mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This moves all the state numbering code for C++ EH to WinEHPrepare so that we can call it from the X86 state numbering IR pass that runs before isel. Now we just call the same state numbering machinery and insert a bunch of stores. It also populates MachineModuleInfo with information about the current function. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238514 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2857 lines
		
	
	
		
			115 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2857 lines
		
	
	
		
			115 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass lowers LLVM IR exception handling into something closer to what the
 | |
| // backend wants for functions using a personality function from a runtime
 | |
| // provided by MSVC. Functions with other personality functions are left alone
 | |
| // and may be prepared by other passes. In particular, all supported MSVC
 | |
| // personality functions require cleanup code to be outlined, and the C++
 | |
| // personality requires catch handler code to be outlined.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/ADT/TinyPtrVector.h"
 | |
| #include "llvm/Analysis/LibCallSemantics.h"
 | |
| #include "llvm/CodeGen/WinEHFuncInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include <memory>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "winehprepare"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // This map is used to model frame variable usage during outlining, to
 | |
| // construct a structure type to hold the frame variables in a frame
 | |
| // allocation block, and to remap the frame variable allocas (including
 | |
| // spill locations as needed) to GEPs that get the variable from the
 | |
| // frame allocation structure.
 | |
| typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap;
 | |
| 
 | |
| // TinyPtrVector cannot hold nullptr, so we need our own sentinel that isn't
 | |
| // quite null.
 | |
| AllocaInst *getCatchObjectSentinel() {
 | |
|   return static_cast<AllocaInst *>(nullptr) + 1;
 | |
| }
 | |
| 
 | |
| typedef SmallSet<BasicBlock *, 4> VisitedBlockSet;
 | |
| 
 | |
| class LandingPadActions;
 | |
| class LandingPadMap;
 | |
| 
 | |
| typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy;
 | |
| typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy;
 | |
| 
 | |
| class WinEHPrepare : public FunctionPass {
 | |
| public:
 | |
|   static char ID; // Pass identification, replacement for typeid.
 | |
|   WinEHPrepare(const TargetMachine *TM = nullptr)
 | |
|       : FunctionPass(ID) {
 | |
|     if (TM)
 | |
|       TheTriple = Triple(TM->getTargetTriple());
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &Fn) override;
 | |
| 
 | |
|   bool doFinalization(Module &M) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|   const char *getPassName() const override {
 | |
|     return "Windows exception handling preparation";
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool prepareExceptionHandlers(Function &F,
 | |
|                                 SmallVectorImpl<LandingPadInst *> &LPads);
 | |
|   void identifyEHBlocks(Function &F, SmallVectorImpl<LandingPadInst *> &LPads);
 | |
|   void promoteLandingPadValues(LandingPadInst *LPad);
 | |
|   void demoteValuesLiveAcrossHandlers(Function &F,
 | |
|                                       SmallVectorImpl<LandingPadInst *> &LPads);
 | |
|   void findSEHEHReturnPoints(Function &F,
 | |
|                              SetVector<BasicBlock *> &EHReturnBlocks);
 | |
|   void findCXXEHReturnPoints(Function &F,
 | |
|                              SetVector<BasicBlock *> &EHReturnBlocks);
 | |
|   void getPossibleReturnTargets(Function *ParentF, Function *HandlerF,
 | |
|                                 SetVector<BasicBlock*> &Targets);
 | |
|   void completeNestedLandingPad(Function *ParentFn,
 | |
|                                 LandingPadInst *OutlinedLPad,
 | |
|                                 const LandingPadInst *OriginalLPad,
 | |
|                                 FrameVarInfoMap &VarInfo);
 | |
|   Function *createHandlerFunc(Type *RetTy, const Twine &Name, Module *M,
 | |
|                               Value *&ParentFP);
 | |
|   bool outlineHandler(ActionHandler *Action, Function *SrcFn,
 | |
|                       LandingPadInst *LPad, BasicBlock *StartBB,
 | |
|                       FrameVarInfoMap &VarInfo);
 | |
|   void addStubInvokeToHandlerIfNeeded(Function *Handler, Value *PersonalityFn);
 | |
| 
 | |
|   void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
 | |
|   CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
 | |
|                                  VisitedBlockSet &VisitedBlocks);
 | |
|   void findCleanupHandlers(LandingPadActions &Actions, BasicBlock *StartBB,
 | |
|                            BasicBlock *EndBB);
 | |
| 
 | |
|   void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
 | |
| 
 | |
|   Triple TheTriple;
 | |
| 
 | |
|   // All fields are reset by runOnFunction.
 | |
|   DominatorTree *DT = nullptr;
 | |
|   EHPersonality Personality = EHPersonality::Unknown;
 | |
|   CatchHandlerMapTy CatchHandlerMap;
 | |
|   CleanupHandlerMapTy CleanupHandlerMap;
 | |
|   DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
 | |
|   SmallPtrSet<BasicBlock *, 4> NormalBlocks;
 | |
|   SmallPtrSet<BasicBlock *, 4> EHBlocks;
 | |
|   SetVector<BasicBlock *> EHReturnBlocks;
 | |
| 
 | |
|   // This maps landing pad instructions found in outlined handlers to
 | |
|   // the landing pad instruction in the parent function from which they
 | |
|   // were cloned.  The cloned/nested landing pad is used as the key
 | |
|   // because the landing pad may be cloned into multiple handlers.
 | |
|   // This map will be used to add the llvm.eh.actions call to the nested
 | |
|   // landing pads after all handlers have been outlined.
 | |
|   DenseMap<LandingPadInst *, const LandingPadInst *> NestedLPtoOriginalLP;
 | |
| 
 | |
|   // This maps blocks in the parent function which are destinations of
 | |
|   // catch handlers to cloned blocks in (other) outlined handlers. This
 | |
|   // handles the case where a nested landing pads has a catch handler that
 | |
|   // returns to a handler function rather than the parent function.
 | |
|   // The original block is used as the key here because there should only
 | |
|   // ever be one handler function from which the cloned block is not pruned.
 | |
|   // The original block will be pruned from the parent function after all
 | |
|   // handlers have been outlined.  This map will be used to adjust the
 | |
|   // return instructions of handlers which return to the block that was
 | |
|   // outlined into a handler.  This is done after all handlers have been
 | |
|   // outlined but before the outlined code is pruned from the parent function.
 | |
|   DenseMap<const BasicBlock *, BasicBlock *> LPadTargetBlocks;
 | |
| 
 | |
|   // Map from outlined handler to call to llvm.frameaddress(1). Only used for
 | |
|   // 32-bit EH.
