mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	The terminal barrier of a cmpxchg expansion will be either Acquire or SequentiallyConsistent. In either case it can be skipped if the operation has Monotonic requirements on failure. rdar://problem/15996804 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205535 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			407 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			407 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ARMAtomicExpandPass.cpp - Expand atomic instructions --------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains a pass (at IR level) to replace atomic instructions with
 | 
						|
// appropriate (intrinsic-based) ldrex/strex loops.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "arm-atomic-expand"
 | 
						|
#include "ARM.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  class ARMAtomicExpandPass : public FunctionPass {
 | 
						|
    const TargetLowering *TLI;
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    explicit ARMAtomicExpandPass(const TargetMachine *TM = 0)
 | 
						|
      : FunctionPass(ID), TLI(TM->getTargetLowering()) {}
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
    bool expandAtomicInsts(Function &F);
 | 
						|
 | 
						|
    bool expandAtomicLoad(LoadInst *LI);
 | 
						|
    bool expandAtomicStore(StoreInst *LI);
 | 
						|
    bool expandAtomicRMW(AtomicRMWInst *AI);
 | 
						|
    bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
 | 
						|
 | 
						|
    AtomicOrdering insertLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord);
 | 
						|
    void insertTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord);
 | 
						|
 | 
						|
    /// Perform a load-linked operation on Addr, returning a "Value *" with the
 | 
						|
    /// corresponding pointee type. This may entail some non-trivial operations
 | 
						|
    /// to truncate or reconstruct illegal types since intrinsics must be legal
 | 
						|
    Value *loadLinked(IRBuilder<> &Builder, Value *Addr, AtomicOrdering Ord);
 | 
						|
 | 
						|
    /// Perform a store-conditional operation to Addr. Return the status of the
 | 
						|
    /// store: 0 if the it succeeded, non-zero otherwise.
 | 
						|
    Value *storeConditional(IRBuilder<> &Builder, Value *Val, Value *Addr,
 | 
						|
                            AtomicOrdering Ord);
 | 
						|
 | 
						|
    /// Return true if the given (atomic) instruction should be expanded by this
 | 
						|
    /// pass.
 | 
						|
    bool shouldExpandAtomic(Instruction *Inst);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char ARMAtomicExpandPass::ID = 0;
 | 
						|
 | 
						|
FunctionPass *llvm::createARMAtomicExpandPass(const TargetMachine *TM) {
 | 
						|
  return new ARMAtomicExpandPass(TM);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMAtomicExpandPass::runOnFunction(Function &F) {
 | 
						|
  SmallVector<Instruction *, 1> AtomicInsts;
 | 
						|
 | 
						|
  // Changing control-flow while iterating through it is a bad idea, so gather a
 | 
						|
  // list of all atomic instructions before we start.
 | 
						|
  for (BasicBlock &BB : F)
 | 
						|
    for (Instruction &Inst : BB) {
 | 
						|
      if (isa<AtomicRMWInst>(&Inst) || isa<AtomicCmpXchgInst>(&Inst) ||
 | 
						|
          (isa<LoadInst>(&Inst) && cast<LoadInst>(&Inst)->isAtomic()) ||
 | 
						|
          (isa<StoreInst>(&Inst) && cast<StoreInst>(&Inst)->isAtomic()))
 | 
						|
        AtomicInsts.push_back(&Inst);
 | 
						|
    }
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (Instruction *Inst : AtomicInsts) {
 | 
						|
    if (!shouldExpandAtomic(Inst))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst))
 | 
						|
      MadeChange |= expandAtomicRMW(AI);
 | 
						|
    else if (AtomicCmpXchgInst *CI = dyn_cast<AtomicCmpXchgInst>(Inst))
 | 
						|
      MadeChange |= expandAtomicCmpXchg(CI);
 | 
						|
    else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | 
						|
      MadeChange |= expandAtomicLoad(LI);
 | 
						|
    else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
      MadeChange |= expandAtomicStore(SI);
 | 
						|
    else
 | 
						|
      llvm_unreachable("Unknown atomic instruction");
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMAtomicExpandPass::expandAtomicLoad(LoadInst *LI) {
 | 
						|
  // Load instructions don't actually need a leading fence, even in the
 | 
						|
  // SequentiallyConsistent case.
