mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47371 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1709 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1709 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements sparse conditional constant propagation and merging:
 | 
						|
//
 | 
						|
// Specifically, this:
 | 
						|
//   * Assumes values are constant unless proven otherwise
 | 
						|
//   * Assumes BasicBlocks are dead unless proven otherwise
 | 
						|
//   * Proves values to be constant, and replaces them with constants
 | 
						|
//   * Proves conditional branches to be unconditional
 | 
						|
//
 | 
						|
// Notice that:
 | 
						|
//   * This pass has a habit of making definitions be dead.  It is a good idea
 | 
						|
//     to to run a DCE pass sometime after running this pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "sccp"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumInstRemoved, "Number of instructions removed");
 | 
						|
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
 | 
						|
 | 
						|
STATISTIC(IPNumInstRemoved, "Number ofinstructions removed by IPSCCP");
 | 
						|
STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
 | 
						|
STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
 | 
						|
STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
 | 
						|
 | 
						|
namespace {
 | 
						|
/// LatticeVal class - This class represents the different lattice values that
 | 
						|
/// an LLVM value may occupy.  It is a simple class with value semantics.
 | 
						|
///
 | 
						|
class VISIBILITY_HIDDEN LatticeVal {
 | 
						|
  enum {
 | 
						|
    /// undefined - This LLVM Value has no known value yet.
 | 
						|
    undefined,
 | 
						|
    
 | 
						|
    /// constant - This LLVM Value has a specific constant value.
 | 
						|
    constant,
 | 
						|
 | 
						|
    /// forcedconstant - This LLVM Value was thought to be undef until
 | 
						|
    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
 | 
						|
    /// with another (different) constant, it goes to overdefined, instead of
 | 
						|
    /// asserting.
 | 
						|
    forcedconstant,
 | 
						|
    
 | 
						|
    /// overdefined - This instruction is not known to be constant, and we know
 | 
						|
    /// it has a value.
 | 
						|
    overdefined
 | 
						|
  } LatticeValue;    // The current lattice position
 | 
						|
  
 | 
						|
  Constant *ConstantVal; // If Constant value, the current value
 | 
						|
public:
 | 
						|
  inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
 | 
						|
  
 | 
						|
  // markOverdefined - Return true if this is a new status to be in...
 | 
						|
  inline bool markOverdefined() {
 | 
						|
    if (LatticeValue != overdefined) {
 | 
						|
      LatticeValue = overdefined;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // markConstant - Return true if this is a new status for us.
 | 
						|
  inline bool markConstant(Constant *V) {
 | 
						|
    if (LatticeValue != constant) {
 | 
						|
      if (LatticeValue == undefined) {
 | 
						|
        LatticeValue = constant;
 | 
						|
        assert(V && "Marking constant with NULL");
 | 
						|
        ConstantVal = V;
 | 
						|
      } else {
 | 
						|
        assert(LatticeValue == forcedconstant && 
 | 
						|
               "Cannot move from overdefined to constant!");
 | 
						|
        // Stay at forcedconstant if the constant is the same.
 | 
						|
        if (V == ConstantVal) return false;
 | 
						|
        
