mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45418 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			608 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			608 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This transformation analyzes and transforms the induction variables (and
 | 
						|
// computations derived from them) into simpler forms suitable for subsequent
 | 
						|
// analysis and transformation.
 | 
						|
//
 | 
						|
// This transformation makes the following changes to each loop with an
 | 
						|
// identifiable induction variable:
 | 
						|
//   1. All loops are transformed to have a SINGLE canonical induction variable
 | 
						|
//      which starts at zero and steps by one.
 | 
						|
//   2. The canonical induction variable is guaranteed to be the first PHI node
 | 
						|
//      in the loop header block.
 | 
						|
//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
 | 
						|
//
 | 
						|
// If the trip count of a loop is computable, this pass also makes the following
 | 
						|
// changes:
 | 
						|
//   1. The exit condition for the loop is canonicalized to compare the
 | 
						|
//      induction value against the exit value.  This turns loops like:
 | 
						|
//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
 | 
						|
//   2. Any use outside of the loop of an expression derived from the indvar
 | 
						|
//      is changed to compute the derived value outside of the loop, eliminating
 | 
						|
//      the dependence on the exit value of the induction variable.  If the only
 | 
						|
//      purpose of the loop is to compute the exit value of some derived
 | 
						|
//      expression, this transformation will make the loop dead.
 | 
						|
//
 | 
						|
// This transformation should be followed by strength reduction after all of the
 | 
						|
// desired loop transformations have been performed.  Additionally, on targets
 | 
						|
// where it is profitable, the loop could be transformed to count down to zero
 | 
						|
// (the "do loop" optimization).
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "indvars"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumRemoved , "Number of aux indvars removed");
 | 
						|
STATISTIC(NumPointer , "Number of pointer indvars promoted");
 | 
						|
STATISTIC(NumInserted, "Number of canonical indvars added");
 | 
						|
STATISTIC(NumReplaced, "Number of exit values replaced");
 | 
						|
STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
 | 
						|
    LoopInfo        *LI;
 | 
						|
    ScalarEvolution *SE;
 | 
						|
    bool Changed;
 | 
						|
  public:
 | 
						|
 | 
						|
   static char ID; // Pass identification, replacement for typeid
 | 
						|
   IndVarSimplify() : LoopPass((intptr_t)&ID) {}
 | 
						|
 | 
						|
   bool runOnLoop(Loop *L, LPPassManager &LPM);
 | 
						|
   bool doInitialization(Loop *L, LPPassManager &LPM);
 | 
						|
   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
     AU.addRequired<ScalarEvolution>();
 | 
						|
     AU.addRequiredID(LCSSAID);
 | 
						|
     AU.addRequiredID(LoopSimplifyID);
 | 
						|
     AU.addRequired<LoopInfo>();
 | 
						|
     AU.addPreservedID(LoopSimplifyID);
 | 
						|
     AU.addPreservedID(LCSSAID);
 | 
						|
     AU.setPreservesCFG();
 | 
						|
   }
 | 
						|
 | 
						|
  private:
 | 
						|
 | 
						|
    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
 | 
						|
                                    std::set<Instruction*> &DeadInsts);
 | 
						|
    Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
 | 
						|
                                           SCEVExpander &RW);
 | 
						|
    void RewriteLoopExitValues(Loop *L);
 | 
						|
 | 
						|
    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
 | 
						|
  };
 | 
						|
 | 
						|
  char IndVarSimplify::ID = 0;
 | 
						|
  RegisterPass<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
 | 
						|
}
 | 
						|
 | 
						|
LoopPass *llvm::createIndVarSimplifyPass() {
 | 
						|
  return new IndVarSimplify();
 | 
						|
}
 | 
						|
 | 
						|
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
 | 
						|
/// specified set are trivially dead, delete them and see if this makes any of
 | 
						|
/// their operands subsequently dead.
 | 
						|
void IndVarSimplify::
 | 
						|
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
 | 
						|
  while (!Insts.empty()) {
 | 
						|
    Instruction *I = *Insts.begin();
 | 
						|
    Insts.erase(Insts.begin());
 | 
						|
    if (isInstructionTriviallyDead(I)) {
 | 
						|
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | 
						|
        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
 | 
						|
          Insts.insert(U);
 | 
						|
      SE->deleteValueFromRecords(I);
 | 
						|
      DOUT << "INDVARS: Deleting: " << *I;
 | 
						|
      I->eraseFromParent();
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
 | 
						|
/// recurrence.  If so, change it into an integer recurrence, permitting
 | 
						|
/// analysis by the SCEV routines.
 | 
						|
void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
 | 
						|
                                                BasicBlock *Preheader,
 | 
						|
                                            std::set<Instruction*> &DeadInsts) {
 | 
						|
  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
 | 
						|
  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
 | 
						|
  unsigned BackedgeIdx = PreheaderIdx^1;
 | 
						|
  if (GetElementPtrInst *GEPI =
 | 
						|
          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
 | 
						|
    if (GEPI->getOperand(0) == PN) {
 | 
						|
      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
 | 
						|
      DOUT << "INDVARS: Eliminating pointer recurrence: " << *GEPI;
 | 
						|
      