 | |
|   DenseMap<Function *, Value *> HandlerToParentFP;
 | |
| 
 | |
|   AllocaInst *SEHExceptionCodeSlot = nullptr;
 | |
| };
 | |
| 
 | |
| class WinEHFrameVariableMaterializer : public ValueMaterializer {
 | |
| public:
 | |
|   WinEHFrameVariableMaterializer(Function *OutlinedFn, Value *ParentFP,
 | |
|                                  FrameVarInfoMap &FrameVarInfo);
 | |
|   ~WinEHFrameVariableMaterializer() override {}
 | |
| 
 | |
|   Value *materializeValueFor(Value *V) override;
 | |
| 
 | |
|   void escapeCatchObject(Value *V);
 | |
| 
 | |
| private:
 | |
|   FrameVarInfoMap &FrameVarInfo;
 | |
|   IRBuilder<> Builder;
 | |
| };
 | |
| 
 | |
| class LandingPadMap {
 | |
| public:
 | |
|   LandingPadMap() : OriginLPad(nullptr) {}
 | |
|   void mapLandingPad(const LandingPadInst *LPad);
 | |
| 
 | |
|   bool isInitialized() { return OriginLPad != nullptr; }
 | |
| 
 | |
|   bool isOriginLandingPadBlock(const BasicBlock *BB) const;
 | |
|   bool isLandingPadSpecificInst(const Instruction *Inst) const;
 | |
| 
 | |
|   void remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
 | |
|                      Value *SelectorValue) const;
 | |
| 
 | |
| private:
 | |
|   const LandingPadInst *OriginLPad;
 | |
|   // We will normally only see one of each of these instructions, but
 | |
|   // if more than one occurs for some reason we can handle that.
 | |
|   TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs;
 | |
|   TinyPtrVector<const ExtractValueInst *> ExtractedSelectors;
 | |
| };
 | |
| 
 | |
| class WinEHCloningDirectorBase : public CloningDirector {
 | |
| public:
 | |
|   WinEHCloningDirectorBase(Function *HandlerFn, Value *ParentFP,
 | |
|                            FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
 | |
|       : Materializer(HandlerFn, ParentFP, VarInfo),
 | |
|         SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
 | |
|         Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
 | |
|         LPadMap(LPadMap), ParentFP(ParentFP) {}
 | |
| 
 | |
|   CloningAction handleInstruction(ValueToValueMapTy &VMap,
 | |
|                                   const Instruction *Inst,
 | |
|                                   BasicBlock *NewBB) override;
 | |
| 
 | |
|   virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
 | |
|                                          const Instruction *Inst,
 | |
|                                          BasicBlock *NewBB) = 0;
 | |
|   virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
 | |
|                                        const Instruction *Inst,
 | |
|                                        BasicBlock *NewBB) = 0;
 | |
|   virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
 | |
|                                         const Instruction *Inst,
 | |
|                                         BasicBlock *NewBB) = 0;
 | |
|   virtual CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
 | |
|                                          const IndirectBrInst *IBr,
 | |
|                                          BasicBlock *NewBB) = 0;
 | |
|   virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
 | |
|                                      const InvokeInst *Invoke,
 | |
|                                      BasicBlock *NewBB) = 0;
 | |
|   virtual CloningAction handleResume(ValueToValueMapTy &VMap,
 | |
|                                      const ResumeInst *Resume,
 | |
|                                      BasicBlock *NewBB) = 0;
 | |
|   virtual CloningAction handleCompare(ValueToValueMapTy &VMap,
 | |
|                                       const CmpInst *Compare,
 | |
|                                       BasicBlock *NewBB) = 0;
 | |
|   virtual CloningAction handleLandingPad(ValueToValueMapTy &VMap,
 | |
|                                          const LandingPadInst *LPad,
 | |
|                                          BasicBlock *NewBB) = 0;
 | |
| 
 | |
|   ValueMaterializer *getValueMaterializer() override { return &Materializer; }
 | |
| 
 | |
| protected:
 | |
|   WinEHFrameVariableMaterializer Materializer;
 | |
|   Type *SelectorIDType;
 | |
|   Type *Int8PtrType;
 | |
|   LandingPadMap &LPadMap;
 | |
| 
 | |
|   /// The value representing the parent frame pointer.
 | |
|   Value *ParentFP;
 | |
| };
 | |
| 
 | |
| class WinEHCatchDirector : public WinEHCloningDirectorBase {
 | |
| public:
 | |
|   WinEHCatchDirector(
 | |
|       Function *CatchFn, Value *ParentFP, Value *Selector,
 | |
|       FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap,
 | |
|       DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPads,
 | |
|       DominatorTree *DT, SmallPtrSetImpl<BasicBlock *> &EHBlocks)
 | |
|       : WinEHCloningDirectorBase(CatchFn, ParentFP, VarInfo, LPadMap),
 | |
|         CurrentSelector(Selector->stripPointerCasts()),
 | |
|         ExceptionObjectVar(nullptr), NestedLPtoOriginalLP(NestedLPads),
 | |
|         DT(DT), EHBlocks(EHBlocks) {}
 | |
| 
 | |
|   CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
 | |
|                                  const Instruction *Inst,
 | |
|                                  BasicBlock *NewBB) override;
 | |
|   CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
 | |
|                                BasicBlock *NewBB) override;
 | |
|   CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
 | |
|                                 const Instruction *Inst,
 | |
|                                 BasicBlock *NewBB) override;
 | |
|   CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
 | |
|                                  const IndirectBrInst *IBr,
 | |
|                                  BasicBlock *NewBB) override;
 | |
|   CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
 | |
|                              BasicBlock *NewBB) override;
 | |
|   CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
 | |
|                              BasicBlock *NewBB) override;
 | |
|   CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
 | |
|                               BasicBlock *NewBB) override;
 | |
|   CloningAction handleLandingPad(ValueToValueMapTy &VMap,
 | |
|                                  const LandingPadInst *LPad,
 | |
|                                  BasicBlock *NewBB) override;
 | |
| 
 | |
|   Value *getExceptionVar() { return ExceptionObjectVar; }
 | |
|   TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
 | |
| 
 | |
| private:
 | |
|   Value *CurrentSelector;
 | |
| 
 | |
|   Value *ExceptionObjectVar;
 | |
|   TinyPtrVector<BasicBlock *> ReturnTargets;
 | |
| 
 | |
|   // This will be a reference to the field of the same name in the WinEHPrepare
 | |
|   // object which instantiates this WinEHCatchDirector object.