 | 
						|
        // Otherwise, we go to overdefined.  Assumptions made based on the
 | 
						|
        // forced value are possibly wrong.  Assuming this is another constant
 | 
						|
        // could expose a contradiction.
 | 
						|
        LatticeValue = overdefined;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      assert(ConstantVal == V && "Marking constant with different value");
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  inline void markForcedConstant(Constant *V) {
 | 
						|
    assert(LatticeValue == undefined && "Can't force a defined value!");
 | 
						|
    LatticeValue = forcedconstant;
 | 
						|
    ConstantVal = V;
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline bool isUndefined() const { return LatticeValue == undefined; }
 | 
						|
  inline bool isConstant() const {
 | 
						|
    return LatticeValue == constant || LatticeValue == forcedconstant;
 | 
						|
  }
 | 
						|
  inline bool isOverdefined() const { return LatticeValue == overdefined; }
 | 
						|
 | 
						|
  inline Constant *getConstant() const {
 | 
						|
    assert(isConstant() && "Cannot get the constant of a non-constant!");
 | 
						|
    return ConstantVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
 | 
						|
/// Constant Propagation.
 | 
						|
///
 | 
						|
class SCCPSolver : public InstVisitor<SCCPSolver> {
 | 
						|
  SmallSet<BasicBlock*, 16> BBExecutable;// The basic blocks that are executable
 | 
						|
  std::map<Value*, LatticeVal> ValueState;  // The state each value is in.
 | 
						|
 | 
						|
  /// GlobalValue - If we are tracking any values for the contents of a global
 | 
						|
  /// variable, we keep a mapping from the constant accessor to the element of
 | 
						|
  /// the global, to the currently known value.  If the value becomes
 | 
						|
  /// overdefined, it's entry is simply removed from this map.
 | 
						|
  DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
 | 
						|
 | 
						|
  /// TrackedFunctionRetVals - If we are tracking arguments into and the return
 | 
						|
  /// value out of a function, it will have an entry in this map, indicating
 | 
						|
  /// what the known return value for the function is.
 | 
						|
  DenseMap<Function*, LatticeVal> TrackedFunctionRetVals;
 | 
						|
 | 
						|
  // The reason for two worklists is that overdefined is the lowest state
 | 
						|
  // on the lattice, and moving things to overdefined as fast as possible
 | 
						|
  // makes SCCP converge much faster.
 | 
						|
  // By having a separate worklist, we accomplish this because everything
 | 
						|
  // possibly overdefined will become overdefined at the soonest possible
 | 
						|
  // point.
 | 
						|
  std::vector<Value*> OverdefinedInstWorkList;
 | 
						|
  std::vector<Value*> InstWorkList;
 | 
						|
 | 
						|
 | 
						|
  std::vector<BasicBlock*>  BBWorkList;  // The BasicBlock work list
 | 
						|
 | 
						|
  /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
 | 
						|
  /// overdefined, despite the fact that the PHI node is overdefined.
 | 
						|
  std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
 | 
						|
 | 
						|
  /// KnownFeasibleEdges - Entries in this set are edges which have already had
 | 
						|
  /// PHI nodes retriggered.
 | 
						|
  typedef std::pair<BasicBlock*,BasicBlock*> Edge;
 | 
						|
  std::set<Edge> KnownFeasibleEdges;
 | 
						|
public:
 | 
						|
 | 
						|
  /// MarkBlockExecutable - This method can be used by clients to mark all of
 | 
						|
  /// the blocks that are known to be intrinsically live in the processed unit.
 | 
						|
  void MarkBlockExecutable(BasicBlock *BB) {
 | 
						|
    DOUT << "Marking Block Executable: " << BB->getName() << "\n";
 | 
						|
    BBExecutable.insert(BB);   // Basic block is executable!
 | 
						|
    BBWorkList.push_back(BB);  // Add the block to the work list!
 | 
						|
  }
 | 
						|
 | 
						|
  /// TrackValueOfGlobalVariable - Clients can use this method to
 | 
						|
  /// inform the SCCPSolver that it should track loads and stores to the
 | 
						|
  /// specified global variable if it can.  This is only legal to call if
 | 
						|
  /// performing Interprocedural SCCP.
 | 
						|
  void TrackValueOfGlobalVariable(GlobalVariable *GV) {
 | 
						|
    const Type *ElTy = GV->getType()->getElementType();
 | 
						|
    if (ElTy->isFirstClassType()) {
 | 
						|
      LatticeVal &IV = TrackedGlobals[GV];
 | 
						|
      if (!isa<UndefValue>(GV->getInitializer()))
 | 
						|
        IV.markConstant(GV->getInitializer());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
 | 
						|
  /// and out of the specified function (which cannot have its address taken),
 | 
						|
  /// this method must be called.
 | 
						|
  void AddTrackedFunction(Function *F) {
 | 
						|
    assert(F->hasInternalLinkage() && "Can only track internal functions!");
 | 
						|
    // Add an entry, F -> undef.
 | 
						|
    TrackedFunctionRetVals[F];
 | 
						|
  }
 | 
						|
 | 
						|
  /// Solve - Solve for constants and executable blocks.
 | 
						|
  ///
 | 
						|
  void Solve();
 | 
						|
 | 
						|
  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
 | 
						|
  /// that branches on undef values cannot reach any of their successors.
 | 
						|
  /// However, this is not a safe assumption.  After we solve dataflow, this
 | 
						|
  /// method should be use to handle this.  If this returns true, the solver
 | 
						|
  /// should be rerun.
 | 
						|
  bool ResolvedUndefsIn(Function &F);
 | 
						|
 | 
						|
  /// getExecutableBlocks - Once we have solved for constants, return the set of
 | 
						|
  /// blocks that is known to be executable.
 | 
						|
  SmallSet<BasicBlock*, 16> &getExecutableBlocks() {
 | 
						|
    return BBExecutable;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getValueMapping - Once we have solved for constants, return the mapping of
 | 
						|
  /// LLVM values to LatticeVals.
 | 
						|
  std::map<Value*, LatticeVal> &getValueMapping() {
 | 
						|
    return ValueState;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getTrackedFunctionRetVals - Get the inferred return value map.
 | 
						|
  ///
 | 
						|
  const DenseMap<Function*, LatticeVal> &getTrackedFunctionRetVals() {
 | 
						|
    return TrackedFunctionRetVals;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getTrackedGlobals - Get and return the set of inferred initializers for
 | 
						|
  /// global variables.
 | 
						|
  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
 | 
						|
    return TrackedGlobals;
 | 
						|
  }
 | 
						|
 | 
						|
  inline void markOverdefined(Value *V) {
 | 
						|
    markOverdefined(ValueState[V], V);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  // markConstant - Make a value be marked as "constant".  If the value
 | 
						|
  // is not already a constant, add it to the instruction work list so that
 | 
						|
  // the users of the instruction are updated later.
 | 
						|
  //
 | 
						|
  inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
 | 
						|
    if (IV.markConstant(C)) {
 | 
						|
      DOUT << "markConstant: " << *C << ": " << *V;
 | 
						|
      InstWorkList.push_back(V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
 | 
						|
    IV.markForcedConstant(C);
 | 
						|
    DOUT << "markForcedConstant: " << *C << ": " << *V;
 | 
						|
    InstWorkList.push_back(V);
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline void markConstant(Value *V, Constant *C) {
 | 
						|
    markConstant(ValueState[V], V, C);
 | 
						|
  }
 | 
						|
 | 
						|
  // markOverdefined - Make a value be marked as "overdefined". If the
 | 
						|
  // value is not already overdefined, add it to the overdefined instruction
 | 
						|
  // work list so that the users of the instruction are updated later.
 | 
						|
 | 
						|
  inline void markOverdefined(LatticeVal &IV, Value *V) {
 | 
						|
    if (IV.markOverdefined()) {
 | 
						|
      DEBUG(DOUT << "markOverdefined: ";
 | 
						|
            if (Function *F = dyn_cast<Function>(V))
 | 
						|
              DOUT << "Function '" << F->getName() << "'\n";
 | 
						|
            else
 | 
						|
              DOUT << *V);
 | 
						|
      // Only instructions go on the work list
 | 
						|
      OverdefinedInstWorkList.push_back(V);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
 | 
						|
    if (IV.isOverdefined() || MergeWithV.isUndefined())
 | 
						|
      return;  // Noop.
 | 
						|
    if (MergeWithV.isOverdefined())
 | 
						|
      markOverdefined(IV, V);
 | 
						|
    else if (IV.isUndefined())
 | 
						|
      markConstant(IV, V, MergeWithV.getConstant());
 | 
						|
    else if (IV.getConstant() != MergeWithV.getConstant())
 | 
						|
      markOverdefined(IV, V);
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
 | 
						|
    return mergeInValue(ValueState[V], V, MergeWithV);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // getValueState - Return the LatticeVal object that corresponds to the value.
 | 
						|
  // This function is necessary because not all values should start out in the
 | 
						|
  // underdefined state... Argument's should be overdefined, and
 | 
						|
  // constants should be marked as constants.  If a value is not known to be an
 | 
						|
  // Instruction object, then use this accessor to get its value from the map.
 | 
						|
  //
 | 
						|
  inline LatticeVal &getValueState(Value *V) {
 | 
						|
    std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
 | 
						|
    if (I != ValueState.end()) return I->second;  // Common case, in the map
 | 
						|
 | 
						|
    if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
      if (isa<UndefValue>(V)) {
 | 
						|
        // Nothing to do, remain undefined.
 | 
						|
      } else {
 | 
						|
        LatticeVal &LV = ValueState[C];
 | 
						|
        LV.markConstant(C);          // Constants are constant
 | 
						|
        return LV;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // All others are underdefined by default...
 | 
						|
    return ValueState[V];
 | 
						|
  }
 | 
						|
 | 
						|
  // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
 | 
						|
  // work list if it is not already executable...
 | 
						|
  //
 | 
						|
  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
 | 
						|
    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
 | 
						|
      return;  // This edge is already known to be executable!
 | 
						|
 | 
						|
    if (BBExecutable.count(Dest)) {
 | 
						|
      DOUT << "Marking Edge Executable: " << Source->getName()
 | 
						|
           << " -> " << Dest->getName() << "\n";
 | 
						|
 | 
						|
      // The destination is already executable, but we just made an edge
 | 
						|
      // feasible that wasn't before.  Revisit the PHI nodes in the block
 | 
						|
      // because they have potentially new operands.
 | 
						|
      for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
 | 
						|
        visitPHINode(*cast<PHINode>(I));
 | 
						|
 | 
						|
    } else {
 | 
						|
      MarkBlockExecutable(Dest);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // getFeasibleSuccessors - Return a vector of booleans to indicate which
 | 
						|
  // successors are reachable from a given terminator instruction.
 | 
						|
  //
 | 
						|
  void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
 | 
						|
 | 
						|
  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
 | 
						|
  // block to the 'To' basic block is currently feasible...
 | 
						|
  //
 | 
						|
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
 | 
						|
 | 
						|
  // OperandChangedState - This method is invoked on all of the users of an
 | 
						|
  // instruction that was just changed state somehow....  Based on this
 | 
						|
  // information, we need to update the specified user of this instruction.
 | 
						|
  //
 | 
						|
  void OperandChangedState(User *U) {
 | 
						|
    // Only instructions use other variable values!
 | 
						|
    Instruction &I = cast<Instruction>(*U);
 | 
						|
    if (BBExecutable.count(I.getParent()))   // Inst is executable?
 | 
						|
      visit(I);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  friend class InstVisitor<SCCPSolver>;
 | 
						|
 | 
						|
  // visit implementations - Something changed in this instruction... Either an
 | 
						|
  // operand made a transition, or the instruction is newly executable.  Change
 | 
						|
  // the value type of I to reflect these changes if appropriate.
 | 
						|
  //
 | 
						|
  void visitPHINode(PHINode &I);
 | 
						|
 | 
						|
  // Terminators
 | 
						|
  void visitReturnInst(ReturnInst &I);
 | 
						|
  void visitTerminatorInst(TerminatorInst &TI);
 | 
						|
 | 
						|
  void visitCastInst(CastInst &I);
 | 
						|
  void visitSelectInst(SelectInst &I);
 | 
						|
  void visitBinaryOperator(Instruction &I);
 | 
						|
  void visitCmpInst(CmpInst &I);
 | 
						|
  void visitExtractElementInst(ExtractElementInst &I);
 | 
						|
  void visitInsertElementInst(InsertElementInst &I);
 | 
						|
  void visitShuffleVectorInst(ShuffleVectorInst &I);
 | 
						|
 | 
						|
  // Instructions that cannot be folded away...
 | 
						|
  void visitStoreInst     (Instruction &I);
 | 
						|
  void visitLoadInst      (LoadInst &I);
 | 
						|