 | 
						|
      // Okay, we found a pointer recurrence.  Transform this pointer
 | 
						|
      // recurrence into an integer recurrence.  Compute the value that gets
 | 
						|
      // added to the pointer at every iteration.
 | 
						|
      Value *AddedVal = GEPI->getOperand(1);
 | 
						|
 | 
						|
      // Insert a new integer PHI node into the top of the block.
 | 
						|
      PHINode *NewPhi = new PHINode(AddedVal->getType(),
 | 
						|
                                    PN->getName()+".rec", PN);
 | 
						|
      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
 | 
						|
 | 
						|
      // Create the new add instruction.
 | 
						|
      Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
 | 
						|
                                                GEPI->getName()+".rec", GEPI);
 | 
						|
      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
 | 
						|
 | 
						|
      // Update the existing GEP to use the recurrence.
 | 
						|
      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
 | 
						|
 | 
						|
      // Update the GEP to use the new recurrence we just inserted.
 | 
						|
      GEPI->setOperand(1, NewAdd);
 | 
						|
 | 
						|
      // If the incoming value is a constant expr GEP, try peeling out the array
 | 
						|
      // 0 index if possible to make things simpler.
 | 
						|
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
 | 
						|
        if (CE->getOpcode() == Instruction::GetElementPtr) {
 | 
						|
          unsigned NumOps = CE->getNumOperands();
 | 
						|
          assert(NumOps > 1 && "CE folding didn't work!");
 | 
						|
          if (CE->getOperand(NumOps-1)->isNullValue()) {
 | 
						|
            // Check to make sure the last index really is an array index.
 | 
						|
            gep_type_iterator GTI = gep_type_begin(CE);
 | 
						|
            for (unsigned i = 1, e = CE->getNumOperands()-1;
 | 
						|
                 i != e; ++i, ++GTI)
 | 
						|
              /*empty*/;
 | 
						|
            if (isa<SequentialType>(*GTI)) {
 | 
						|
              // Pull the last index out of the constant expr GEP.
 | 
						|
              SmallVector<Value*, 8> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
 | 
						|
              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
 | 
						|
                                                             &CEIdxs[0],
 | 
						|
                                                             CEIdxs.size());
 | 
						|
              Value *Idx[2];
 | 
						|
              Idx[0] = Constant::getNullValue(Type::Int32Ty);
 | 
						|
              Idx[1] = NewAdd;
 | 
						|
              GetElementPtrInst *NGEPI = new GetElementPtrInst(
 | 
						|
                  NCE, Idx, Idx + 2, 
 | 
						|
                  GEPI->getName(), GEPI);
 | 
						|
              SE->deleteValueFromRecords(GEPI);
 | 
						|
              GEPI->replaceAllUsesWith(NGEPI);
 | 
						|
              GEPI->eraseFromParent();
 | 
						|
              GEPI = NGEPI;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
      // Finally, if there are any other users of the PHI node, we must
 | 
						|
      // insert a new GEP instruction that uses the pre-incremented version
 | 
						|
      // of the induction amount.
 | 
						|
      if (!PN->use_empty()) {
 | 
						|
        BasicBlock::iterator InsertPos = PN; ++InsertPos;
 | 
						|
        while (isa<PHINode>(InsertPos)) ++InsertPos;
 | 
						|
        Value *PreInc =
 | 
						|
          new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
 | 
						|
                                NewPhi, "", InsertPos);
 | 
						|
        PreInc->takeName(PN);
 | 
						|
        PN->replaceAllUsesWith(PreInc);
 | 
						|
      }
 | 
						|
 | 
						|
      // Delete the old PHI for sure, and the GEP if its otherwise unused.
 | 
						|
      DeadInsts.insert(PN);
 | 
						|
 | 
						|
      ++NumPointer;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
 | 
						|
/// loop to be a canonical != comparison against the incremented loop induction
 | 
						|
/// variable.  This pass is able to rewrite the exit tests of any loop where the
 | 
						|
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
 | 
						|
/// is actually a much broader range than just linear tests.
 | 
						|
///
 | 
						|
/// This method returns a "potentially dead" instruction whose computation chain
 | 
						|
/// should be deleted when convenient.
 | 
						|
Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
 | 
						|
                                                       SCEV *IterationCount,
 | 
						|
                                                       SCEVExpander &RW) {
 | 
						|
  // Find the exit block for the loop.  We can currently only handle loops with
 | 
						|
  // a single exit.
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getExitBlocks(ExitBlocks);
 | 
						|
  if (ExitBlocks.size() != 1) return 0;
 | 
						|
  BasicBlock *ExitBlock = ExitBlocks[0];
 | 
						|
 | 
						|
  // Make sure there is only one predecessor block in the loop.
 | 
						|
  BasicBlock *ExitingBlock = 0;
 | 
						|
  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
 | 
						|
       PI != PE; ++PI)
 | 
						|
    if (L->contains(*PI)) {
 | 
						|
      if (ExitingBlock == 0)
 | 
						|
        ExitingBlock = *PI;
 | 
						|
      else
 | 
						|
        return 0;  // Multiple exits from loop to this block.
 | 
						|
    }
 | 
						|
  assert(ExitingBlock && "Loop info is broken");
 | 
						|
 | 
						|
  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
 | 
						|
    return 0;  // Can't rewrite non-branch yet
 | 
						|
  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
 | 
						|
  assert(BI->isConditional() && "Must be conditional to be part of loop!");
 | 
						|
 | 
						|
  Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition());
 | 
						|
  
