIt->first.first != Ty)
|
|
--TmpIt; // No entry afterwards with the same type
|
|
}
|
|
|
|
// If there is another entry in the map of the same abstract type,
|
|
// update the AbstractTypeMap entry now.
|
|
if (TmpIt != ATMEntryIt) {
|
|
ATMEntryIt = TmpIt;
|
|
} else {
|
|
// Otherwise, we are removing the last instance of this type
|
|
// from the table. Remove from the ATM, and from user list.
|
|
cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
|
|
AbstractTypeMap.erase(Ty);
|
|
}
|
|
}
|
|
}
|
|
|
|
void remove(ConstantClass *CP) {
|
|
typename MapTy::iterator I = FindExistingElement(CP);
|
|
assert(I != Map.end() && "Constant not found in constant table!");
|
|
assert(I->second == CP && "Didn't find correct element?");
|
|
|
|
if (HasLargeKey) // Remember the reverse mapping if needed.
|
|
InverseMap.erase(CP);
|
|
|
|
// Now that we found the entry, make sure this isn't the entry that
|
|
// the AbstractTypeMap points to.
|
|
const TypeClass *Ty = I->first.first;
|
|
if (Ty->isAbstract())
|
|
UpdateAbstractTypeMap(static_cast<const DerivedType *>(Ty), I);
|
|
|
|
Map.erase(I);
|
|
}
|
|
|
|
/// MoveConstantToNewSlot - If we are about to change C to be the element
|
|
/// specified by I, update our internal data structures to reflect this
|
|
/// fact.
|
|
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
|
|
// First, remove the old location of the specified constant in the map.
|
|
typename MapTy::iterator OldI = FindExistingElement(C);
|
|
assert(OldI != Map.end() && "Constant not found in constant table!");
|
|
assert(OldI->second == C && "Didn't find correct element?");
|
|
|
|
// If this constant is the representative element for its abstract type,
|
|
// update the AbstractTypeMap so that the representative element is I.
|
|
//
|
|
// This must use getRawType() because if the type is under refinement, we
|
|
// will get the refineAbstractType callback below, and we don't want to
|
|
// kick union find in on the constant.
|
|
if (C->getRawType()->isAbstract()) {
|
|
typename AbstractTypeMapTy::iterator ATI =
|
|
AbstractTypeMap.find(cast<DerivedType>(C->getRawType()));
|
|
assert(ATI != AbstractTypeMap.end() &&
|
|
"Abstract type not in AbstractTypeMap?");
|
|
if (ATI->second == OldI)
|
|
ATI->second = I;
|
|
}
|
|
|
|
// Remove the old entry from the map.
|
|
Map.erase(OldI);
|
|
|
|
// Update the inverse map so that we know that this constant is now
|
|
// located at descriptor I.
|
|
if (HasLargeKey) {
|
|
assert(I->second == C && "Bad inversemap entry!");
|
|
InverseMap[C] = I;
|
|
}
|
|
}
|
|
|
|
void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
|
|
typename AbstractTypeMapTy::iterator I = AbstractTypeMap.find(OldTy);
|
|
|
|
assert(I != AbstractTypeMap.end() &&
|
|
"Abstract type not in AbstractTypeMap?");
|
|
|
|
// Convert a constant at a time until the last one is gone. The last one
|
|
// leaving will remove() itself, causing the AbstractTypeMapEntry to be
|
|
// eliminated eventually.
|
|
do {
|
|
ConstantClass *C = I->second->second;
|
|
MapKey Key(cast<TypeClass>(NewTy),
|
|
ConstantKeyData<ConstantClass>::getValType(C));
|
|
|
|
std::pair<typename MapTy::iterator, bool> IP =
|
|
Map.insert(std::make_pair(Key, C));
|
|
if (IP.second) {
|
|
// The map didn't previously have an appropriate constant in the
|
|
// new type.
|
|
|
|
// Remove the old entry.
|
|
typename MapTy::iterator OldI =
|
|
Map.find(MapKey(cast<TypeClass>(OldTy), IP.first->first.second));
|
|
assert(OldI != Map.end() && "Constant not in map!");
|
|
UpdateAbstractTypeMap(OldTy, OldI);
|
|
Map.erase(OldI);
|
|
|
|
// Set the constant's type. This is done in place!
|
|
setType(C, NewTy);
|
|
|
|
// Update the inverse map so that we know that this constant is now
|
|
// located at descriptor I.
|
|
if (HasLargeKey)
|
|
InverseMap[C] = IP.first;
|
|
|
|
AddAbstractTypeUser(NewTy, IP.first);
|
|
} else {
|
|
// The map already had an appropriate constant in the new type, so
|
|
// there's no longer a need for the old constant.
|
|
C->uncheckedReplaceAllUsesWith(IP.first->second);
|
|
C->destroyConstant(); // This constant is now dead, destroy it.
|
|
}
|
|
I = AbstractTypeMap.find(OldTy);
|
|
} while (I != AbstractTypeMap.end());
|
|
}
|
|
|
|
// If the type became concrete without being refined to any other existing
|
|
// type, we just remove ourselves from the ATU list.
|
|
void typeBecameConcrete(const DerivedType *AbsTy) {
|
|
AbsTy->removeAbstractTypeUser(this);
|
|
}
|
|
|
|
void dump() const {
|
|
DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|