  void visitGetElementPtrInst(GetElementPtrInst &I);
 | 
						|
  void visitCallInst      (CallInst &I) { visitCallSite(CallSite::get(&I)); }
 | 
						|
  void visitInvokeInst    (InvokeInst &II) {
 | 
						|
    visitCallSite(CallSite::get(&II));
 | 
						|
    visitTerminatorInst(II);
 | 
						|
  }
 | 
						|
  void visitCallSite      (CallSite CS);
 | 
						|
  void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ }
 | 
						|
  void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
 | 
						|
  void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
 | 
						|
  void visitVANextInst    (Instruction &I) { markOverdefined(&I); }
 | 
						|
  void visitVAArgInst     (Instruction &I) { markOverdefined(&I); }
 | 
						|
  void visitFreeInst      (Instruction &I) { /*returns void*/ }
 | 
						|
 | 
						|
  void visitInstruction(Instruction &I) {
 | 
						|
    // If a new instruction is added to LLVM that we don't handle...
 | 
						|
    cerr << "SCCP: Don't know how to handle: " << I;
 | 
						|
    markOverdefined(&I);   // Just in case
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
// getFeasibleSuccessors - Return a vector of booleans to indicate which
 | 
						|
// successors are reachable from a given terminator instruction.
 | 
						|
//
 | 
						|
void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
 | 
						|
                                       SmallVector<bool, 16> &Succs) {
 | 
						|
  Succs.resize(TI.getNumSuccessors());
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
 | 
						|
    if (BI->isUnconditional()) {
 | 
						|
      Succs[0] = true;
 | 
						|
    } else {
 | 
						|
      LatticeVal &BCValue = getValueState(BI->getCondition());
 | 
						|
      if (BCValue.isOverdefined() ||
 | 
						|
          (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
 | 
						|
        // Overdefined condition variables, and branches on unfoldable constant
 | 
						|
        // conditions, mean the branch could go either way.
 | 
						|
        Succs[0] = Succs[1] = true;
 | 
						|
      } else if (BCValue.isConstant()) {
 | 
						|
        // Constant condition variables mean the branch can only go a single way
 | 
						|
        Succs[BCValue.getConstant() == ConstantInt::getFalse()] = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (isa<InvokeInst>(&TI)) {
 | 
						|
    // Invoke instructions successors are always executable.
 | 
						|
    Succs[0] = Succs[1] = true;
 | 
						|
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
 | 
						|
    LatticeVal &SCValue = getValueState(SI->getCondition());
 | 
						|
    if (SCValue.isOverdefined() ||   // Overdefined condition?
 | 
						|
        (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
 | 
						|
      // All destinations are executable!
 | 
						|
      Succs.assign(TI.getNumSuccessors(), true);
 | 
						|
    } else if (SCValue.isConstant()) {
 | 
						|
      Constant *CPV = SCValue.getConstant();
 | 
						|
      // Make sure to skip the "default value" which isn't a value
 | 
						|
      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
 | 
						|
        if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
 | 
						|
          Succs[i] = true;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Constant value not equal to any of the branches... must execute
 | 
						|
      // default branch then...
 | 
						|
      Succs[0] = true;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(0 && "SCCP: Don't know how to handle this terminator!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
 | 
						|
// block to the 'To' basic block is currently feasible...
 | 
						|
//
 | 
						|
bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
 | 
						|
  assert(BBExecutable.count(To) && "Dest should always be alive!");
 | 
						|
 | 
						|
  // Make sure the source basic block is executable!!
 | 
						|
  if (!BBExecutable.count(From)) return false;
 | 
						|
 | 
						|
  // Check to make sure this edge itself is actually feasible now...
 | 
						|
  TerminatorInst *TI = From->getTerminator();
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
    if (BI->isUnconditional())
 | 
						|
      return true;
 | 
						|
    else {
 | 
						|
      LatticeVal &BCValue = getValueState(BI->getCondition());
 | 
						|
      if (BCValue.isOverdefined()) {
 | 
						|
        // Overdefined condition variables mean the branch could go either way.
 | 
						|
        return true;
 | 
						|
      } else if (BCValue.isConstant()) {
 | 
						|
        // Not branching on an evaluatable constant?
 | 
						|
        if (!isa<ConstantInt>(BCValue.getConstant())) return true;
 | 
						|
 | 
						|
        // Constant condition variables mean the branch can only go a single way
 | 
						|
        return BI->getSuccessor(BCValue.getConstant() ==
 | 
						|
                                       ConstantInt::getFalse()) == To;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else if (isa<InvokeInst>(TI)) {
 | 
						|
    // Invoke instructions successors are always executable.
 | 
						|
    return true;
 | 
						|
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
    LatticeVal &SCValue = getValueState(SI->getCondition());
 | 
						|
    if (SCValue.isOverdefined()) {  // Overdefined condition?
 | 
						|
      // All destinations are executable!
 | 
						|
      return true;
 | 
						|
    } else if (SCValue.isConstant()) {
 | 
						|
      Constant *CPV = SCValue.getConstant();
 | 
						|
      if (!isa<ConstantInt>(CPV))
 | 
						|
        return true;  // not a foldable constant?
 | 
						|
 | 
						|
      // Make sure to skip the "default value" which isn't a value
 | 
						|
      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
 | 
						|
        if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
 | 
						|
          return SI->getSuccessor(i) == To;
 | 
						|
 | 
						|
      // Constant value not equal to any of the branches... must execute
 | 
						|
      // default branch then...
 | 
						|
      return SI->getDefaultDest() == To;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  } else {
 | 
						|
    cerr << "Unknown terminator instruction: " << *TI;
 | 
						|
    abort();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// visit Implementations - Something changed in this instruction... Either an
 | 
						|
// operand made a transition, or the instruction is newly executable.  Change
 | 
						|
// the value type of I to reflect these changes if appropriate.  This method
 | 
						|
// makes sure to do the following actions:
 | 
						|
//
 | 
						|
// 1. If a phi node merges two constants in, and has conflicting value coming
 | 
						|
//    from different branches, or if the PHI node merges in an overdefined
 | 
						|
//    value, then the PHI node becomes overdefined.
 | 
						|
// 2. If a phi node merges only constants in, and they all agree on value, the
 | 
						|
//    PHI node becomes a constant value equal to that.
 | 
						|
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
 | 
						|
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
 | 
						|
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
 | 
						|
// 6. If a conditional branch has a value that is constant, make the selected
 | 
						|
//    destination executable
 | 
						|
// 7. If a conditional branch has a value that is overdefined, make all
 | 
						|
//    successors executable.
 | 
						|
//
 | 
						|
void SCCPSolver::visitPHINode(PHINode &PN) {
 | 
						|
  LatticeVal &PNIV = getValueState(&PN);
 | 
						|
  if (PNIV.isOverdefined()) {
 | 
						|
    // There may be instructions using this PHI node that are not overdefined
 | 
						|
    // themselves.  If so, make sure that they know that the PHI node operand
 | 
						|
    // changed.
 | 
						|
    std::multimap<PHINode*, Instruction*>::iterator I, E;
 | 
						|
    tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
 | 
						|
    if (I != E) {
 | 
						|
      SmallVector<Instruction*, 16> Users;
 | 
						|
      for (; I != E; ++I) Users.push_back(I->second);
 | 
						|
      while (!Users.empty()) {
 | 
						|
        visit(Users.back());
 | 
						|
        Users.pop_back();
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;  // Quick exit
 | 
						|
  }
 | 
						|
 | 
						|
  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
 | 
						|
  // and slow us down a lot.  Just mark them overdefined.
 | 
						|
  if (PN.getNumIncomingValues() > 64) {
 | 
						|
    markOverdefined(PNIV, &PN);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look at all of the executable operands of the PHI node.  If any of them
 | 
						|
  // are overdefined, the PHI becomes overdefined as well.  If they are all
 | 
						|
  // constant, and they agree with each other, the PHI becomes the identical
 | 
						|
  // constant.  If they are constant and don't agree, the PHI is overdefined.
 | 
						|
  // If there are no executable operands, the PHI remains undefined.
 | 
						|
  //
 | 
						|
  Constant *OperandVal = 0;
 | 
						|
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | 
						|
    LatticeVal &IV = getValueState(PN.getIncomingValue(i));
 | 
						|
    if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
 | 
						|
 | 
						|
    if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
 | 
						|
      if (IV.isOverdefined()) {   // PHI node becomes overdefined!
 | 
						|
        markOverdefined(PNIV, &PN);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (OperandVal == 0) {   // Grab the first value...
 | 
						|
        OperandVal = IV.getConstant();
 | 
						|
      } else {                // Another value is being merged in!
 | 
						|
        // There is already a reachable operand.  If we conflict with it,
 | 
						|
        // then the PHI node becomes overdefined.  If we agree with it, we
 | 
						|
        // can continue on.
 | 
						|
 | 
						|
        // Check to see if there are two different constants merging...
 | 
						|
        if (IV.getConstant() != OperandVal) {
 | 
						|
          // Yes there is.  This means the PHI node is not constant.
 | 
						|
          // You must be overdefined poor PHI.
 | 
						|
          //
 | 
						|
          markOverdefined(PNIV, &PN);    // The PHI node now becomes overdefined
 | 
						|
          return;    // I'm done analyzing you
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we exited the loop, this means that the PHI node only has constant
 | 
						|
  // arguments that agree with each other(and OperandVal is the constant) or
 | 
						|
  // OperandVal is null because there are no defined incoming arguments.  If
 | 
						|
  // this is the case, the PHI remains undefined.
 | 
						|
  //
 | 
						|
  if (OperandVal)
 | 
						|
    markConstant(PNIV, &PN, OperandVal);      // Acquire operand value
 | 
						|
}
 | 
						|
 | 
						|
void SCCPSolver::visitReturnInst(ReturnInst &I) {
 | 
						|
  if (I.getNumOperands() == 0) return;  // Ret void
 | 
						|
 | 
						|
  // If we are tracking the return value of this function, merge it in.
 | 
						|
  Function *F = I.getParent()->getParent();
 | 
						|
  if (F->hasInternalLinkage() && !TrackedFunctionRetVals.empty()) {
 | 
						|
    DenseMap<Function*, LatticeVal>::iterator TFRVI =
 | 
						|
      TrackedFunctionRetVals.find(F);
 | 
						|
    if (TFRVI != TrackedFunctionRetVals.end() &&
 | 
						|
        !TFRVI->second.isOverdefined()) {
 | 
						|
      LatticeVal &IV = getValueState(I.getOperand(0));
 | 
						|
      mergeInValue(TFRVI->second, F, IV);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
 | 
						|
  SmallVector<bool, 16> SuccFeasible;
 | 
						|
  getFeasibleSuccessors(TI, SuccFeasible);
 | 
						|
 | 
						|
  BasicBlock *BB = TI.getParent();
 | 
						|
 | 
						|
  // Mark all feasible successors executable...
 | 
						|
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
 | 
						|
    if (SuccFeasible[i])
 | 
						|
      markEdgeExecutable(BB, TI.getSuccessor(i));
 | 
						|
}
 | 
						|
 | 
						|
void SCCPSolver::visitCastInst(CastInst &I) {
 | 
						|
  Value *V = I.getOperand(0);
 | 
						|
  LatticeVal &VState = getValueState(V);
 | 
						|
  if (VState.isOverdefined())          // Inherit overdefinedness of operand
 | 
						|
    markOverdefined(&I);
 | 
						|
  else if (VState.isConstant())        // Propagate constant value
 | 
						|
    markConstant(&I, ConstantExpr::getCast(I.getOpcode(), 
 | 
						|
                                           VState.getConstant(), I.getType()));
 | 
						|
}
 | 
						|
 | 
						|
void SCCPSolver::visitSelectInst(SelectInst &I) {
 | 
						|
  LatticeVal &CondValue = getValueState(I.getCondition());
 | 
						|
  if (CondValue.isUndefined())
 | 
						|
    return;
 | 
						|
  if (CondValue.isConstant()) {
 | 
						|
    if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
 | 
						|
      mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
 | 
						|
                                                          : I.getFalseValue()));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, the condition is overdefined or a constant we can't evaluate.
 | 
						|
  // See if we can produce something better than overdefined based on the T/F
 | 
						|
  // value.
 | 
						|
  LatticeVal &TVal = getValueState(I.getTrueValue());
 | 
						|
  LatticeVal &FVal = getValueState(I.getFalseValue());
 | 
						|
  