 | 
						|
  // If the exiting block is not the same as the backedge block, we must compare
 | 
						|
  // against the preincremented value, otherwise we prefer to compare against
 | 
						|
  // the post-incremented value.
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  pred_iterator HPI = pred_begin(Header);
 | 
						|
  assert(HPI != pred_end(Header) && "Loop with zero preds???");
 | 
						|
  if (!L->contains(*HPI)) ++HPI;
 | 
						|
  assert(HPI != pred_end(Header) && L->contains(*HPI) &&
 | 
						|
         "No backedge in loop?");
 | 
						|
 | 
						|
  SCEVHandle TripCount = IterationCount;
 | 
						|
  Value *IndVar;
 | 
						|
  if (*HPI == ExitingBlock) {
 | 
						|
    // The IterationCount expression contains the number of times that the
 | 
						|
    // backedge actually branches to the loop header.  This is one less than the
 | 
						|
    // number of times the loop executes, so add one to it.
 | 
						|
    ConstantInt *OneC = ConstantInt::get(IterationCount->getType(), 1);
 | 
						|
    TripCount = SE->getAddExpr(IterationCount, SE->getConstant(OneC));
 | 
						|
    IndVar = L->getCanonicalInductionVariableIncrement();
 | 
						|
  } else {
 | 
						|
    // We have to use the preincremented value...
 | 
						|
    IndVar = L->getCanonicalInductionVariable();
 | 
						|
  }
 | 
						|
  