 | 
						|
  AtomicOrdering MemOpOrder =
 | 
						|
    TLI->getInsertFencesForAtomic() ? Monotonic : LI->getOrdering();
 | 
						|
 | 
						|
  // The only 64-bit load guaranteed to be single-copy atomic by the ARM ARM is
 | 
						|
  // an ldrexd (A3.5.3).
 | 
						|
  IRBuilder<> Builder(LI);
 | 
						|
  Value *Val = loadLinked(Builder, LI->getPointerOperand(), MemOpOrder);
 | 
						|
 | 
						|
  insertTrailingFence(Builder, LI->getOrdering());
 | 
						|
 | 
						|
  LI->replaceAllUsesWith(Val);
 | 
						|
  LI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMAtomicExpandPass::expandAtomicStore(StoreInst *SI) {
 | 
						|
  // The only atomic 64-bit store on ARM is an strexd that succeeds, which means
 | 
						|
  // we need a loop and the entire instruction is essentially an "atomicrmw
 | 
						|
  // xchg" that ignores the value loaded.
 | 
						|
  IRBuilder<> Builder(SI);
 | 
						|
  AtomicRMWInst *AI =
 | 
						|
      Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
 | 
						|
                              SI->getValueOperand(), SI->getOrdering());
 | 
						|
  SI->eraseFromParent();
 | 
						|
 | 
						|
  // Now we have an appropriate swap instruction, lower it as usual.
 | 
						|
  return expandAtomicRMW(AI);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMAtomicExpandPass::expandAtomicRMW(AtomicRMWInst *AI) {
 | 
						|
  AtomicOrdering Order = AI->getOrdering();
 | 
						|
  Value *Addr = AI->getPointerOperand();
 | 
						|
  BasicBlock *BB = AI->getParent();
 | 
						|
  Function *F = BB->getParent();
 | 
						|
  LLVMContext &Ctx = F->getContext();
 | 
						|
 | 
						|
  // Given: atomicrmw some_op iN* %addr, iN %incr ordering
 | 
						|
  //
 | 
						|
  // The standard expansion we produce is:
 | 
						|
  //     [...]
 | 
						|
  //     fence?
 | 
						|
  // atomicrmw.start:
 | 
						|
  //     %loaded = @load.linked(%addr)
 | 
						|
  //     %new = some_op iN %loaded, %incr
 | 
						|
  //     %stored = @store_conditional(%new, %addr)
 | 
						|
  //     %try_again = icmp i32 ne %stored, 0
 | 
						|
  //     br i1 %try_again, label %loop, label %atomicrmw.end
 | 
						|
  // atomicrmw.end:
 | 
						|
  //     fence?
 | 
						|
  //     [...]
 | 
						|
  BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
 | 
						|
  BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
 | 
						|
 | 
						|
  // This grabs the DebugLoc from AI.
 | 
						|
  IRBuilder<> Builder(AI);
 | 
						|
 | 
						|
  // The split call above "helpfully" added a branch at the end of BB (to the
 | 
						|
  // wrong place), but we might want a fence too. It's easiest to just remove
 | 
						|
  // the branch entirely.
 | 
						|
  std::prev(BB->end())->eraseFromParent();
 | 
						|
  Builder.SetInsertPoint(BB);
 | 
						|
  AtomicOrdering MemOpOrder = insertLeadingFence(Builder, Order);
 | 
						|
  Builder.CreateBr(LoopBB);
 | 
						|
 | 
						|
  // Start the main loop block now that we've taken care of the preliminaries.