 | |
|   DenseMap<LandingPadInst *, const LandingPadInst *> &NestedLPtoOriginalLP;
 | |
|   DominatorTree *DT;
 | |
|   SmallPtrSetImpl<BasicBlock *> &EHBlocks;
 | |
| };
 | |
| 
 | |
| class WinEHCleanupDirector : public WinEHCloningDirectorBase {
 | |
| public:
 | |
|   WinEHCleanupDirector(Function *CleanupFn, Value *ParentFP,
 | |
|                        FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
 | |
|       : WinEHCloningDirectorBase(CleanupFn, ParentFP, VarInfo,
 | |
|                                  LPadMap) {}
 | |
| 
 | |
|   CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
 | |
|                                  const Instruction *Inst,
 | |
|                                  BasicBlock *NewBB) override;
 | |
|   CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
 | |
|                                BasicBlock *NewBB) override;
 | |
|   CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
 | |
|                                 const Instruction *Inst,
 | |
|                                 BasicBlock *NewBB) override;
 | |
|   CloningAction handleIndirectBr(ValueToValueMapTy &VMap,
 | |
|                                  const IndirectBrInst *IBr,
 | |
|                                  BasicBlock *NewBB) override;
 | |
|   CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
 | |
|                              BasicBlock *NewBB) override;
 | |
|   CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
 | |
|                              BasicBlock *NewBB) override;
 | |
|   CloningAction handleCompare(ValueToValueMapTy &VMap, const CmpInst *Compare,
 | |
|                               BasicBlock *NewBB) override;
 | |
|   CloningAction handleLandingPad(ValueToValueMapTy &VMap,
 | |
|                                  const LandingPadInst *LPad,
 | |
|                                  BasicBlock *NewBB) override;
 | |
| };
 | |
| 
 | |
| class LandingPadActions {
 | |
| public:
 | |
|   LandingPadActions() : HasCleanupHandlers(false) {}
 | |
| 
 | |
|   void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); }
 | |
|   void insertCleanupHandler(CleanupHandler *Action) {
 | |
|     Actions.push_back(Action);
 | |
|     HasCleanupHandlers = true;
 | |
|   }
 | |
| 
 | |
|   bool includesCleanup() const { return HasCleanupHandlers; }
 | |
| 
 | |
|   SmallVectorImpl<ActionHandler *> &actions() { return Actions; }
 | |
|   SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); }
 | |
|   SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); }
 | |
| 
 | |
| private:
 | |
|   // Note that this class does not own the ActionHandler objects in this vector.
 | |
|   // The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap
 | |
|   // in the WinEHPrepare class.
 | |
|   SmallVector<ActionHandler *, 4> Actions;
 | |
|   bool HasCleanupHandlers;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char WinEHPrepare::ID = 0;
 | |
| INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
 | |
|                    false, false)
 | |
| 
 | |
| FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
 | |
|   return new WinEHPrepare(TM);
 | |
| }
 | |
| 
 | |
| bool WinEHPrepare::runOnFunction(Function &Fn) {
 | |
|   // No need to prepare outlined handlers.
 | |
|   if (Fn.hasFnAttribute("wineh-parent"))
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<LandingPadInst *, 4> LPads;
 | |
|   SmallVector<ResumeInst *, 4> Resumes;
 | |
|   for (BasicBlock &BB : Fn) {
 | |
|     if (auto *LP = BB.getLandingPadInst())
 | |
|       LPads.push_back(LP);
 | |
|     if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
 | |
|       Resumes.push_back(Resume);
 | |
|   }
 | |
| 
 | |
|   // No need to prepare functions that lack landing pads.
 | |
|   if (LPads.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Classify the personality to see what kind of preparation we need.
 | |
|   Personality = classifyEHPersonality(LPads.back()->getPersonalityFn());
 | |
| 
 | |
|   // Do nothing if this is not an MSVC personality.
 | |
|   if (!isMSVCEHPersonality(Personality))
 | |
|     return false;
 | |
| 
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
| 
 | |
|   // If there were any landing pads, prepareExceptionHandlers will make changes.
 | |
|   prepareExceptionHandlers(Fn, LPads);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool WinEHPrepare::doFinalization(Module &M) { return false; }
 | |
| 
 | |
| void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
| }
 | |
| 
 | |
| static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
 | |
|                                Constant *&Selector, BasicBlock *&NextBB);
 | |
| 
 | |
| // Finds blocks reachable from the starting set Worklist. Does not follow unwind
 | |
| // edges or blocks listed in StopPoints.
 | |
| static void findReachableBlocks(SmallPtrSetImpl<BasicBlock *> &ReachableBBs,
 | |
|                                 SetVector<BasicBlock *> &Worklist,
 | |
|                                 const SetVector<BasicBlock *> *StopPoints) {
 | |
|   while (!Worklist.empty()) {
 | |
|     BasicBlock *BB = Worklist.pop_back_val();
 | |
| 
 | |
|     // Don't cross blocks that we should stop at.
 | |
|     if (StopPoints && StopPoints->count(BB))
 | |
|       continue;
 | |
| 
 | |
|     if (!ReachableBBs.insert(BB).second)
 | |
|       continue; // Already visited.
 | |
| 
 | |
|     // Don't follow unwind edges of invokes.
 | |
|     if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
 | |
|       Worklist.insert(II->getNormalDest());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, follow all successors.
 | |
|     Worklist.insert(succ_begin(BB), succ_end(BB));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Attempt to find an instruction where a block can be split before
 | |
| // a call to llvm.eh.begincatch and its operands.  If the block
 | |
| // begins with the begincatch call or one of its adjacent operands
 | |
| // the block will not be split.
 | |
| static Instruction *findBeginCatchSplitPoint(BasicBlock *BB,
 | |
|                                              IntrinsicInst *II) {
 | |
|   // If the begincatch call is already the first instruction in the block,
 | |
|   // don't split.
 | |
|   Instruction *FirstNonPHI = BB->getFirstNonPHI();
 | |
|   if (II == FirstNonPHI)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If either operand is in the same basic block as the instruction and
 | |
|   // isn't used by another instruction before the begincatch call, include it
 | |
|   // in the split block.
 | |
|   auto *Op0 = dyn_cast<Instruction>(II->getOperand(0));
 | |
|   auto *Op1 = dyn_cast<Instruction>(II->getOperand(1));
 | |
| 
 | |
|   Instruction *I = II->getPrevNode();
 | |
|   Instruction *LastI = II;
 | |
| 
 | |
|   while (I == Op0 || I == Op1) {
 | |
|     // If the block begins with one of the operands and there are no other
 | |
|     // instructions between the operand and the begincatch call, don't split.
 | |
|     if (I == FirstNonPHI)
 | |
|       return nullptr;
 | |
| 
 | |
|     LastI = I;
 | |
|     I = I->getPrevNode();
 | |
|   }
 | |
| 
 | |
|   // If there is at least one instruction in the block before the begincatch
 | |
|   // call and its operands, split the block at either the begincatch or
 | |
|   // its operand.
