mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45418 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			242 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InlineCoast.cpp - Cost analysis for inliner ------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements inline cost analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| #include "llvm/Transforms/Utils/InlineCost.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // CountCodeReductionForConstant - Figure out an approximation for how many
 | |
| // instructions will be constant folded if the specified value is constant.
 | |
| //
 | |
| unsigned InlineCostAnalyzer::FunctionInfo::
 | |
|          CountCodeReductionForConstant(Value *V) {
 | |
|   unsigned Reduction = 0;
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
 | |
|     if (isa<BranchInst>(*UI))
 | |
|       Reduction += 40;          // Eliminating a conditional branch is a big win
 | |
|     else if (SwitchInst *SI = dyn_cast<SwitchInst>(*UI))
 | |
|       // Eliminating a switch is a big win, proportional to the number of edges
 | |
|       // deleted.
 | |
|       Reduction += (SI->getNumSuccessors()-1) * 40;
 | |
|     else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
 | |
|       // Turning an indirect call into a direct call is a BIG win
 | |
|       Reduction += CI->getCalledValue() == V ? 500 : 0;
 | |
|     } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
 | |
|       // Turning an indirect call into a direct call is a BIG win
 | |
|       Reduction += II->getCalledValue() == V ? 500 : 0;
 | |
|     } else {
 | |
|       // Figure out if this instruction will be removed due to simple constant
 | |
|       // propagation.
 | |
|       Instruction &Inst = cast<Instruction>(**UI);
 | |
|       bool AllOperandsConstant = true;
 | |
|       for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
 | |
|         if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
 | |
|           AllOperandsConstant = false;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       if (AllOperandsConstant) {
 | |
|         // We will get to remove this instruction...
 | |
|         Reduction += 7;
 | |
| 
 | |
|         // And any other instructions that use it which become constants
 | |
|         // themselves.
 | |
|         Reduction += CountCodeReductionForConstant(&Inst);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return Reduction;
 | |
| }
 | |
| 
 | |
| // CountCodeReductionForAlloca - Figure out an approximation of how much smaller
 | |
| // the function will be if it is inlined into a context where an argument
 | |
| // becomes an alloca.
 | |
| //
 | |
| unsigned InlineCostAnalyzer::FunctionInfo::
 | |
|          CountCodeReductionForAlloca(Value *V) {
 | |
|   if (!isa<PointerType>(V->getType())) return 0;  // Not a pointer
 | |
|   unsigned Reduction = 0;
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | |
|     Instruction *I = cast<Instruction>(*UI);
 | |
|     if (isa<LoadInst>(I) || isa<StoreInst>(I))
 | |
|       Reduction += 10;
 | |
|     else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | |
|       // If the GEP has variable indices, we won't be able to do much with it.
 | |
|       for (Instruction::op_iterator I = GEP->op_begin()+1, E = GEP->op_end();
 | |
|            I != E; ++I)
 | |
|         if (!isa<Constant>(*I)) return 0;
 | |
|       Reduction += CountCodeReductionForAlloca(GEP)+15;
 | |
|     } else {
 | |
|       // If there is some other strange instruction, we're not going to be able
 | |
|       // to do much if we inline this.
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Reduction;
 | |
| }
 | |
| 
 | |
| /// analyzeFunction - Fill in the current structure with information gleaned
 | |
| /// from the specified function.
 | |
| void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
 | |
|   unsigned NumInsts = 0, NumBlocks = 0;
 | |
| 
 | |
|   // Look at the size of the callee.  Each basic block counts as 20 units, and
 | |
|   // each instruction counts as 5.
 | |
|   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | |
|     for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
 | |
|          II != E; ++II) {
 | |
|       if (isa<DbgInfoIntrinsic>(II)) continue;  // Debug intrinsics don't count.
 | |
|       
 | |
|       // Noop casts, including ptr <-> int,  don't count.
 | |
|       if (const CastInst *CI = dyn_cast<CastInst>(II)) {
 | |
|         if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) || 
 | |
|             isa<PtrToIntInst>(CI))
 | |
|           continue;
 | |
|       } else if (const GetElementPtrInst *GEPI =
 | |
|                          dyn_cast<GetElementPtrInst>(II)) {
 | |
|         // If a GEP has all constant indices, it will probably be folded with
 | |
|         // a load/store.
 | |
|         bool AllConstant = true;
 | |
|         for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
 | |
|           if (!isa<ConstantInt>(GEPI->getOperand(i))) {
 | |
|             AllConstant = false;
 | |
|             break;
 | |
|           }
 | |
|         if (AllConstant) continue;
 | |
|       }
 | |
|       
 | |
|       ++NumInsts;
 | |
|     }
 | |
| 
 | |
|     ++NumBlocks;
 | |
|   }
 | |
| 
 | |
|   this->NumBlocks = NumBlocks;
 | |
|   this->NumInsts  = NumInsts;
 | |
| 
 | |
|   // Check out all of the arguments to the function, figuring out how much
 | |
|   // code can be eliminated if one of the arguments is a constant.