 | 
						|
  Builder.SetInsertPoint(LoopBB);
 | 
						|
  Value *Loaded = loadLinked(Builder, Addr, MemOpOrder);
 | 
						|
 | 
						|
  Value *NewVal;
 | 
						|
  switch (AI->getOperation()) {
 | 
						|
  case AtomicRMWInst::Xchg:
 | 
						|
    NewVal = AI->getValOperand();
 | 
						|
    break;
 | 
						|
  case AtomicRMWInst::Add:
 | 
						|
    NewVal = Builder.CreateAdd(Loaded, AI->getValOperand(), "new");
 | 
						|
    break;
 | 
						|
  case AtomicRMWInst::Sub:
 | 
						|
    NewVal = Builder.CreateSub(Loaded, AI->getValOperand(), "new");
 | 
						|
    break;
 | 
						|
  case AtomicRMWInst::And:
 | 
						|
    NewVal = Builder.CreateAnd(Loaded, AI->getValOperand(), "new");
 | 
						|
    break;
 | 
						|
  case AtomicRMWInst::Nand:
 | 
						|
    NewVal = Builder.CreateAnd(Loaded, Builder.CreateNot(AI->getValOperand()),
 | 
						|
                               "new");
 | 
						|
    break;
 | 
						|
  case AtomicRMWInst::Or:
 | 
						|
    NewVal = Builder.CreateOr(Loaded, AI->getValOperand(), "new");
 | 
						|
    break;
 | 
						|
  case AtomicRMWInst::Xor:
 | 
						|
    NewVal = Builder.CreateXor(Loaded, AI->getValOperand(), "new");
 | 
						|
    break;
 | 
						|
  case AtomicRMWInst::Max:
 | 
						|
    NewVal = Builder.CreateICmpSGT(Loaded, AI->getValOperand());
 | 
						|
    NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
 | 
						|
    break;
 | 
						|
  case AtomicRMWInst::Min:
 | 
						|
    NewVal = Builder.CreateICmpSLE(Loaded, AI->getValOperand());
 | 
						|
    NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
 | 
						|
    break;
 | 
						|
  case AtomicRMWInst::UMax:
 | 
						|
    NewVal = Builder.CreateICmpUGT(Loaded, AI->getValOperand());
 | 
						|
    NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
 | 
						|
    break;
 | 
						|
  case AtomicRMWInst::UMin:
 | 
						|
    NewVal = Builder.CreateICmpULE(Loaded, AI->getValOperand());
 | 
						|
    NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown atomic op");
 | 
						|
  }
 | 
						|
 | 
						|
  Value *StoreSuccess = storeConditional(Builder, NewVal, Addr, MemOpOrder);
 | 
						|
  Value *TryAgain = Builder.CreateICmpNE(
 | 
						|
      StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
 | 
						|
  Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
 | 
						|
 | 
						|
  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
 | 
						|
  insertTrailingFence(Builder, Order);
 | 
						|
 | 
						|
  AI->replaceAllUsesWith(Loaded);
 | 
						|
  AI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ARMAtomicExpandPass::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
 | 
						|
  AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
 | 
						|
  AtomicOrdering FailureOrder = CI->getFailureOrdering();
 | 
						|
  Value *Addr = CI->getPointerOperand();
 | 
						|
  BasicBlock *BB = CI->getParent();
 | 
						|
  Function *F = BB->getParent();
 | 
						|
  LLVMContext &Ctx = F->getContext();
 | 
						|
 | 
						|
  // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
 | 
						|
  //
 | 
						|
  // The full expansion we produce is:
 | 
						|
  //     [...]
 | 
						|
  //     fence?