 | |
|   return LastI;
 | |
| }
 | |
| 
 | |
| /// Find all points where exceptional control rejoins normal control flow via
 | |
| /// llvm.eh.endcatch. Add them to the normal bb reachability worklist.
 | |
| void WinEHPrepare::findCXXEHReturnPoints(
 | |
|     Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
 | |
|   for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
 | |
|     BasicBlock *BB = BBI;
 | |
|     for (Instruction &I : *BB) {
 | |
|       if (match(&I, m_Intrinsic<Intrinsic::eh_begincatch>())) {
 | |
|         Instruction *SplitPt =
 | |
|             findBeginCatchSplitPoint(BB, cast<IntrinsicInst>(&I));
 | |
|         if (SplitPt) {
 | |
|           // Split the block before the llvm.eh.begincatch call to allow
 | |
|           // cleanup and catch code to be distinguished later.
 | |
|           // Do not update BBI because we still need to process the
 | |
|           // portion of the block that we are splitting off.
 | |
|           SplitBlock(BB, SplitPt, DT);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (match(&I, m_Intrinsic<Intrinsic::eh_endcatch>())) {
 | |
|         // Split the block after the call to llvm.eh.endcatch if there is
 | |
|         // anything other than an unconditional branch, or if the successor
 | |
|         // starts with a phi.
 | |
|         auto *Br = dyn_cast<BranchInst>(I.getNextNode());
 | |
|         if (!Br || !Br->isUnconditional() ||
 | |
|             isa<PHINode>(Br->getSuccessor(0)->begin())) {
 | |
|           DEBUG(dbgs() << "splitting block " << BB->getName()
 | |
|                        << " with llvm.eh.endcatch\n");
 | |
|           BBI = SplitBlock(BB, I.getNextNode(), DT);
 | |
|         }
 | |
|         // The next BB is normal control flow.
 | |
|         EHReturnBlocks.insert(BB->getTerminator()->getSuccessor(0));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isCatchAllLandingPad(const BasicBlock *BB) {
 | |
|   const LandingPadInst *LP = BB->getLandingPadInst();
 | |
|   if (!LP)
 | |
|     return false;
 | |
|   unsigned N = LP->getNumClauses();
 | |
|   return (N > 0 && LP->isCatch(N - 1) &&
 | |
|           isa<ConstantPointerNull>(LP->getClause(N - 1)));
 | |
| }
 | |
| 
 | |
| /// Find all points where exceptions control rejoins normal control flow via
 | |
| /// selector dispatch.
 | |
| void WinEHPrepare::findSEHEHReturnPoints(
 | |
|     Function &F, SetVector<BasicBlock *> &EHReturnBlocks) {
 | |
|   for (auto BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
 | |
|     BasicBlock *BB = BBI;
 | |
|     // If the landingpad is a catch-all, treat the whole lpad as if it is
 | |
|     // reachable from normal control flow.
 | |
|     // FIXME: This is imprecise. We need a better way of identifying where a
 | |
|     // catch-all starts and cleanups stop. As far as LLVM is concerned, there
 | |
|     // is no difference.
 | |
|     if (isCatchAllLandingPad(BB)) {
 | |
|       EHReturnBlocks.insert(BB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     BasicBlock *CatchHandler;
 | |
|     BasicBlock *NextBB;
 | |
|     Constant *Selector;
 | |
|     if (isSelectorDispatch(BB, CatchHandler, Selector, NextBB)) {
 | |
|       // Split the edge if there is a phi node. Returning from EH to a phi node
 | |
|       // is just as impossible as having a phi after an indirectbr.
 | |
|       if (isa<PHINode>(CatchHandler->begin())) {
 | |
|         DEBUG(dbgs() << "splitting EH return edge from " << BB->getName()
 | |
|                      << " to " << CatchHandler->getName() << '\n');
 | |
|         BBI = CatchHandler = SplitCriticalEdge(
 | |
|             BB, std::find(succ_begin(BB), succ_end(BB), CatchHandler));
 | |
|       }
 | |
|       EHReturnBlocks.insert(CatchHandler);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WinEHPrepare::identifyEHBlocks(Function &F, 
 | |
|                                     SmallVectorImpl<LandingPadInst *> &LPads) {
 | |
|   DEBUG(dbgs() << "Demoting values live across exception handlers in function "
 | |
|                << F.getName() << '\n');
 | |
| 
 | |
|   // Build a set of all non-exceptional blocks and exceptional blocks.
 | |
|   // - Non-exceptional blocks are blocks reachable from the entry block while
 | |
|   //   not following invoke unwind edges.
 | |
|   // - Exceptional blocks are blocks reachable from landingpads. Analysis does
 | |
|   //   not follow llvm.eh.endcatch blocks, which mark a transition from
 | |
|   //   exceptional to normal control.
 | |
| 
 | |
|   if (Personality == EHPersonality::MSVC_CXX)
 | |
|     findCXXEHReturnPoints(F, EHReturnBlocks);
 | |
|   else
 | |
|     findSEHEHReturnPoints(F, EHReturnBlocks);
 | |
| 
 | |
|   DEBUG({
 | |
|     dbgs() << "identified the following blocks as EH return points:\n";
 | |
|     for (BasicBlock *BB : EHReturnBlocks)
 | |
|       dbgs() << "  " << BB->getName() << '\n';
 | |
|   });
 | |
| 
 | |
| // Join points should not have phis at this point, unless they are a
 | |
| // landingpad, in which case we will demote their phis later.
 | |
| #ifndef NDEBUG
 | |
|   for (BasicBlock *BB : EHReturnBlocks)
 | |
|     assert((BB->isLandingPad() || !isa<PHINode>(BB->begin())) &&
 | |
|            "non-lpad EH return block has phi");
 | |
| #endif
 | |
| 
 | |
|   // Normal blocks are the blocks reachable from the entry block and all EH
 | |
|   // return points.
 | |
|   SetVector<BasicBlock *> Worklist;
 | |
|   Worklist = EHReturnBlocks;
 | |
|   Worklist.insert(&F.getEntryBlock());
 | |
|   findReachableBlocks(NormalBlocks, Worklist, nullptr);
 | |
|   DEBUG({
 | |
|     dbgs() << "marked the following blocks as normal:\n";
 | |
|     for (BasicBlock *BB : NormalBlocks)
 | |
|       dbgs() << "  " << BB->getName() << '\n';
 | |
|   });
 | |
| 
 | |
|   // Exceptional blocks are the blocks reachable from landingpads that don't
 | |
|   // cross EH return points.