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
 | |
|     ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
 | |
|                                       CountCodeReductionForAlloca(I)));
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // getInlineCost - The heuristic used to determine if we should inline the
 | |
| // function call or not.
 | |
| //
 | |
| int InlineCostAnalyzer::getInlineCost(CallSite CS, SmallPtrSet<const Function *, 16> &NeverInline) {
 | |
|   Instruction *TheCall = CS.getInstruction();
 | |
|   Function *Callee = CS.getCalledFunction();
 | |
|   const Function *Caller = TheCall->getParent()->getParent();
 | |
|   
 | |
|   // Don't inline a directly recursive call.
 | |
|   if (Caller == Callee ||
 | |
|       // Don't inline functions which can be redefined at link-time to mean
 | |
|       // something else.  link-once linkage is ok though.
 | |
|       Callee->hasWeakLinkage() ||
 | |
|       
 | |
|       // Don't inline functions marked noinline.
 | |
|       NeverInline.count(Callee))
 | |
|     return 2000000000;
 | |
|   
 | |
|   // InlineCost - This value measures how good of an inline candidate this call
 | |
|   // site is to inline.  A lower inline cost make is more likely for the call to
 | |
|   // be inlined.  This value may go negative.
 | |
|   //
 | |
|   int InlineCost = 0;
 | |
|   
 | |
|   // If there is only one call of the function, and it has internal linkage,
 | |
|   // make it almost guaranteed to be inlined.
 | |
|   //
 | |
|   if (Callee->hasInternalLinkage() && Callee->hasOneUse())
 | |
|     InlineCost -= 30000;
 | |
|   
 | |
|   // If this function uses the coldcc calling convention, prefer not to inline
 | |
|   // it.
 | |
|   if (Callee->getCallingConv() == CallingConv::Cold)
 | |
|     InlineCost += 2000;
 | |
|   
 | |
|   // If the instruction after the call, or if the normal destination of the
 | |
|   // invoke is an unreachable instruction, the function is noreturn.  As such,
 | |
|   // there is little point in inlining this.
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | |
|     if (isa<UnreachableInst>(II->getNormalDest()->begin()))
 | |
|       InlineCost += 10000;
 | |
|   } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
 | |
|     InlineCost += 10000;
 | |
|   
 | |
|   // Get information about the callee...
 | |
|   FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
 | |
|   
 | |
|   // If we haven't calculated this information yet, do so now.
 | |
|   if (CalleeFI.NumBlocks == 0)
 | |
|     CalleeFI.analyzeFunction(Callee);
 | |
|     
 | |
|   // Add to the inline quality for properties that make the call valuable to
 | |
|   // inline.  This includes factors that indicate that the result of inlining
 | |
|   // the function will be optimizable.  Currently this just looks at arguments
 | |
|   // passed into the function.
 | |
|   //
 | |
|   unsigned ArgNo = 0;
 | |
|   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | |
|        I != E; ++I, ++ArgNo) {
 | |
|     // Each argument passed in has a cost at both the caller and the callee
 | |
|     // sides.  This favors functions that take many arguments over functions
 | |
|     // that take few arguments.
 | |
|     InlineCost -= 20;
 | |
|     
 | |
|     // If this is a function being passed in, it is very likely that we will be
 | |
|     // able to turn an indirect function call into a direct function call.
 | |
|     if (isa<Function>(I))
 | |
|       InlineCost -= 100;
 | |
|     
 | |
|     // If an alloca is passed in, inlining this function is likely to allow
 | |
|     // significant future optimization possibilities (like scalar promotion, and
 | |
|     // scalarization), so encourage the inlining of the function.
 | |
|     //
 | |
|     else if (isa<AllocaInst>(I)) {
 | |
|       if (ArgNo < CalleeFI.ArgumentWeights.size())
 | |
|         InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
 | |
|       
 | |
|       // If this is a constant being passed into the function, use the argument
 | |
|       // weights calculated for the callee to determine how much will be folded
 | |
|       // away with this information.
 | |
|     } else if (isa<Constant>(I)) {
 | |
|       if (ArgNo < CalleeFI.ArgumentWeights.size())
 | |
|         InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Now that we have considered all of the factors that make the call site more
 | |
|   // likely to be inlined, look at factors that make us not want to inline it.
 | |
|   
 | |
|   // Don't inline into something too big, which would make it bigger.  Here, we
 | |
|   // count each basic block as a single unit.
 | |
|   //
 | |
|   InlineCost += Caller->size()/20;
 | |
|   
 | |
|   
 | |
|   // Look at the size of the callee.  Each basic block counts as 20 units, and
 | |
|   // each instruction counts as 5.
 | |
|   InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20;
 | |
|   return InlineCost;
 | |
| }
 | |
| 
 |