 | 
						|
  // select ?, C, C -> C.
 | 
						|
  if (TVal.isConstant() && FVal.isConstant() && 
 | 
						|
      TVal.getConstant() == FVal.getConstant()) {
 | 
						|
    markConstant(&I, FVal.getConstant());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TVal.isUndefined()) {  // select ?, undef, X -> X.
 | 
						|
    mergeInValue(&I, FVal);
 | 
						|
  } else if (FVal.isUndefined()) {  // select ?, X, undef -> X.
 | 
						|
    mergeInValue(&I, TVal);
 | 
						|
  } else {
 | 
						|
    markOverdefined(&I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Handle BinaryOperators and Shift Instructions...
 | 
						|
void SCCPSolver::visitBinaryOperator(Instruction &I) {
 | 
						|
  LatticeVal &IV = ValueState[&I];
 | 
						|
  if (IV.isOverdefined()) return;
 | 
						|
 | 
						|
  LatticeVal &V1State = getValueState(I.getOperand(0));
 | 
						|
  LatticeVal &V2State = getValueState(I.getOperand(1));
 | 
						|
 | 
						|
  if (V1State.isOverdefined() || V2State.isOverdefined()) {
 | 
						|
    // If this is an AND or OR with 0 or -1, it doesn't matter that the other
 | 
						|
    // operand is overdefined.
 | 
						|
    if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
 | 
						|
      LatticeVal *NonOverdefVal = 0;
 | 
						|
      if (!V1State.isOverdefined()) {
 | 
						|
        NonOverdefVal = &V1State;
 | 
						|
      } else if (!V2State.isOverdefined()) {
 | 
						|
        NonOverdefVal = &V2State;
 | 
						|
      }
 | 
						|
 | 
						|
      if (NonOverdefVal) {
 | 
						|
        if (NonOverdefVal->isUndefined()) {
 | 
						|
          // Could annihilate value.
 | 
						|
          if (I.getOpcode() == Instruction::And)
 | 
						|
            markConstant(IV, &I, Constant::getNullValue(I.getType()));
 | 
						|
          else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
 | 
						|
            markConstant(IV, &I, ConstantVector::getAllOnesValue(PT));
 | 
						|
          else
 | 
						|
            markConstant(IV, &I, ConstantInt::getAllOnesValue(I.getType()));
 | 
						|
          return;
 | 
						|
        } else {
 | 
						|
          if (I.getOpcode() == Instruction::And) {
 | 
						|
            if (NonOverdefVal->getConstant()->isNullValue()) {
 | 
						|
              markConstant(IV, &I, NonOverdefVal->getConstant());
 | 
						|
              return;      // X and 0 = 0
 | 
						|
            }
 | 
						|
          } else {
 | 
						|
            if (ConstantInt *CI =
 | 
						|
                     dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
 | 
						|
              if (CI->isAllOnesValue()) {
 | 
						|
                markConstant(IV, &I, NonOverdefVal->getConstant());
 | 
						|
                return;    // X or -1 = -1
 | 
						|
              }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // If both operands are PHI nodes, it is possible that this instruction has
 | 
						|
    // a constant value, despite the fact that the PHI node doesn't.  Check for
 | 
						|
    // this condition now.
 | 
						|
    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
 | 
						|
      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
 | 
						|
        if (PN1->getParent() == PN2->getParent()) {
 | 
						|
          // Since the two PHI nodes are in the same basic block, they must have
 | 
						|
          // entries for the same predecessors.  Walk the predecessor list, and
 | 
						|
          // if all of the incoming values are constants, and the result of
 | 
						|
          // evaluating this expression with all incoming value pairs is the
 | 
						|
          // same, then this expression is a constant even though the PHI node
 | 
						|
          // is not a constant!
 | 
						|
          LatticeVal Result;
 | 
						|
          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
 | 
						|
            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
 | 
						|
            BasicBlock *InBlock = PN1->getIncomingBlock(i);
 | 
						|
            LatticeVal &In2 =
 | 
						|
              getValueState(PN2->getIncomingValueForBlock(InBlock));
 | 
						|
 | 
						|
            if (In1.isOverdefined() || In2.isOverdefined()) {
 | 
						|
              Result.markOverdefined();
 | 
						|
              break;  // Cannot fold this operation over the PHI nodes!
 | 
						|
            } else if (In1.isConstant() && In2.isConstant()) {
 | 
						|
              Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(),
 | 
						|
                                              In2.getConstant());
 | 
						|
              if (Result.isUndefined())
 | 
						|
                Result.markConstant(V);
 | 
						|
              else if (Result.isConstant() && Result.getConstant() != V) {
 | 
						|
                Result.markOverdefined();
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          // If we found a constant value here, then we know the instruction is
 | 
						|
          // constant despite the fact that the PHI nodes are overdefined.
 | 
						|
          if (Result.isConstant()) {
 | 
						|
            markConstant(IV, &I, Result.getConstant());
 | 
						|
            // Remember that this instruction is virtually using the PHI node
 | 
						|
            // operands.
 | 
						|
            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
 | 
						|
            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
 | 
						|
            return;
 | 
						|
          } else if (Result.isUndefined()) {
 | 
						|
            return;
 | 
						|
          }
 | 
						|
 | 
						|
          // Okay, this really is overdefined now.  Since we might have
 | 
						|
          // speculatively thought that this was not overdefined before, and
 | 
						|
          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
 | 
						|
          // make sure to clean out any entries that we put there, for
 | 
						|
          // efficiency.
 | 
						|
          std::multimap<PHINode*, Instruction*>::iterator It, E;
 | 
						|
          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
 | 
						|
          while (It != E) {
 | 
						|
            if (It->second == &I) {
 | 
						|
              UsersOfOverdefinedPHIs.erase(It++);
 | 
						|
            } else
 | 
						|
              ++It;
 | 
						|
          }
 | 
						|
          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
 | 
						|
          while (It != E) {
 | 
						|
            if (It->second == &I) {
 | 
						|
              UsersOfOverdefinedPHIs.erase(It++);
 | 
						|
            } else
 | 
						|
              ++It;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
    markOverdefined(IV, &I);
 | 
						|
  } else if (V1State.isConstant() && V2State.isConstant()) {
 | 
						|
    markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
 | 
						|
                                           V2State.getConstant()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Handle ICmpInst instruction...
 | 
						|
void SCCPSolver::visitCmpInst(CmpInst &I) {
 | 
						|
  LatticeVal &IV = ValueState[&I];
 | 
						|
  if (IV.isOverdefined()) return;
 | 
						|
 | 
						|
  LatticeVal &V1State = getValueState(I.getOperand(0));
 | 
						|
  LatticeVal &V2State = getValueState(I.getOperand(1));
 | 
						|
 | 
						|
  if (V1State.isOverdefined() || V2State.isOverdefined()) {
 | 
						|
    // If both operands are PHI nodes, it is possible that this instruction has
 | 
						|
    // a constant value, despite the fact that the PHI node doesn't.  Check for
 | 
						|
    // this condition now.
 | 
						|
    if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
 | 
						|
      if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
 | 
						|
        if (PN1->getParent() == PN2->getParent()) {
 | 
						|
          // Since the two PHI nodes are in the same basic block, they must have
 | 
						|
          // entries for the same predecessors.  Walk the predecessor list, and
 | 
						|
          // if all of the incoming values are constants, and the result of
 | 
						|
          // evaluating this expression with all incoming value pairs is the
 | 
						|
          // same, then this expression is a constant even though the PHI node
 | 
						|
          // is not a constant!
 | 
						|
          LatticeVal Result;
 | 
						|
          for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
 | 
						|
            LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
 | 
						|
            BasicBlock *InBlock = PN1->getIncomingBlock(i);
 | 
						|
            LatticeVal &In2 =
 | 
						|
              getValueState(PN2->getIncomingValueForBlock(InBlock));
 | 
						|
 | 
						|
            if (In1.isOverdefined() || In2.isOverdefined()) {
 | 
						|
              Result.markOverdefined();
 | 
						|
              break;  // Cannot fold this operation over the PHI nodes!
 | 
						|
            } else if (In1.isConstant() && In2.isConstant()) {
 | 
						|
              Constant *V = ConstantExpr::getCompare(I.getPredicate(), 
 | 
						|
                                                     In1.getConstant(), 
 | 
						|
                                                     In2.getConstant());
 | 
						|
              if (Result.isUndefined())
 | 
						|
                Result.markConstant(V);
 | 
						|
              else if (Result.isConstant() && Result.getConstant() != V) {
 | 
						|
                Result.markOverdefined();
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          // If we found a constant value here, then we know the instruction is
 | 
						|
          // constant despite the fact that the PHI nodes are overdefined.
 | 
						|
          if (Result.isConstant()) {
 | 
						|
            markConstant(IV, &I, Result.getConstant());
 | 
						|
            // Remember that this instruction is virtually using the PHI node
 | 
						|
            // operands.
 | 
						|
            UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
 | 
						|
            UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
 | 
						|
            return;
 | 
						|
          } else if (Result.isUndefined()) {
 | 
						|
            return;
 | 
						|
          }
 | 
						|
 | 
						|
          // Okay, this really is overdefined now.  Since we might have
 | 
						|
          // speculatively thought that this was not overdefined before, and
 | 
						|
          // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
 | 
						|
          // make sure to clean out any entries that we put there, for
 | 
						|
          // efficiency.
 | 
						|
          std::multimap<PHINode*, Instruction*>::iterator It, E;
 | 
						|
          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
 | 
						|
          while (It != E) {
 | 
						|
            if (It->second == &I) {
 | 
						|
              UsersOfOverdefinedPHIs.erase(It++);
 | 
						|
            } else
 | 
						|
              ++It;
 | 
						|
          }
 | 
						|
          tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
 | 
						|
          while (It != E) {
 | 
						|
            if (It->second == &I) {
 | 
						|
              UsersOfOverdefinedPHIs.erase(It++);
 | 
						|
            } else
 | 
						|
              ++It;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
    markOverdefined(IV, &I);
 | 
						|
  } else if (V1State.isConstant() && V2State.isConstant()) {
 | 
						|
    markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), 
 | 
						|
                                                  V1State.getConstant(), 
 | 
						|
                                                  V2State.getConstant()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
 | 
						|
  // FIXME : SCCP does not handle vectors properly.
 | 
						|
  markOverdefined(&I);
 | 
						|
  return;
 | 
						|
 | 
						|
#if 0
 | 
						|
  LatticeVal &ValState = getValueState(I.getOperand(0));
 | 
						|
  LatticeVal &IdxState = getValueState(I.getOperand(1));
 | 
						|
 | 
						|
  if (ValState.isOverdefined() || IdxState.isOverdefined())
 | 
						|
    markOverdefined(&I);
 | 
						|
  else if(ValState.isConstant() && IdxState.isConstant())
 | 
						|
    markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
 | 
						|
                                                     IdxState.getConstant()));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
 | 
						|
  // FIXME : SCCP does not handle vectors properly.
 | 
						|
  markOverdefined(&I);
 | 
						|
  return;
 | 
						|
#if 0
 | 
						|
  LatticeVal &ValState = getValueState(I.getOperand(0));
 | 
						|
  LatticeVal &EltState = getValueState(I.getOperand(1));
 | 
						|
  LatticeVal &IdxState = getValueState(I.getOperand(2));
 | 
						|
 | 
						|
  if (ValState.isOverdefined() || EltState.isOverdefined() ||
 | 
						|
      IdxState.isOverdefined())
 | 
						|
    markOverdefined(&I);
 | 
						|
  else if(ValState.isConstant() && EltState.isConstant() &&
 | 
						|
          IdxState.isConstant())
 | 
						|
    markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
 | 
						|
                                                    EltState.getConstant(),
 | 
						|
                                                    IdxState.getConstant()));
 | 
						|
  else if (ValState.isUndefined() && EltState.isConstant() &&
 | 
						|
           IdxState.isConstant()) 
 | 
						|
    markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
 | 
						|
                                                   EltState.getConstant(),
 | 
						|
                                                   IdxState.getConstant()));
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
 | 
						|
  // FIXME : SCCP does not handle vectors properly.
 | 
						|
  markOverdefined(&I);
 | 
						|
  return;
 | 
						|
#if 0
 | 
						|
  LatticeVal &V1State   = getValueState(I.getOperand(0));
 | 
						|
  LatticeVal &V2State   = getValueState(I.getOperand(1));
 | 
						|
  LatticeVal &MaskState = getValueState(I.getOperand(2));
 | 
						|
 | 
						|
  if (MaskState.isUndefined() ||
 | 
						|
      (V1State.isUndefined() && V2State.isUndefined()))
 | 
						|
    return;  // Undefined output if mask or both inputs undefined.
 | 
						|
  