 | |
|   Worklist.clear();
 | |
|   for (auto *LPI : LPads)
 | |
|     Worklist.insert(LPI->getParent());
 | |
|   findReachableBlocks(EHBlocks, Worklist, &EHReturnBlocks);
 | |
|   DEBUG({
 | |
|     dbgs() << "marked the following blocks as exceptional:\n";
 | |
|     for (BasicBlock *BB : EHBlocks)
 | |
|       dbgs() << "  " << BB->getName() << '\n';
 | |
|   });
 | |
| 
 | |
| }
 | |
| 
 | |
| /// Ensure that all values live into and out of exception handlers are stored
 | |
| /// in memory.
 | |
| /// FIXME: This falls down when values are defined in one handler and live into
 | |
| /// another handler. For example, a cleanup defines a value used only by a
 | |
| /// catch handler.
 | |
| void WinEHPrepare::demoteValuesLiveAcrossHandlers(
 | |
|     Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
 | |
|   DEBUG(dbgs() << "Demoting values live across exception handlers in function "
 | |
|                << F.getName() << '\n');
 | |
| 
 | |
|   // identifyEHBlocks() should have been called before this function.
 | |
|   assert(!NormalBlocks.empty());
 | |
| 
 | |
|   SetVector<Argument *> ArgsToDemote;
 | |
|   SetVector<Instruction *> InstrsToDemote;
 | |
|   for (BasicBlock &BB : F) {
 | |
|     bool IsNormalBB = NormalBlocks.count(&BB);
 | |
|     bool IsEHBB = EHBlocks.count(&BB);
 | |
|     if (!IsNormalBB && !IsEHBB)
 | |
|       continue; // Blocks that are neither normal nor EH are unreachable.
 | |
|     for (Instruction &I : BB) {
 | |
|       for (Value *Op : I.operands()) {
 | |
|         // Don't demote static allocas, constants, and labels.
 | |
|         if (isa<Constant>(Op) || isa<BasicBlock>(Op) || isa<InlineAsm>(Op))
 | |
|           continue;
 | |
|         auto *AI = dyn_cast<AllocaInst>(Op);
 | |
|         if (AI && AI->isStaticAlloca())
 | |
|           continue;
 | |
| 
 | |
|         if (auto *Arg = dyn_cast<Argument>(Op)) {
 | |
|           if (IsEHBB) {
 | |
|             DEBUG(dbgs() << "Demoting argument " << *Arg
 | |
|                          << " used by EH instr: " << I << "\n");
 | |
|             ArgsToDemote.insert(Arg);
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         auto *OpI = cast<Instruction>(Op);
 | |
|         BasicBlock *OpBB = OpI->getParent();
 | |
|         // If a value is produced and consumed in the same BB, we don't need to
 | |
|         // demote it.
 | |
|         if (OpBB == &BB)
 | |
|           continue;
 | |
|         bool IsOpNormalBB = NormalBlocks.count(OpBB);
 | |
|         bool IsOpEHBB = EHBlocks.count(OpBB);
 | |
|         if (IsNormalBB != IsOpNormalBB || IsEHBB != IsOpEHBB) {
 | |
|           DEBUG({
 | |
|             dbgs() << "Demoting instruction live in-out from EH:\n";
 | |
|             dbgs() << "Instr: " << *OpI << '\n';
 | |
|             dbgs() << "User: " << I << '\n';
 | |
|           });
 | |
|           InstrsToDemote.insert(OpI);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Demote values live into and out of handlers.
 | |
|   // FIXME: This demotion is inefficient. We should insert spills at the point
 | |
|   // of definition, insert one reload in each handler that uses the value, and
 | |
|   // insert reloads in the BB used to rejoin normal control flow.
 | |
|   Instruction *AllocaInsertPt = F.getEntryBlock().getFirstInsertionPt();
 | |
|   for (Instruction *I : InstrsToDemote)
 | |
|     DemoteRegToStack(*I, false, AllocaInsertPt);
 | |
| 
 | |
|   // Demote arguments separately, and only for uses in EH blocks.
 | |
|   for (Argument *Arg : ArgsToDemote) {
 | |
|     auto *Slot = new AllocaInst(Arg->getType(), nullptr,
 | |
|                                 Arg->getName() + ".reg2mem", AllocaInsertPt);
 | |
|     SmallVector<User *, 4> Users(Arg->user_begin(), Arg->user_end());
 | |
|     for (User *U : Users) {
 | |
|       auto *I = dyn_cast<Instruction>(U);
 | |
|       if (I && EHBlocks.count(I->getParent())) {
 | |
|         auto *Reload = new LoadInst(Slot, Arg->getName() + ".reload", false, I);
 | |
|         U->replaceUsesOfWith(Arg, Reload);
 | |
|       }
 | |
|     }
 | |
|     new StoreInst(Arg, Slot, AllocaInsertPt);
 | |
|   }
 | |
| 
 | |
|   // Demote landingpad phis, as the landingpad will be removed from the machine
 | |
|   // CFG.
 | |
|   for (LandingPadInst *LPI : LPads) {
 | |
|     BasicBlock *BB = LPI->getParent();
 | |
|     while (auto *Phi = dyn_cast<PHINode>(BB->begin()))
 | |
|       DemotePHIToStack(Phi, AllocaInsertPt);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Demoted " << InstrsToDemote.size() << " instructions and "
 | |
|                << ArgsToDemote.size() << " arguments for WinEHPrepare\n\n");
 | |
| }
 | |
| 
 | |
| bool WinEHPrepare::prepareExceptionHandlers(
 | |
|     Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
 | |
|   // Don't run on functions that are already prepared.
 | |
|   for (LandingPadInst *LPad : LPads) {
 | |
|     BasicBlock *LPadBB = LPad->getParent();
 | |
|     for (Instruction &Inst : *LPadBB)
 | |
|       if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>()))
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   identifyEHBlocks(F, LPads);
 | |
|   demoteValuesLiveAcrossHandlers(F, LPads);
 | |
| 
 | |
|   // These containers are used to re-map frame variables that are used in
 | |
|   // outlined catch and cleanup handlers.  They will be populated as the
 | |
|   // handlers are outlined.
 | |
|   FrameVarInfoMap FrameVarInfo;
 | |
| 
 | |
|   bool HandlersOutlined = false;
 | |
| 
 | |
|   Module *M = F.getParent();
 | |
|   LLVMContext &Context = M->getContext();
 | |
| 
 | |
|   // Create a new function to receive the handler contents.