 | 
						|
  DOUT << "INDVARS: LFTR: TripCount = " << *TripCount
 | 
						|
       << "  IndVar = " << *IndVar << "\n";
 | 
						|
 | 
						|
  // Expand the code for the iteration count into the preheader of the loop.
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator());
 | 
						|
 | 
						|
  // Insert a new icmp_ne or icmp_eq instruction before the branch.
 | 
						|
  ICmpInst::Predicate Opcode;
 | 
						|
  if (L->contains(BI->getSuccessor(0)))
 | 
						|
    Opcode = ICmpInst::ICMP_NE;
 | 
						|
  else
 | 
						|
    Opcode = ICmpInst::ICMP_EQ;
 | 
						|
 | 
						|
  Value *Cond = new ICmpInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
 | 
						|
  BI->setCondition(Cond);
 | 
						|
  ++NumLFTR;
 | 
						|
  Changed = true;
 | 
						|
  return PotentiallyDeadInst;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// RewriteLoopExitValues - Check to see if this loop has a computable
 | 
						|
/// loop-invariant execution count.  If so, this means that we can compute the
 | 
						|
/// final value of any expressions that are recurrent in the loop, and
 | 
						|
/// substitute the exit values from the loop into any instructions outside of
 | 
						|
/// the loop that use the final values of the current expressions.
 | 
						|
void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
 | 
						|
  // Scan all of the instructions in the loop, looking at those that have
 | 
						|
  // extra-loop users and which are recurrences.
 | 
						|
  SCEVExpander Rewriter(*SE, *LI);
 | 
						|
 | 
						|
  // We insert the code into the preheader of the loop if the loop contains
 | 
						|
  // multiple exit blocks, or in the exit block if there is exactly one.
 | 
						|
  BasicBlock *BlockToInsertInto;
 | 
						|
  SmallVector<BasicBlock*, 8> ExitBlocks;
 | 
						|
  L->getUniqueExitBlocks(ExitBlocks);
 | 
						|
  if (ExitBlocks.size() == 1)
 | 
						|
    BlockToInsertInto = ExitBlocks[0];
 | 
						|
  else
 | 
						|
    BlockToInsertInto = Preheader;
 | 
						|
  BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
 | 
						|
  while (isa<PHINode>(InsertPt)) ++InsertPt;
 | 
						|
 | 
						|
  bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
 | 
						|
 | 
						|
  std::set<Instruction*> InstructionsToDelete;
 | 
						|
  std::map<Instruction*, Value*> ExitValues;
 | 
						|
 | 
						|
  // Find all values that are computed inside the loop, but used outside of it.
 | 
						|
  // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
 | 
						|
  // the exit blocks of the loop to find them.
 | 
						|
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | 
						|
    BasicBlock *ExitBB = ExitBlocks[i];
 | 
						|
    
 | 
						|
    // If there are no PHI nodes in this exit block, then no values defined
 | 
						|
    // inside the loop are used on this path, skip it.
 | 
						|
    PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
 | 
						|
    if (!PN) continue;
 | 
						|
    
 | 
						|
    unsigned NumPreds = PN->getNumIncomingValues();
 | 
						|
    
 | 
						|
    // Iterate over all of the PHI nodes.
 | 
						|
    BasicBlock::iterator BBI = ExitBB->begin();
 | 
						|
    while ((PN = dyn_cast<PHINode>(BBI++))) {
 | 
						|
      