 | 
						|
  if (V1State.isOverdefined() || V2State.isOverdefined() ||
 | 
						|
      MaskState.isOverdefined()) {
 | 
						|
    markOverdefined(&I);
 | 
						|
  } else {
 | 
						|
    // A mix of constant/undef inputs.
 | 
						|
    Constant *V1 = V1State.isConstant() ? 
 | 
						|
        V1State.getConstant() : UndefValue::get(I.getType());
 | 
						|
    Constant *V2 = V2State.isConstant() ? 
 | 
						|
        V2State.getConstant() : UndefValue::get(I.getType());
 | 
						|
    Constant *Mask = MaskState.isConstant() ? 
 | 
						|
      MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
 | 
						|
    markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
// Handle getelementptr instructions... if all operands are constants then we
 | 
						|
// can turn this into a getelementptr ConstantExpr.
 | 
						|
//
 | 
						|
void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
 | 
						|
  LatticeVal &IV = ValueState[&I];
 | 
						|
  if (IV.isOverdefined()) return;
 | 
						|
 | 
						|
  SmallVector<Constant*, 8> Operands;
 | 
						|
  Operands.reserve(I.getNumOperands());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
 | 
						|
    LatticeVal &State = getValueState(I.getOperand(i));
 | 
						|
    if (State.isUndefined())
 | 
						|
      return;  // Operands are not resolved yet...
 | 
						|
    else if (State.isOverdefined()) {
 | 
						|
      markOverdefined(IV, &I);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    assert(State.isConstant() && "Unknown state!");
 | 
						|
    Operands.push_back(State.getConstant());
 | 
						|
  }
 | 
						|
 | 
						|
  Constant *Ptr = Operands[0];
 | 
						|
  Operands.erase(Operands.begin());  // Erase the pointer from idx list...
 | 
						|
 | 
						|
  markConstant(IV, &I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0],
 | 
						|
                                                      Operands.size()));
 | 
						|
}
 | 
						|
 | 
						|
void SCCPSolver::visitStoreInst(Instruction &SI) {
 | 
						|
  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
 | 
						|
    return;
 | 
						|
  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
 | 
						|
  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
 | 
						|
  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
 | 
						|
 | 
						|
  // Get the value we are storing into the global.
 | 
						|
  LatticeVal &PtrVal = getValueState(SI.getOperand(0));
 | 
						|
 | 
						|
  mergeInValue(I->second, GV, PtrVal);
 | 
						|
  if (I->second.isOverdefined())
 | 
						|
    TrackedGlobals.erase(I);      // No need to keep tracking this!
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Handle load instructions.  If the operand is a constant pointer to a constant
 | 
						|
// global, we can replace the load with the loaded constant value!
 | 
						|
void SCCPSolver::visitLoadInst(LoadInst &I) {
 | 
						|
  LatticeVal &IV = ValueState[&I];
 | 
						|
  if (IV.isOverdefined()) return;
 | 
						|
 | 
						|
  LatticeVal &PtrVal = getValueState(I.getOperand(0));
 | 
						|
  if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet!
 | 
						|
  if (PtrVal.isConstant() && !I.isVolatile()) {
 | 
						|
    Value *Ptr = PtrVal.getConstant();
 | 
						|
    // TODO: Consider a target hook for valid address spaces for this xform.
 | 
						|
    if (isa<ConstantPointerNull>(Ptr) && 
 | 
						|
        cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
 | 
						|
      // load null -> null
 | 
						|
      markConstant(IV, &I, Constant::getNullValue(I.getType()));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Transform load (constant global) into the value loaded.
 | 
						|
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
 | 
						|
      if (GV->isConstant()) {
 | 
						|
        if (!GV->isDeclaration()) {
 | 
						|
          markConstant(IV, &I, GV->getInitializer());
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      } else if (!TrackedGlobals.empty()) {
 | 
						|
        // If we are tracking this global, merge in the known value for it.
 | 
						|
        DenseMap<GlobalVariable*, LatticeVal>::iterator It =
 | 
						|
          TrackedGlobals.find(GV);
 | 
						|
        if (It != TrackedGlobals.end()) {
 | 
						|
          mergeInValue(IV, &I, It->second);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
 | 
						|
    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | 
						|
      if (CE->getOpcode() == Instruction::GetElementPtr)
 | 
						|
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | 
						|
      if (GV->isConstant() && !GV->isDeclaration())
 | 
						|
        if (Constant *V =
 | 
						|
             ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) {
 | 
						|
          markConstant(IV, &I, V);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise we cannot say for certain what value this load will produce.
 | 
						|
  // Bail out.
 | 
						|
  markOverdefined(IV, &I);
 | 
						|
}
 | 
						|
 | 
						|
void SCCPSolver::visitCallSite(CallSite CS) {
 | 
						|
  Function *F = CS.getCalledFunction();
 | 
						|
 | 
						|
  // If we are tracking this function, we must make sure to bind arguments as
 | 
						|
  // appropriate.
 | 
						|
  DenseMap<Function*, LatticeVal>::iterator TFRVI =TrackedFunctionRetVals.end();
 | 
						|
  if (F && F->hasInternalLinkage())
 | 
						|
    TFRVI = TrackedFunctionRetVals.find(F);
 | 
						|
 | 
						|
  if (TFRVI != TrackedFunctionRetVals.end()) {
 | 
						|
    // If this is the first call to the function hit, mark its entry block
 | 
						|
    // executable.
 | 
						|
    if (!BBExecutable.count(F->begin()))
 | 
						|
      MarkBlockExecutable(F->begin());
 | 
						|
 | 
						|
    CallSite::arg_iterator CAI = CS.arg_begin();
 | 
						|
    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
 | 
						|
         AI != E; ++AI, ++CAI) {
 | 
						|
      LatticeVal &IV = ValueState[AI];
 | 
						|
      if (!IV.isOverdefined())
 | 
						|
        mergeInValue(IV, AI, getValueState(*CAI));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Instruction *I = CS.getInstruction();
 | 
						|
  if (I->getType() == Type::VoidTy) return;
 | 
						|
 | 
						|
  LatticeVal &IV = ValueState[I];
 | 
						|
  if (IV.isOverdefined()) return;
 | 
						|
 | 
						|
  // Propagate the return value of the function to the value of the instruction.
 | 
						|
  if (TFRVI != TrackedFunctionRetVals.end()) {
 | 
						|
    mergeInValue(IV, I, TFRVI->second);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (F == 0 || !F->isDeclaration() || !canConstantFoldCallTo(F)) {
 | 
						|
    markOverdefined(IV, I);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<Constant*, 8> Operands;
 | 
						|
  Operands.reserve(I->getNumOperands()-1);
 | 
						|
 | 
						|
  for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
 | 
						|
       AI != E; ++AI) {
 | 
						|
    LatticeVal &State = getValueState(*AI);
 | 
						|
    if (State.isUndefined())
 | 
						|
      return;  // Operands are not resolved yet...
 | 
						|
    else if (State.isOverdefined()) {
 | 
						|
      markOverdefined(IV, I);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    assert(State.isConstant() && "Unknown state!");
 | 
						|
    Operands.push_back(State.getConstant());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Constant *C = ConstantFoldCall(F, &Operands[0], Operands.size()))
 | 
						|
    markConstant(IV, I, C);
 | 
						|
  else
 | 
						|
    markOverdefined(IV, I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SCCPSolver::Solve() {
 | 
						|
  // Process the work lists until they are empty!
 | 
						|
  while (!BBWorkList.empty() || !InstWorkList.empty() ||
 | 
						|
         !OverdefinedInstWorkList.empty()) {
 | 
						|
    // Process the instruction work list...
 | 
						|
    while (!OverdefinedInstWorkList.empty()) {
 | 
						|
      Value *I = OverdefinedInstWorkList.back();
 | 
						|
      OverdefinedInstWorkList.pop_back();
 | 
						|
 | 
						|
      DOUT << "\nPopped off OI-WL: " << *I;
 | 
						|
 | 
						|
      // "I" got into the work list because it either made the transition from
 | 
						|
      // bottom to constant
 | 
						|
      //
 | 
						|
      // Anything on this worklist that is overdefined need not be visited
 | 
						|
      // since all of its users will have already been marked as overdefined
 | 
						|
      // Update all of the users of this instruction's value...
 | 
						|
      //
 | 
						|
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | 
						|
           UI != E; ++UI)
 | 
						|
        OperandChangedState(*UI);
 | 
						|
    }
 | 
						|
    // Process the instruction work list...
 | 
						|
    while (!InstWorkList.empty()) {
 | 
						|
      Value *I = InstWorkList.back();
 | 
						|
      InstWorkList.pop_back();
 | 
						|
 | 
						|
      DOUT << "\nPopped off I-WL: " << *I;
 | 
						|
 | 
						|
      // "I" got into the work list because it either made the transition from
 | 
						|
      // bottom to constant
 | 
						|
      //
 | 
						|
      // Anything on this worklist that is overdefined need not be visited
 | 
						|
      // since all of its users will have already been marked as overdefined.
 | 
						|
      // Update all of the users of this instruction's value...
 | 
						|
      //
 | 
						|
      if (!getValueState(I).isOverdefined())
 | 
						|
        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | 
						|
             UI != E; ++UI)
 | 
						|
          OperandChangedState(*UI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Process the basic block work list...
 | 
						|
    while (!BBWorkList.empty()) {
 | 
						|
      BasicBlock *BB = BBWorkList.back();
 | 
						|
      BBWorkList.pop_back();
 | 
						|
 | 
						|
      DOUT << "\nPopped off BBWL: " << *BB;
 | 
						|
 | 
						|
      // Notify all instructions in this basic block that they are newly
 | 
						|
      // executable.
 | 
						|
      visit(BB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
 | 
						|
/// that branches on undef values cannot reach any of their successors.
 | 
						|
/// However, this is not a safe assumption.  After we solve dataflow, this
 | 
						|
/// method should be use to handle this.  If this returns true, the solver
 | 
						|
/// should be rerun.
 | 
						|
///
 | 
						|
/// This method handles this by finding an unresolved branch and marking it one
 | 
						|
/// of the edges from the block as being feasible, even though the condition
 | 
						|
/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
 | 
						|
/// CFG and only slightly pessimizes the analysis results (by marking one,
 | 
						|
/// potentially infeasible, edge feasible).  This cannot usefully modify the
 | 
						|
/// constraints on the condition of the branch, as that would impact other users
 | 
						|
/// of the value.
 | 
						|
///
 | 
						|
/// This scan also checks for values that use undefs, whose results are actually
 | 
						|
/// defined.  For example, 'zext i8 undef to i32' should produce all zeros
 | 
						|
/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
 | 
						|
/// even if X isn't defined.
 | 
						|
bool SCCPSolver::ResolvedUndefsIn(Function &F) {
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | 
						|
    if (!BBExecutable.count(BB))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
      // Look for instructions which produce undef values.
 | 
						|
      if (I->getType() == Type::VoidTy) continue;
 | 
						|
      