 | |
|   PointerType *Int8PtrType = Type::getInt8PtrTy(Context);
 | |
|   Type *Int32Type = Type::getInt32Ty(Context);
 | |
|   Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions);
 | |
| 
 | |
|   if (isAsynchronousEHPersonality(Personality)) {
 | |
|     // FIXME: Switch the ehptr type to i32 and then switch this.
 | |
|     SEHExceptionCodeSlot =
 | |
|         new AllocaInst(Int8PtrType, nullptr, "seh_exception_code",
 | |
|                        F.getEntryBlock().getFirstInsertionPt());
 | |
|   }
 | |
| 
 | |
|   // In order to handle the case where one outlined catch handler returns
 | |
|   // to a block within another outlined catch handler that would otherwise
 | |
|   // be unreachable, we need to outline the nested landing pad before we
 | |
|   // outline the landing pad which encloses it.
 | |
|   if (!isAsynchronousEHPersonality(Personality))
 | |
|     std::sort(LPads.begin(), LPads.end(),
 | |
|               [this](LandingPadInst *const &L, LandingPadInst *const &R) {
 | |
|                 return DT->properlyDominates(R->getParent(), L->getParent());
 | |
|               });
 | |
| 
 | |
|   // This container stores the llvm.eh.recover and IndirectBr instructions
 | |
|   // that make up the body of each landing pad after it has been outlined.
 | |
|   // We need to defer the population of the target list for the indirectbr
 | |
|   // until all landing pads have been outlined so that we can handle the
 | |
|   // case of blocks in the target that are reached only from nested
 | |
|   // landing pads.
 | |
|   SmallVector<std::pair<CallInst*, IndirectBrInst *>, 4> LPadImpls;
 | |
| 
 | |
|   for (LandingPadInst *LPad : LPads) {
 | |
|     // Look for evidence that this landingpad has already been processed.
 | |
|     bool LPadHasActionList = false;
 | |
|     BasicBlock *LPadBB = LPad->getParent();
 | |
|     for (Instruction &Inst : *LPadBB) {
 | |
|       if (match(&Inst, m_Intrinsic<Intrinsic::eh_actions>())) {
 | |
|         LPadHasActionList = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we've already outlined the handlers for this landingpad,
 | |
|     // there's nothing more to do here.
 | |
|     if (LPadHasActionList)
 | |
|       continue;
 | |
| 
 | |
|     // If either of the values in the aggregate returned by the landing pad is
 | |
|     // extracted and stored to memory, promote the stored value to a register.
 | |
|     promoteLandingPadValues(LPad);
 | |
| 
 | |
|     LandingPadActions Actions;
 | |
|     mapLandingPadBlocks(LPad, Actions);
 | |
| 
 | |
|     HandlersOutlined |= !Actions.actions().empty();
 | |
|     for (ActionHandler *Action : Actions) {
 | |
|       if (Action->hasBeenProcessed())
 | |
|         continue;
 | |
|       BasicBlock *StartBB = Action->getStartBlock();
 | |
| 
 | |
|       // SEH doesn't do any outlining for catches. Instead, pass the handler
 | |
|       // basic block addr to llvm.eh.actions and list the block as a return
 | |
|       // target.
 | |
|       if (isAsynchronousEHPersonality(Personality)) {
 | |
|         if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
 | |
|           processSEHCatchHandler(CatchAction, StartBB);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo);
 | |
|     }
 | |
| 
 | |
|     // Split the block after the landingpad instruction so that it is just a
 | |
|     // call to llvm.eh.actions followed by indirectbr.
 | |
|     assert(!isa<PHINode>(LPadBB->begin()) && "lpad phi not removed");
 | |
|     SplitBlock(LPadBB, LPad->getNextNode(), DT);
 | |
|     // Erase the branch inserted by the split so we can insert indirectbr.
 | |
|     LPadBB->getTerminator()->eraseFromParent();
 | |
| 
 | |
|     // Replace all extracted values with undef and ultimately replace the
 | |
|     // landingpad with undef.
 | |
|     SmallVector<Instruction *, 4> SEHCodeUses;
 | |
|     SmallVector<Instruction *, 4> EHUndefs;
 | |
|     for (User *U : LPad->users()) {
 | |
|       auto *E = dyn_cast<ExtractValueInst>(U);
 | |
|       if (!E)
 | |
|         continue;
 | |
|       assert(E->getNumIndices() == 1 &&
 | |
|              "Unexpected operation: extracting both landing pad values");
 | |
|       unsigned Idx = *E->idx_begin();
 | |
|       assert((Idx == 0 || Idx == 1) && "unexpected index");
 | |
|       if (Idx == 0 && isAsynchronousEHPersonality(Personality))
 | |
|         SEHCodeUses.push_back(E);
 | |
|       else
 | |
|         EHUndefs.push_back(E);
 | |
|     }
 | |
|     for (Instruction *E : EHUndefs) {
 | |
|       E->replaceAllUsesWith(UndefValue::get(E->getType()));
 | |
|       E->eraseFromParent();
 | |
|     }
 | |
|     LPad->replaceAllUsesWith(UndefValue::get(LPad->getType()));
 | |
| 
 | |
|     // Rewrite uses of the exception pointer to loads of an alloca.
 | |
|     for (Instruction *E : SEHCodeUses) {
 | |
|       SmallVector<Use *, 4> Uses;
 | |
|       for (Use &U : E->uses())
 | |
|         Uses.push_back(&U);
 | |
|       for (Use *U : Uses) {
 | |
|         auto *I = cast<Instruction>(U->getUser());
 | |
|         if (isa<ResumeInst>(I))
 | |
|           continue;
 | |
|         LoadInst *LI;
 | |
|         if (auto *Phi = dyn_cast<PHINode>(I))
 | |
|           LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false,
 | |
|                             Phi->getIncomingBlock(*U));
 | |
|         else
 | |
|           LI = new LoadInst(SEHExceptionCodeSlot, "sehcode", false, I);
 | |
|         U->set(LI);
 | |
|       }
 | |
|       E->replaceAllUsesWith(UndefValue::get(E->getType()));
 | |
|       E->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     // Add a call to describe the actions for this landing pad.
 | |
|     std::vector<Value *> ActionArgs;
 | |
|     for (ActionHandler *Action : Actions) {
 | |
|       // Action codes from docs are: 0 cleanup, 1 catch.
 | |
|       if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
 | |
|         ActionArgs.push_back(ConstantInt::get(Int32Type, 1));
 | |
|         ActionArgs.push_back(CatchAction->getSelector());
 | |
|         // Find the frame escape index of the exception object alloca in the
 | |
|         // parent.