 | 
						|
      // Iterate over all of the values in all the PHI nodes.
 | 
						|
      for (unsigned i = 0; i != NumPreds; ++i) {
 | 
						|
        // If the value being merged in is not integer or is not defined
 | 
						|
        // in the loop, skip it.
 | 
						|
        Value *InVal = PN->getIncomingValue(i);
 | 
						|
        if (!isa<Instruction>(InVal) ||
 | 
						|
            // SCEV only supports integer expressions for now.
 | 
						|
            !isa<IntegerType>(InVal->getType()))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If this pred is for a subloop, not L itself, skip it.
 | 
						|
        if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 
 | 
						|
          continue; // The Block is in a subloop, skip it.
 | 
						|
 | 
						|
        // Check that InVal is defined in the loop.
 | 
						|
        Instruction *Inst = cast<Instruction>(InVal);
 | 
						|
        if (!L->contains(Inst->getParent()))
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        // We require that this value either have a computable evolution or that
 | 
						|
        // the loop have a constant iteration count.  In the case where the loop
 | 
						|
        // has a constant iteration count, we can sometimes force evaluation of
 | 
						|
        // the exit value through brute force.
 | 
						|
        SCEVHandle SH = SE->getSCEV(Inst);
 | 
						|
        if (!SH->hasComputableLoopEvolution(L) && !HasConstantItCount)
 | 
						|
          continue;          // Cannot get exit evolution for the loop value.
 | 
						|
        
 | 
						|
        // Okay, this instruction has a user outside of the current loop
 | 
						|
        // and varies predictably *inside* the loop.  Evaluate the value it
 | 
						|
        // contains when the loop exits, if possible.
 | 
						|
        SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
 | 
						|
        if (isa<SCEVCouldNotCompute>(ExitValue) ||
 | 
						|
            !ExitValue->isLoopInvariant(L))
 | 
						|
          continue;
 | 
						|
 | 
						|
        Changed = true;
 | 
						|
        ++NumReplaced;
 | 
						|
        
 | 
						|
        // See if we already computed the exit value for the instruction, if so,
 | 
						|
        // just reuse it.
 | 
						|
        Value *&ExitVal = ExitValues[Inst];
 | 
						|
        if (!ExitVal)
 | 
						|
          ExitVal = Rewriter.expandCodeFor(ExitValue, InsertPt);
 | 
						|
        
 | 
						|
        DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
 | 
						|
             << "  LoopVal = " << *Inst << "\n";
 | 
						|
 | 
						|
        PN->setIncomingValue(i, ExitVal);
 | 
						|
        
 | 
						|
        // If this instruction is dead now, schedule it to be removed.
 | 
						|
        if (Inst->use_empty())
 | 
						|
          InstructionsToDelete.insert(Inst);
 | 
						|
        
 | 
						|
        // See if this is a single-entry LCSSA PHI node.  If so, we can (and
 | 
						|
        // have to) remove
 | 
						|
        // the PHI entirely.  This is safe, because the NewVal won't be variant
 | 
						|
        // in the loop, so we don't need an LCSSA phi node anymore.
 | 
						|
        if (NumPreds == 1) {
 | 
						|
          SE->deleteValueFromRecords(PN);
 | 
						|
          PN->replaceAllUsesWith(ExitVal);
 | 
						|
          PN->eraseFromParent();
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  DeleteTriviallyDeadInstructions(InstructionsToDelete);
 | 
						|
}
 | 
						|
 | 
						|
bool IndVarSimplify::doInitialization(Loop *L, LPPassManager &LPM) {
 | 
						|
 | 
						|
  Changed = false;
 | 
						|
  // First step.  Check to see if there are any trivial GEP pointer recurrences.
 | 
						|
  // If there are, change them into integer recurrences, permitting analysis by
 | 
						|
  // the SCEV routines.
 | 
						|
  //
 | 
						|
  BasicBlock *Header    = L->getHeader();
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  SE = &LPM.getAnalysis<ScalarEvolution>();
 | 
						|
 | 
						|
  std::set<Instruction*> DeadInsts;
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    if (isa<PointerType>(PN->getType()))
 | 
						|
      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!DeadInsts.empty())
 | 
						|
    DeleteTriviallyDeadInstructions(DeadInsts);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
 | 
						|
 | 
						|
  LI = &getAnalysis<LoopInfo>();
 | 
						|
  SE = &getAnalysis<ScalarEvolution>();
 | 
						|
 | 
						|
  Changed = false;
 | 
						|
  BasicBlock *Header    = L->getHeader();
 | 
						|
  std::set<Instruction*> DeadInsts;
 | 
						|
  