 | 
						|
      LatticeVal &LV = getValueState(I);
 | 
						|
      if (!LV.isUndefined()) continue;
 | 
						|
 | 
						|
      // Get the lattice values of the first two operands for use below.
 | 
						|
      LatticeVal &Op0LV = getValueState(I->getOperand(0));
 | 
						|
      LatticeVal Op1LV;
 | 
						|
      if (I->getNumOperands() == 2) {
 | 
						|
        // If this is a two-operand instruction, and if both operands are
 | 
						|
        // undefs, the result stays undef.
 | 
						|
        Op1LV = getValueState(I->getOperand(1));
 | 
						|
        if (Op0LV.isUndefined() && Op1LV.isUndefined())
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If this is an instructions whose result is defined even if the input is
 | 
						|
      // not fully defined, propagate the information.
 | 
						|
      const Type *ITy = I->getType();
 | 
						|
      switch (I->getOpcode()) {
 | 
						|
      default: break;          // Leave the instruction as an undef.
 | 
						|
      case Instruction::ZExt:
 | 
						|
        // After a zero extend, we know the top part is zero.  SExt doesn't have
 | 
						|
        // to be handled here, because we don't know whether the top part is 1's
 | 
						|
        // or 0's.
 | 
						|
        assert(Op0LV.isUndefined());
 | 
						|
        markForcedConstant(LV, I, Constant::getNullValue(ITy));
 | 
						|
        return true;
 | 
						|
      case Instruction::Mul:
 | 
						|
      case Instruction::And:
 | 
						|
        // undef * X -> 0.   X could be zero.
 | 
						|
        // undef & X -> 0.   X could be zero.
 | 
						|
        markForcedConstant(LV, I, Constant::getNullValue(ITy));
 | 
						|
        return true;
 | 
						|
 | 
						|
      case Instruction::Or:
 | 
						|
        // undef | X -> -1.   X could be -1.
 | 
						|
        if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
 | 
						|
          markForcedConstant(LV, I, ConstantVector::getAllOnesValue(PTy));
 | 
						|
        else          
 | 
						|
          markForcedConstant(LV, I, ConstantInt::getAllOnesValue(ITy));
 | 
						|
        return true;
 | 
						|
 | 
						|
      case Instruction::SDiv:
 | 
						|
      case Instruction::UDiv:
 | 
						|
      case Instruction::SRem:
 | 
						|
      case Instruction::URem:
 | 
						|
        // X / undef -> undef.  No change.
 | 
						|
        // X % undef -> undef.  No change.
 | 
						|
        if (Op1LV.isUndefined()) break;
 | 
						|
        