 | 
						|
  // cmpxchg.start:
 | 
						|
  //     %loaded = @load.linked(%addr)
 | 
						|
  //     %should_store = icmp eq %loaded, %desired
 | 
						|
  //     br i1 %should_store, label %cmpxchg.trystore,
 | 
						|
  //                          label %cmpxchg.end/%cmpxchg.barrier
 | 
						|
  // cmpxchg.trystore:
 | 
						|
  //     %stored = @store_conditional(%new, %addr)
 | 
						|
  //     %try_again = icmp i32 ne %stored, 0
 | 
						|
  //     br i1 %try_again, label %loop, label %cmpxchg.end
 | 
						|
  // cmpxchg.barrier:
 | 
						|
  //     fence?
 | 
						|
  //     br label %cmpxchg.end
 | 
						|
  // cmpxchg.end:
 | 
						|
  //     [...]
 | 
						|
  BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
 | 
						|
  auto BarrierBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ExitBB);
 | 
						|
  auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.barrier", F, BarrierBB);
 | 
						|
  auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
 | 
						|
 | 
						|
  // This grabs the DebugLoc from CI
 | 
						|
  IRBuilder<> Builder(CI);
 | 
						|
 | 
						|
  // The split call above "helpfully" added a branch at the end of BB (to the
 | 
						|
  // wrong place), but we might want a fence too. It's easiest to just remove
 | 
						|
  // the branch entirely.
 | 
						|
  std::prev(BB->end())->eraseFromParent();
 | 
						|
  Builder.SetInsertPoint(BB);
 | 
						|
  AtomicOrdering MemOpOrder = insertLeadingFence(Builder, SuccessOrder);
 | 
						|
  Builder.CreateBr(LoopBB);
 | 
						|
 | 
						|
  // Start the main loop block now that we've taken care of the preliminaries.
 | 
						|
  Builder.SetInsertPoint(LoopBB);
 | 
						|
  Value *Loaded = loadLinked(Builder, Addr, MemOpOrder);
 | 
						|
  Value *ShouldStore =
 | 
						|
      Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
 | 
						|
 | 
						|
  // If the the cmpxchg doesn't actually need any ordering when it fails, we can
 | 
						|
  // jump straight past that fence instruction (if it exists).
 | 
						|
  BasicBlock *FailureBB = FailureOrder == Monotonic ? ExitBB : BarrierBB;
 | 
						|
  Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
 | 
						|
 | 
						|
  Builder.SetInsertPoint(TryStoreBB);
 | 
						|
  Value *StoreSuccess =
 | 
						|
      storeConditional(Builder, CI->getNewValOperand(), Addr, MemOpOrder);
 | 
						|
  Value *TryAgain = Builder.CreateICmpNE(
 | 
						|
      StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
 | 
						|
  Builder.CreateCondBr(TryAgain, LoopBB, BarrierBB);
 | 
						|
 | 
						|
  // Finally, make sure later instructions don't get reordered with a fence if
 | 
						|
  // necessary.
 | 
						|
  Builder.SetInsertPoint(BarrierBB);
 | 
						|
  insertTrailingFence(Builder, SuccessOrder);
 | 
						|
  Builder.CreateBr(ExitBB);
 | 
						|
 | 
						|
  CI->replaceAllUsesWith(Loaded);
 | 
						|
  CI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Value *ARMAtomicExpandPass::loadLinked(IRBuilder<> &Builder, Value *Addr,
 | 
						|
                                          AtomicOrdering Ord) {
 | 
						|
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
 | 
						|
  bool IsAcquire =
 | 
						|
      Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent;
 | 
						|
 | 
						|
  // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
 | 
						|
  // intrinsic must return {i32, i32} and we have to recombine them into a
 | 
						|
  // single i64 here.