 | 
						|
  // Verify the input to the pass in already in LCSSA form.
 | 
						|
  assert(L->isLCSSAForm());
 | 
						|
 | 
						|
  // Check to see if this loop has a computable loop-invariant execution count.
 | 
						|
  // If so, this means that we can compute the final value of any expressions
 | 
						|
  // that are recurrent in the loop, and substitute the exit values from the
 | 
						|
  // loop into any instructions outside of the loop that use the final values of
 | 
						|
  // the current expressions.
 | 
						|
  //
 | 
						|
  SCEVHandle IterationCount = SE->getIterationCount(L);
 | 
						|
  if (!isa<SCEVCouldNotCompute>(IterationCount))
 | 
						|
    RewriteLoopExitValues(L);
 | 
						|
 | 
						|
  // Next, analyze all of the induction variables in the loop, canonicalizing
 | 
						|
  // auxillary induction variables.
 | 
						|
  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
 | 
						|
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    if (PN->getType()->isInteger()) { // FIXME: when we have fast-math, enable!
 | 
						|
      SCEVHandle SCEV = SE->getSCEV(PN);
 | 
						|
      if (SCEV->hasComputableLoopEvolution(L))
 | 
						|
        // FIXME: It is an extremely bad idea to indvar substitute anything more
 | 
						|
        // complex than affine induction variables.  Doing so will put expensive
 | 
						|
        // polynomial evaluations inside of the loop, and the str reduction pass
 | 
						|
        // currently can only reduce affine polynomials.  For now just disable
 | 
						|
        // indvar subst on anything more complex than an affine addrec.
 | 
						|
        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
 | 
						|
          if (AR->isAffine())
 | 
						|
            IndVars.push_back(std::make_pair(PN, SCEV));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no induction variables in the loop, there is nothing more to
 | 
						|
  // do.
 | 
						|
  if (IndVars.empty()) {
 | 
						|
    // Actually, if we know how many times the loop iterates, lets insert a
 | 
						|
    // canonical induction variable to help subsequent passes.
 | 
						|
    if (!isa<SCEVCouldNotCompute>(IterationCount)) {
 | 
						|
      SCEVExpander Rewriter(*SE, *LI);
 | 
						|
      Rewriter.getOrInsertCanonicalInductionVariable(L,
 | 
						|
                                                     IterationCount->getType());
 | 
						|
      if (Instruction *I = LinearFunctionTestReplace(L, IterationCount,
 | 
						|
                                                     Rewriter)) {
 | 
						|
        std::set<Instruction*> InstructionsToDelete;
 | 
						|
        InstructionsToDelete.insert(I);
 | 
						|
        DeleteTriviallyDeadInstructions(InstructionsToDelete);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the type of the largest recurrence expression.
 | 
						|
  //
 | 
						|
  const Type *LargestType = IndVars[0].first->getType();
 | 
						|
  bool DifferingSizes = false;
 | 
						|
  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
 | 
						|
    const Type *Ty = IndVars[i].first->getType();
 | 
						|
    DifferingSizes |= 
 | 
						|
      Ty->getPrimitiveSizeInBits() != LargestType->getPrimitiveSizeInBits();
 | 
						|
    if (Ty->getPrimitiveSizeInBits() > LargestType->getPrimitiveSizeInBits())
 | 
						|
      LargestType = Ty;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a rewriter object which we'll use to transform the code with.
 | 
						|
  SCEVExpander Rewriter(*SE, *LI);
 | 
						|
 | 
						|
  // Now that we know the largest of of the induction variables in this loop,
 | 
						|
  // insert a canonical induction variable of the largest size.
 | 
						|
  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
 | 
						|
  ++NumInserted;
 | 
						|
  Changed = true;
 | 
						|
  DOUT << "INDVARS: New CanIV: " << *IndVar;
 | 
						|
 | 
						|
  if (!isa<SCEVCouldNotCompute>(IterationCount)) {
 | 
						|
    if (IterationCount->getType()->getPrimitiveSizeInBits() <