 | 
						|
        // undef / X -> 0.   X could be maxint.
 | 
						|
        // undef % X -> 0.   X could be 1.
 | 
						|
        markForcedConstant(LV, I, Constant::getNullValue(ITy));
 | 
						|
        return true;
 | 
						|
        
 | 
						|
      case Instruction::AShr:
 | 
						|
        // undef >>s X -> undef.  No change.
 | 
						|
        if (Op0LV.isUndefined()) break;
 | 
						|
        
 | 
						|
        // X >>s undef -> X.  X could be 0, X could have the high-bit known set.
 | 
						|
        if (Op0LV.isConstant())
 | 
						|
          markForcedConstant(LV, I, Op0LV.getConstant());
 | 
						|
        else
 | 
						|
          markOverdefined(LV, I);
 | 
						|
        return true;
 | 
						|
      case Instruction::LShr:
 | 
						|
      case Instruction::Shl:
 | 
						|
        // undef >> X -> undef.  No change.
 | 
						|
        // undef << X -> undef.  No change.
 | 
						|
        if (Op0LV.isUndefined()) break;
 | 
						|
        
 | 
						|
        // X >> undef -> 0.  X could be 0.
 | 
						|
        // X << undef -> 0.  X could be 0.
 | 
						|
        markForcedConstant(LV, I, Constant::getNullValue(ITy));
 | 
						|
        return true;
 | 
						|
      case Instruction::Select:
 | 
						|
        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
 | 
						|
        if (Op0LV.isUndefined()) {
 | 
						|
          if (!Op1LV.isConstant())  // Pick the constant one if there is any.
 | 
						|
            Op1LV = getValueState(I->getOperand(2));
 | 
						|
        } else if (Op1LV.isUndefined()) {
 | 
						|
          // c ? undef : undef -> undef.  No change.
 | 
						|
          Op1LV = getValueState(I->getOperand(2));
 | 
						|
          if (Op1LV.isUndefined())
 | 
						|
            break;
 | 
						|
          // Otherwise, c ? undef : x -> x.
 | 
						|
        } else {
 | 
						|
          // Leave Op1LV as Operand(1)'s LatticeValue.
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (Op1LV.isConstant())
 | 
						|
          markForcedConstant(LV, I, Op1LV.getConstant());
 | 
						|
        else
 | 
						|
          markOverdefined(LV, I);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  
 | 
						|
    TerminatorInst *TI = BB->getTerminator();
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
      if (!BI->isConditional()) continue;
 | 
						|
      if (!getValueState(BI->getCondition()).isUndefined())
 | 
						|
        continue;
 | 
						|
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
      if (!getValueState(SI->getCondition()).isUndefined())
 | 
						|
        continue;
 | 
						|
    } else {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the edge to the second successor isn't thought to be feasible yet,
 | 
						|
    // mark it so now.  We pick the second one so that this goes to some
 | 
						|
    // enumerated value in a switch instead of going to the default destination.
 | 
						|
    if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Otherwise, it isn't already thought to be feasible.  Mark it as such now
 | 
						|
    // and return.  This will make other blocks reachable, which will allow new
 | 
						|
    // values to be discovered and existing ones to be moved in the lattice.
 | 
						|
    markEdgeExecutable(BB, TI->getSuccessor(1));
 | 
						|
    
 | 
						|
    // This must be a conditional branch of switch on undef.  At this point,
 | 
						|
    // force the old terminator to branch to the first successor.  This is
 | 
						|
    // required because we are now influencing the dataflow of the function with
 | 
						|
    // the assumption that this edge is taken.  If we leave the branch condition
 | 
						|
    // as undef, then further analysis could think the undef went another way
 | 
						|
    // leading to an inconsistent set of conclusions.
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
      BI->setCondition(ConstantInt::getFalse());
 | 
						|
    } else {
 | 
						|
      SwitchInst *SI = cast<SwitchInst>(TI);
 | 
						|
      SI->setCondition(SI->getCaseValue(1));
 | 
						|
    }
 | 
						|
    