 | |
|         int FrameEscapeIdx = -1;
 | |
|         Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar());
 | |
|         if (EHObj && !isa<ConstantPointerNull>(EHObj)) {
 | |
|           auto I = FrameVarInfo.find(EHObj);
 | |
|           assert(I != FrameVarInfo.end() &&
 | |
|                  "failed to map llvm.eh.begincatch var");
 | |
|           FrameEscapeIdx = std::distance(FrameVarInfo.begin(), I);
 | |
|         }
 | |
|         ActionArgs.push_back(ConstantInt::get(Int32Type, FrameEscapeIdx));
 | |
|       } else {
 | |
|         ActionArgs.push_back(ConstantInt::get(Int32Type, 0));
 | |
|       }
 | |
|       ActionArgs.push_back(Action->getHandlerBlockOrFunc());
 | |
|     }
 | |
|     CallInst *Recover =
 | |
|         CallInst::Create(ActionIntrin, ActionArgs, "recover", LPadBB);
 | |
| 
 | |
|     SetVector<BasicBlock *> ReturnTargets;
 | |
|     for (ActionHandler *Action : Actions) {
 | |
|       if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
 | |
|         const auto &CatchTargets = CatchAction->getReturnTargets();
 | |
|         ReturnTargets.insert(CatchTargets.begin(), CatchTargets.end());
 | |
|       }
 | |
|     }
 | |
|     IndirectBrInst *Branch =
 | |
|         IndirectBrInst::Create(Recover, ReturnTargets.size(), LPadBB);
 | |
|     for (BasicBlock *Target : ReturnTargets)
 | |
|       Branch->addDestination(Target);
 | |
| 
 | |
|     if (!isAsynchronousEHPersonality(Personality)) {
 | |
|       // C++ EH must repopulate the targets later to handle the case of
 | |
|       // targets that are reached indirectly through nested landing pads.
 | |
|       LPadImpls.push_back(std::make_pair(Recover, Branch));
 | |
|     }
 | |
| 
 | |
|   } // End for each landingpad
 | |
| 
 | |
|   // If nothing got outlined, there is no more processing to be done.
 | |
|   if (!HandlersOutlined)
 | |
|     return false;
 | |
| 
 | |
|   // Replace any nested landing pad stubs with the correct action handler.
 | |
|   // This must be done before we remove unreachable blocks because it
 | |
|   // cleans up references to outlined blocks that will be deleted.
 | |
|   for (auto &LPadPair : NestedLPtoOriginalLP)
 | |
|     completeNestedLandingPad(&F, LPadPair.first, LPadPair.second, FrameVarInfo);
 | |
|   NestedLPtoOriginalLP.clear();
 | |
| 
 | |
|   // Update the indirectbr instructions' target lists if necessary.
 | |
|   SetVector<BasicBlock*> CheckedTargets;
 | |
|   SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
 | |
|   for (auto &LPadImplPair : LPadImpls) {
 | |
|     IntrinsicInst *Recover = cast<IntrinsicInst>(LPadImplPair.first);
 | |
|     IndirectBrInst *Branch = LPadImplPair.second;
 | |
| 
 | |
|     // Get a list of handlers called by 
 | |
|     parseEHActions(Recover, ActionList);
 | |
| 
 | |
|     // Add an indirect branch listing possible successors of the catch handlers.
 | |
|     SetVector<BasicBlock *> ReturnTargets;
 | |
|     for (const auto &Action : ActionList) {
 | |
|       if (auto *CA = dyn_cast<CatchHandler>(Action.get())) {
 | |
|         Function *Handler = cast<Function>(CA->getHandlerBlockOrFunc());
 | |
|         getPossibleReturnTargets(&F, Handler, ReturnTargets);
 | |
|       }
 | |
|     }
 | |
|     ActionList.clear();
 | |
|     // Clear any targets we already knew about.
 | |
|     for (unsigned int I = 0, E = Branch->getNumDestinations(); I < E; ++I) {
 | |
|       BasicBlock *KnownTarget = Branch->getDestination(I);
 | |
|       if (ReturnTargets.count(KnownTarget))
 | |
|         ReturnTargets.remove(KnownTarget);
 | |
|     }
 | |
|     for (BasicBlock *Target : ReturnTargets) {
 | |
|       Branch->addDestination(Target);
 | |
|       // The target may be a block that we excepted to get pruned.
 | |
|       // If it is, it may contain a call to llvm.eh.endcatch.
 | |
|       if (CheckedTargets.insert(Target)) {
 | |
|         // Earlier preparations guarantee that all calls to llvm.eh.endcatch
 | |
|         // will be followed by an unconditional branch.
 | |
|         auto *Br = dyn_cast<BranchInst>(Target->getTerminator());
 | |
|         if (Br && Br->isUnconditional() &&
 | |
|             Br != Target->getFirstNonPHIOrDbgOrLifetime()) {
 | |
|           Instruction *Prev = Br->getPrevNode();
 | |
|           if (match(cast<Value>(Prev), m_Intrinsic<Intrinsic::eh_endcatch>()))
 | |
|             Prev->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   LPadImpls.clear();
 | |
| 
 | |
|   F.addFnAttr("wineh-parent", F.getName());
 | |
| 
 | |
|   // Delete any blocks that were only used by handlers that were outlined above.
 | |
|   removeUnreachableBlocks(F);
 | |
| 
 | |
|   BasicBlock *Entry = &F.getEntryBlock();
 | |
|   IRBuilder<> Builder(F.getParent()->getContext());
 | |
|   Builder.SetInsertPoint(Entry->getFirstInsertionPt());
 | |
| 
 | |
|   Function *FrameEscapeFn =
 | |
|       Intrinsic::getDeclaration(M, Intrinsic::frameescape);
 | |
|   Function *RecoverFrameFn =
 | |
|       Intrinsic::getDeclaration(M, Intrinsic::framerecover);
 | |
|   SmallVector<Value *, 8> AllocasToEscape;
 | |
| 
 | |
|   // Scan the entry block for an existing call to llvm.frameescape. We need to
 | |
|   // keep escaping those objects.
 | |
|   for (Instruction &I : F.front()) {
 | |
|     auto *II = dyn_cast<IntrinsicInst>(&I);
 | |
|     if (II && II->getIntrinsicID() == Intrinsic::frameescape) {
 | |
|       auto Args = II->arg_operands();
 | |
|       AllocasToEscape.append(Args.begin(), Args.end());
 | |
|       II->eraseFromParent();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finally, replace all of the temporary allocas for frame variables used in
 | |
|   // the outlined handlers with calls to llvm.framerecover.
 | |
|   for (auto &VarInfoEntry : FrameVarInfo) {
 | |
|     Value *ParentVal = VarInfoEntry.first;
 | |
|     TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
 | |
|     AllocaInst *ParentAlloca = cast<AllocaInst>(ParentVal);
 | |
| 
 | |
|     // FIXME: We should try to sink unescaped allocas from the parent frame into
 | |
|     // the child frame. If the alloca is escaped, we have to use the lifetime
 | |
|     // markers to ensure that the alloca is only live within the child frame.