 | 
						|
        LargestType->getPrimitiveSizeInBits())
 | 
						|
      IterationCount = SE->getZeroExtendExpr(IterationCount, LargestType);
 | 
						|
    else if (IterationCount->getType() != LargestType)
 | 
						|
      IterationCount = SE->getTruncateExpr(IterationCount, LargestType);
 | 
						|
    if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter))
 | 
						|
      DeadInsts.insert(DI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have a canonical induction variable, we can rewrite any
 | 
						|
  // recurrences in terms of the induction variable.  Start with the auxillary
 | 
						|
  // induction variables, and recursively rewrite any of their uses.
 | 
						|
  BasicBlock::iterator InsertPt = Header->begin();
 | 
						|
  while (isa<PHINode>(InsertPt)) ++InsertPt;
 | 
						|
 | 
						|
  // If there were induction variables of other sizes, cast the primary
 | 
						|
  // induction variable to the right size for them, avoiding the need for the
 | 
						|
  // code evaluation methods to insert induction variables of different sizes.
 | 
						|
  if (DifferingSizes) {
 | 
						|
    SmallVector<unsigned,4> InsertedSizes;
 | 
						|
    InsertedSizes.push_back(LargestType->getPrimitiveSizeInBits());
 | 
						|
    for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
 | 
						|
      unsigned ithSize = IndVars[i].first->getType()->getPrimitiveSizeInBits();
 | 
						|
      if (std::find(InsertedSizes.begin(), InsertedSizes.end(), ithSize)
 | 
						|
          == InsertedSizes.end()) {
 | 
						|
        PHINode *PN = IndVars[i].first;
 | 
						|
        InsertedSizes.push_back(ithSize);
 | 
						|
        Instruction *New = new TruncInst(IndVar, PN->getType(), "indvar",
 | 
						|
                                         InsertPt);
 | 
						|
        Rewriter.addInsertedValue(New, SE->getSCEV(New));
 | 
						|
        DOUT << "INDVARS: Made trunc IV for " << *PN
 | 
						|
             << "   NewVal = " << *New << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite all induction variables in terms of the canonical induction
 | 
						|
  // variable.
 | 
						|
  std::map<unsigned, Value*> InsertedSizes;
 | 
						|
  while (!IndVars.empty()) {
 | 
						|
    PHINode *PN = IndVars.back().first;
 | 
						|
    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt);
 | 
						|
    DOUT << "INDVARS: Rewrote IV '" << *IndVars.back().second << "' " << *PN
 | 
						|
         << "   into = " << *NewVal << "\n";
 | 
						|
    NewVal->takeName(PN);
 | 
						|
 | 
						|
    // Replace the old PHI Node with the inserted computation.
 | 
						|
    PN->replaceAllUsesWith(NewVal);
 | 
						|
    DeadInsts.insert(PN);
 | 
						|
    IndVars.pop_back();
 | 
						|
    ++NumRemoved;
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
#if 0
 | 
						|
  // Now replace all derived expressions in the loop body with simpler
 | 
						|
  // expressions.
 | 
						|
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
 | 
						|
    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
 | 
						|
      BasicBlock *BB = L->getBlocks()[i];
 | 
						|
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
        if (I->getType()->isInteger() &&      // Is an integer instruction
 | 
						|
            !I->use_empty() &&
 | 
						|
            !Rewriter.isInsertedInstruction(I)) {
 | 
						|
          SCEVHandle SH = SE->getSCEV(I);
 | 
						|
          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
 | 
						|
          if (V != I) {
 | 
						|
            if (isa<Instruction>(V))
 | 
						|
              V->takeName(I);
 | 
						|
            I->replaceAllUsesWith(V);
 | 
						|
            DeadInsts.insert(I);
 | 
						|
            ++NumRemoved;
 | 
						|
            Changed = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
  DeleteTriviallyDeadInstructions(DeadInsts);
 | 
						|
  
 | 
						|
  assert(L->isLCSSAForm());
 | 
						|
  return Changed;
 | 
						|
}
 |