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
namespace {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //
 | 
						|
  /// SCCP Class - This class uses the SCCPSolver to implement a per-function
 | 
						|
  /// Sparse Conditional Constant Propagator.
 | 
						|
  ///
 | 
						|
  struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    SCCP() : FunctionPass((intptr_t)&ID) {}
 | 
						|
 | 
						|
    // runOnFunction - Run the Sparse Conditional Constant Propagation
 | 
						|
    // algorithm, and return true if the function was modified.
 | 
						|
    //
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  char SCCP::ID = 0;
 | 
						|
  RegisterPass<SCCP> X("sccp", "Sparse Conditional Constant Propagation");
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
// createSCCPPass - This is the public interface to this file...
 | 
						|
FunctionPass *llvm::createSCCPPass() {
 | 
						|
  return new SCCP();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
 | 
						|
// and return true if the function was modified.
 | 
						|
//
 | 
						|
bool SCCP::runOnFunction(Function &F) {
 | 
						|
  DOUT << "SCCP on function '" << F.getName() << "'\n";
 | 
						|
  SCCPSolver Solver;
 | 
						|
 | 
						|
  // Mark the first block of the function as being executable.
 | 
						|
  Solver.MarkBlockExecutable(F.begin());
 | 
						|
 | 
						|
  // Mark all arguments to the function as being overdefined.
 | 
						|
  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
 | 
						|
    Solver.markOverdefined(AI);
 | 
						|
 | 
						|
  // Solve for constants.
 | 
						|
  bool ResolvedUndefs = true;
 | 
						|
  while (ResolvedUndefs) {
 | 
						|
    Solver.Solve();
 | 
						|
    DOUT << "RESOLVING UNDEFs\n";
 | 
						|
    ResolvedUndefs = Solver.ResolvedUndefsIn(F);
 | 
						|
  }
 | 
						|
 | 
						|
  bool MadeChanges = false;
 | 
						|
 | 
						|
  // If we decided that there are basic blocks that are dead in this function,
 | 
						|
  // delete their contents now.  Note that we cannot actually delete the blocks,
 | 
						|
  // as we cannot modify the CFG of the function.
 | 
						|
  //
 | 
						|
  SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
 | 
						|
  SmallVector<Instruction*, 32> Insts;
 | 
						|
  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
 | 
						|
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
    if (!ExecutableBBs.count(BB)) {
 | 
						|
      DOUT << "  BasicBlock Dead:" << *BB;
 | 
						|
      ++NumDeadBlocks;
 | 
						|
 | 
						|
      // Delete the instructions backwards, as it has a reduced likelihood of
 | 
						|
      // having to update as many def-use and use-def chains.
 | 
						|
      for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
 | 
						|
           I != E; ++I)
 | 
						|
        Insts.push_back(I);
 | 
						|
      while (!Insts.empty()) {
 | 
						|
        Instruction *I = Insts.back();
 | 
						|
        Insts.pop_back();
 | 
						|
        if (!I->use_empty())
 | 
						|
          I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | 
						|
        BB->getInstList().erase(I);
 | 
						|
        MadeChanges = true;
 | 
						|
        ++NumInstRemoved;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Iterate over all of the instructions in a function, replacing them with
 | 
						|
      // constants if we have found them to be of constant values.
 | 
						|
      //
 | 
						|
      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
 | 
						|
        Instruction *Inst = BI++;
 | 
						|
        if (Inst->getType() != Type::VoidTy) {
 | 
						|
          LatticeVal &IV = Values[Inst];
 | 
						|
          if ((IV.isConstant() || IV.isUndefined()) &&
 | 
						|
              !isa<TerminatorInst>(Inst)) {
 | 
						|
            Constant *Const = IV.isConstant()
 | 
						|
              ? IV.getConstant() : UndefValue::get(Inst->getType());
 | 
						|
            DOUT << "  Constant: " << *Const << " = " << *Inst;
 | 
						|
 | 
						|
            // Replaces all of the uses of a variable with uses of the constant.
 | 
						|
            Inst->replaceAllUsesWith(Const);
 | 
						|
 | 
						|
            // Delete the instruction.
 | 
						|
            BB->getInstList().erase(Inst);
 | 
						|
 | 
						|
            // Hey, we just changed something!
 | 
						|
            MadeChanges = true;
 | 
						|
            ++NumInstRemoved;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return MadeChanges;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  //
 | 
						|
  /// IPSCCP Class - This class implements interprocedural Sparse Conditional
 | 
						|
  /// Constant Propagation.
 | 
						|
  ///
 | 
						|
  struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
 | 
						|
    static char ID;
 | 
						|
    IPSCCP() : ModulePass((intptr_t)&ID) {}
 | 
						|
    bool runOnModule(Module &M);
 | 
						|
  };
 | 
						|
 | 
						|
  char IPSCCP::ID = 0;
 | 
						|
  RegisterPass<IPSCCP>
 | 
						|
  Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
// createIPSCCPPass - This is the public interface to this file...
 | 
						|
ModulePass *llvm::createIPSCCPPass() {
 | 
						|
  return new IPSCCP();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool AddressIsTaken(GlobalValue *GV) {
 | 
						|
  // Delete any dead constantexpr klingons.
 | 
						|
  GV->removeDeadConstantUsers();
 | 
						|
 | 
						|
  for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
 | 
						|
       UI != E; ++UI)
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
 | 
						|
      if (SI->getOperand(0) == GV || SI->isVolatile())
 | 
						|
        return true;  // Storing addr of GV.
 | 
						|
    } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
 | 
						|
      // Make sure we are calling the function, not passing the address.
 | 
						|
      CallSite CS = CallSite::get(cast<Instruction>(*UI));
 | 
						|
      for (CallSite::arg_iterator AI = CS.arg_begin(),
 | 
						|
             E = CS.arg_end(); AI != E; ++AI)
 | 
						|
        if (*AI == GV)
 | 
						|
          return true;
 | 
						|
    } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | 
						|
      if (LI->isVolatile())
 | 
						|
        return true;
 | 
						|
    } else {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool IPSCCP::runOnModule(Module &M) {
 | 
						|
  SCCPSolver Solver;
 | 
						|
 | 
						|
  // Loop over all functions, marking arguments to those with their addresses
 | 
						|
  // taken or that are external as overdefined.
 | 
						|
  //
 | 
						|
  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
 | 
						|
    if (!F->hasInternalLinkage() || AddressIsTaken(F)) {
 | 
						|
      if (!F->isDeclaration())
 | 
						|
        Solver.MarkBlockExecutable(F->begin());
 | 
						|
      for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
 | 
						|
           AI != E; ++AI)
 | 
						|
        Solver.markOverdefined(AI);
 | 
						|
    } else {
 | 
						|
      Solver.AddTrackedFunction(F);
 | 
						|
    }
 | 
						|
 | 
						|
  // Loop over global variables.  We inform the solver about any internal global
 | 
						|
  // variables that do not have their 'addresses taken'.  If they don't have
 | 
						|
  // their addresses taken, we can propagate constants through them.
 | 
						|
  for (Module::global_iterator G = M.global_begin(), E = M.global_end();
 | 
						|
       G != E; ++G)
 | 
						|
    if (!G->isConstant() && G->hasInternalLinkage() && !AddressIsTaken(G))
 | 
						|
      Solver.TrackValueOfGlobalVariable(G);
 | 
						|
 | 
						|
  // Solve for constants.
 | 
						|
  bool ResolvedUndefs = true;
 | 
						|
  while (ResolvedUndefs) {
 | 
						|
    Solver.Solve();
 | 
						|
 | 
						|
    DOUT << "RESOLVING UNDEFS\n";
 | 
						|
    ResolvedUndefs = false;
 | 
						|
    for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
 | 
						|
      ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
 | 
						|
  }
 | 
						|
 | 
						|
  bool MadeChanges = false;
 | 
						|
 | 
						|
  // Iterate over all of the instructions in the module, replacing them with
 | 
						|
  // constants if we have found them to be of constant values.
 | 
						|
  //
 | 
						|
  SmallSet<BasicBlock*, 16> &ExecutableBBs = Solver.getExecutableBlocks();
 | 
						|
  SmallVector<Instruction*, 32> Insts;
 | 
						|
  SmallVector<BasicBlock*, 32> BlocksToErase;
 | 
						|
  std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
 | 
						|
 | 
						|
  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | 
						|
    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
 | 
						|
         AI != E; ++AI)
 | 
						|
      if (!AI->use_empty()) {
 | 
						|
        LatticeVal &IV = Values[AI];
 | 
						|
        if (IV.isConstant() || IV.isUndefined()) {
 | 
						|
          Constant *CST = IV.isConstant() ?
 | 
						|
            IV.getConstant() : UndefValue::get(AI->getType());
 | 
						|
          DOUT << "***  Arg " << *AI << " = " << *CST <<"\n";
 | 
						|
 | 
						|
          // Replaces all of the uses of a variable with uses of the
 | 
						|
          // constant.
 | 
						|
          AI->replaceAllUsesWith(CST);
 | 
						|
          ++IPNumArgsElimed;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | 
						|
      if (!ExecutableBBs.count(BB)) {
 | 
						|
        DOUT << "  BasicBlock Dead:" << *BB;
 | 
						|
        ++IPNumDeadBlocks;
 | 
						|
 | 
						|
        // Delete the instructions backwards, as it has a reduced likelihood of
 | 
						|
        // having to update as many def-use and use-def chains.
 | 
						|
        TerminatorInst *TI = BB->getTerminator();
 | 
						|
        for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
 | 
						|
          Insts.push_back(I);
 | 
						|
 | 
						|
        while (!Insts.empty()) {
 | 
						|
          Instruction *I = Insts.back();
 | 
						|
          Insts.pop_back();
 | 
						|
          if (!I->use_empty())
 | 
						|
            I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | 
						|
          BB->getInstList().erase(I);
 | 
						|
          MadeChanges = true;
 | 
						|
          ++IPNumInstRemoved;
 | 
						|
        }
 | 
						|
 | 
						|
        for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
 | 
						|
          BasicBlock *Succ = TI->getSuccessor(i);
 | 
						|
          if (!Succ->empty() && isa<PHINode>(Succ->begin()))
 | 
						|
            TI->getSuccessor(i)->removePredecessor(BB);
 | 
						|
        }
 | 
						|
        if (!TI->use_empty())
 | 
						|
          TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
 | 
						|
        BB->getInstList().erase(TI);
 | 
						|
 | 
						|
        if (&*BB != &F->front())
 | 
						|
          BlocksToErase.push_back(BB);
 | 
						|
        else
 | 
						|
          new UnreachableInst(BB);
 | 
						|
 | 
						|
      } else {
 | 
						|
        for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
 | 
						|
          Instruction *Inst = BI++;
 | 
						|
          if (Inst->getType() != Type::VoidTy) {
 | 
						|
            LatticeVal &IV = Values[Inst];
 | 
						|
            if (IV.isConstant() ||
 | 
						|
                (IV.isUndefined() && !isa<TerminatorInst>(Inst))) {
 | 
						|
              Constant *Const = IV.isConstant()
 | 
						|
                ? IV.getConstant() : UndefValue::get(Inst->getType());
 | 
						|
              DOUT << "  Constant: " << *Const << " = " << *Inst;
 | 
						|
 | 
						|
              // Replaces all of the uses of a variable with uses of the
 | 
						|
              // constant.
 | 
						|
              Inst->replaceAllUsesWith(Const);
 | 
						|
 | 
						|
              // Delete the instruction.
 | 
						|
              if (!isa<TerminatorInst>(Inst) && !isa<CallInst>(Inst))
 | 
						|
                BB->getInstList().erase(Inst);
 | 
						|
 | 
						|
              // Hey, we just changed something!
 | 
						|
              MadeChanges = true;
 | 
						|
              ++IPNumInstRemoved;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Now that all instructions in the function are constant folded, erase dead
 | 
						|
    // blocks, because we can now use ConstantFoldTerminator to get rid of
 | 
						|
    // in-edges.
 | 
						|
    for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
 | 
						|
      // If there are any PHI nodes in this successor, drop entries for BB now.
 | 
						|
      BasicBlock *DeadBB = BlocksToErase[i];
 | 
						|
      while (!DeadBB->use_empty()) {
 | 
						|
        Instruction *I = cast<Instruction>(DeadBB->use_back());
 | 
						|
        bool Folded = ConstantFoldTerminator(I->getParent());
 | 
						|
        if (!Folded) {
 | 
						|
          // The constant folder may not have been able to fold the terminator
 | 
						|
          // if this is a branch or switch on undef.  Fold it manually as a
 | 
						|
          // branch to the first successor.
 | 
						|
          if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
 | 
						|
            assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
 | 
						|
                   "Branch should be foldable!");
 | 
						|
          } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
 | 
						|
            assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
 | 
						|
          } else {
 | 
						|
            assert(0 && "Didn't fold away reference to block!");
 | 
						|
          }
 | 
						|
          
 | 
						|
          // Make this an uncond branch to the first successor.
 | 
						|
          TerminatorInst *TI = I->getParent()->getTerminator();
 | 
						|
          new BranchInst(TI->getSuccessor(0), TI);
 | 
						|
          
 | 
						|
          // Remove entries in successor phi nodes to remove edges.
 | 
						|
          for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
            TI->getSuccessor(i)->removePredecessor(TI->getParent());
 | 
						|
          
 | 
						|
          // Remove the old terminator.
 | 
						|
          TI->eraseFromParent();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Finally, delete the basic block.
 | 
						|
      F->getBasicBlockList().erase(DeadBB);
 | 
						|
    }
 | 
						|
    BlocksToErase.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // If we inferred constant or undef return values for a function, we replaced
 | 
						|
  // all call uses with the inferred value.  This means we don't need to bother
 | 
						|
  // actually returning anything from the function.  Replace all return
 | 
						|
  // instructions with return undef.
 | 
						|
  const DenseMap<Function*, LatticeVal> &RV =Solver.getTrackedFunctionRetVals();
 | 
						|
  for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
 | 
						|
         E = RV.end(); I != E; ++I)
 | 
						|
    if (!I->second.isOverdefined() &&
 | 
						|
        I->first->getReturnType() != Type::VoidTy) {
 | 
						|
      Function *F = I->first;
 | 
						|
      for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | 
						|
        if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
 | 
						|
          if (!isa<UndefValue>(RI->getOperand(0)))
 | 
						|
            RI->setOperand(0, UndefValue::get(F->getReturnType()));
 | 
						|
    }
 | 
						|
 | 
						|
  // If we infered constant or undef values for globals variables, we can delete
 | 
						|
  // the global and any stores that remain to it.
 | 
						|
  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
 | 
						|
  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
 | 
						|
         E = TG.end(); I != E; ++I) {
 | 
						|
    GlobalVariable *GV = I->first;
 | 
						|
    assert(!I->second.isOverdefined() &&
 | 
						|
           "Overdefined values should have been taken out of the map!");
 | 
						|
    DOUT << "Found that GV '" << GV->getName()<< "' is constant!\n";
 | 
						|
    while (!GV->use_empty()) {
 | 
						|
      StoreInst *SI = cast<StoreInst>(GV->use_back());
 | 
						|
      SI->eraseFromParent();
 | 
						|
    }
 | 
						|
    M.getGlobalList().erase(GV);
 | 
						|
    ++IPNumGlobalConst;
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChanges;
 | 
						|
}
 |