 | 
						|
  if (ValTy->getPrimitiveSizeInBits() == 64) {
 | 
						|
    Intrinsic::ID Int =
 | 
						|
        IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
 | 
						|
    Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
 | 
						|
 | 
						|
    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
 | 
						|
    Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
 | 
						|
 | 
						|
    Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
 | 
						|
    Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
 | 
						|
    Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
 | 
						|
    Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
 | 
						|
    return Builder.CreateOr(
 | 
						|
        Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
 | 
						|
  }
 | 
						|
 | 
						|
  Type *Tys[] = { Addr->getType() };
 | 
						|
  Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
 | 
						|
  Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
 | 
						|
 | 
						|
  return Builder.CreateTruncOrBitCast(
 | 
						|
      Builder.CreateCall(Ldrex, Addr),
 | 
						|
      cast<PointerType>(Addr->getType())->getElementType());
 | 
						|
}
 | 
						|
 | 
						|
Value *ARMAtomicExpandPass::storeConditional(IRBuilder<> &Builder, Value *Val,
 | 
						|
                                           Value *Addr, AtomicOrdering Ord) {
 | 
						|
  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
 | 
						|
  bool IsRelease =
 | 
						|
      Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent;
 | 
						|
 | 
						|
  // Since the intrinsics must have legal type, the i64 intrinsics take two
 | 
						|
  // parameters: "i32, i32". We must marshal Val into the appropriate form
 | 
						|
  // before the call.
 | 
						|
  if (Val->getType()->getPrimitiveSizeInBits() == 64) {
 | 
						|
    Intrinsic::ID Int =
 | 
						|
        IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
 | 
						|
    Function *Strex = Intrinsic::getDeclaration(M, Int);
 | 
						|
    Type *Int32Ty = Type::getInt32Ty(M->getContext());
 | 
						|
 | 
						|
    Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
 | 
						|
    Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
 | 
						|
    Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
 | 
						|
    return Builder.CreateCall3(Strex, Lo, Hi, Addr);
 | 
						|
  }
 | 
						|
 | 
						|
  Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
 | 
						|
  Type *Tys[] = { Addr->getType() };
 | 
						|
  Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
 | 
						|
 | 
						|
  return Builder.CreateCall2(
 | 
						|
      Strex, Builder.CreateZExtOrBitCast(
 | 
						|
                 Val, Strex->getFunctionType()->getParamType(0)),
 | 
						|
      Addr);
 | 
						|
}
 | 
						|
 | 
						|
AtomicOrdering ARMAtomicExpandPass::insertLeadingFence(IRBuilder<> &Builder,
 | 
						|
                                                       AtomicOrdering Ord) {
 | 
						|
  if (!TLI->getInsertFencesForAtomic())
 | 
						|
    return Ord;
 | 
						|
 | 
						|
  if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
 | 
						|
    Builder.CreateFence(Release);
 | 
						|
 | 
						|
  // The exclusive operations don't need any barrier if we're adding separate
 | 
						|
  // fences.
 | 
						|
  return Monotonic;
 | 
						|
}
 | 
						|
 | 
						|
void ARMAtomicExpandPass::insertTrailingFence(IRBuilder<> &Builder,
 | 
						|
                                              AtomicOrdering Ord) {
 | 
						|
  if (!TLI->getInsertFencesForAtomic())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (Ord == Acquire || Ord == AcquireRelease)
 | 
						|
    Builder.CreateFence(Acquire);
 | 
						|
  else if (Ord == SequentiallyConsistent)
 | 
						|
    Builder.CreateFence(SequentiallyConsistent);
 | 
						|
}
 | 
						|
 | 
						|
bool ARMAtomicExpandPass::shouldExpandAtomic(Instruction *Inst) {
 | 
						|
  // Loads and stores less than 64-bits are already atomic; ones above that
 | 
						|
  // are doomed anyway, so defer to the default libcall and blame the OS when
 | 
						|
  // things go wrong:
 | 
						|
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | 
						|
    return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 64;
 | 
						|
  else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | 
						|
    return LI->getType()->getPrimitiveSizeInBits() == 64;
 | 
						|
 | 
						|
  // For the real atomic operations, we have ldrex/strex up to 64 bits.
 | 
						|
  return Inst->getType()->getPrimitiveSizeInBits() <= 64;
 | 
						|
}
 |