 | |
| 
 | |
|     // Add this alloca to the list of things to escape.
 | |
|     AllocasToEscape.push_back(ParentAlloca);
 | |
| 
 | |
|     // Next replace all outlined allocas that are mapped to it.
 | |
|     for (AllocaInst *TempAlloca : Allocas) {
 | |
|       if (TempAlloca == getCatchObjectSentinel())
 | |
|         continue; // Skip catch parameter sentinels.
 | |
|       Function *HandlerFn = TempAlloca->getParent()->getParent();
 | |
|       llvm::Value *FP = HandlerToParentFP[HandlerFn];
 | |
|       assert(FP);
 | |
| 
 | |
|       // FIXME: Sink this framerecover into the blocks where it is used.
 | |
|       Builder.SetInsertPoint(TempAlloca);
 | |
|       Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
 | |
|       Value *RecoverArgs[] = {
 | |
|           Builder.CreateBitCast(&F, Int8PtrType, ""), FP,
 | |
|           llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
 | |
|       Instruction *RecoveredAlloca =
 | |
|           Builder.CreateCall(RecoverFrameFn, RecoverArgs);
 | |
| 
 | |
|       // Add a pointer bitcast if the alloca wasn't an i8.
 | |
|       if (RecoveredAlloca->getType() != TempAlloca->getType()) {
 | |
|         RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
 | |
|         RecoveredAlloca = cast<Instruction>(
 | |
|             Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType()));
 | |
|       }
 | |
|       TempAlloca->replaceAllUsesWith(RecoveredAlloca);
 | |
|       TempAlloca->removeFromParent();
 | |
|       RecoveredAlloca->takeName(TempAlloca);
 | |
|       delete TempAlloca;
 | |
|     }
 | |
|   } // End for each FrameVarInfo entry.
 | |
| 
 | |
|   // Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry
 | |
|   // block.
 | |
|   Builder.SetInsertPoint(&F.getEntryBlock().back());
 | |
|   Builder.CreateCall(FrameEscapeFn, AllocasToEscape);
 | |
| 
 | |
|   if (SEHExceptionCodeSlot) {
 | |
|     if (SEHExceptionCodeSlot->hasNUses(0))
 | |
|       SEHExceptionCodeSlot->eraseFromParent();
 | |
|     else if (isAllocaPromotable(SEHExceptionCodeSlot))
 | |
|       PromoteMemToReg(SEHExceptionCodeSlot, *DT);
 | |
|   }
 | |
| 
 | |
|   // Clean up the handler action maps we created for this function
 | |
|   DeleteContainerSeconds(CatchHandlerMap);
 | |
|   CatchHandlerMap.clear();
 | |
|   DeleteContainerSeconds(CleanupHandlerMap);
 | |
|   CleanupHandlerMap.clear();
 | |
|   HandlerToParentFP.clear();
 | |
|   DT = nullptr;
 | |
|   SEHExceptionCodeSlot = nullptr;
 | |
|   EHBlocks.clear();
 | |
|   NormalBlocks.clear();
 | |
|   EHReturnBlocks.clear();
 | |
| 
 | |
|   return HandlersOutlined;
 | |
| }
 | |
| 
 | |
| void WinEHPrepare::promoteLandingPadValues(LandingPadInst *LPad) {
 | |
|   // If the return values of the landing pad instruction are extracted and
 | |
|   // stored to memory, we want to promote the store locations to reg values.
 | |
|   SmallVector<AllocaInst *, 2> EHAllocas;
 | |
| 
 | |
|   // The landingpad instruction returns an aggregate value.  Typically, its
 | |
|   // value will be passed to a pair of extract value instructions and the
 | |
|   // results of those extracts are often passed to store instructions.
 | |
|   // In unoptimized code the stored value will often be loaded and then stored
 | |
|   // again.
 | |
|   for (auto *U : LPad->users()) {
 | |
|     ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
 | |
|     if (!Extract)
 | |
|       continue;
 | |
| 
 | |
|     for (auto *EU : Extract->users()) {
 | |
|       if (auto *Store = dyn_cast<StoreInst>(EU)) {
 | |
|         auto *AV = cast<AllocaInst>(Store->getPointerOperand());
 | |
|         EHAllocas.push_back(AV);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We can't do this without a dominator tree.
 | |
|   assert(DT);
 | |
| 
 | |
|   if (!EHAllocas.empty()) {
 | |
|     PromoteMemToReg(EHAllocas, *DT);
 | |
|     EHAllocas.clear();
 | |
|   }
 | |
| 
 | |
|   // After promotion, some extracts may be trivially dead. Remove them.
 | |
|   SmallVector<Value *, 4> Users(LPad->user_begin(), LPad->user_end());
 | |
|   for (auto *U : Users)
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(U);
 | |
| }
 | |
| 
 | |
| void WinEHPrepare::getPossibleReturnTargets(Function *ParentF,
 | |
|                                             Function *HandlerF,
 | |
|                                             SetVector<BasicBlock*> &Targets) {
 | |
|   for (BasicBlock &BB : *HandlerF) {
 | |
|     // If the handler contains landing pads, check for any
 | |
|     // handlers that may return directly to a block in the
 | |
|     // parent function.
 | |
|     if (auto *LPI = BB.getLandingPadInst()) {
 | |
|       IntrinsicInst *Recover = cast<IntrinsicInst>(LPI->getNextNode());
 | |
|       SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
 | |
|       parseEHActions(Recover, ActionList);
 | |
|       for (const auto &Action : ActionList) {
 | |
|         if (auto *CH = dyn_cast<CatchHandler>(Action.get())) {
 | |
|           Function *NestedF = cast<Function>(CH->getHandlerBlockOrFunc());
 | |
|           getPossibleReturnTargets(ParentF, NestedF, Targets);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
 | |
|     if (!Ret)
 | |
|       continue;
 | |
| 
 | |
|     // Handler functions must always return a block address.
 | |
|     BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
 | |
| 
 | |
|     // If this is the handler for a nested landing pad, the
 | |
|     // return address may have been remapped to a block in the
 | |
|     // parent handler.  We're not interested in those.
 | |
|     if (BA->getFunction() != ParentF)
 | |
|       continue;
 | |
| 
 | |
|     Targets.insert(BA->getBasicBlock());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WinEHPrepare::completeNestedLandingPad(Function *ParentFn,
 | |
|                                             LandingPadInst *OutlinedLPad,
 | |
|                                             const LandingPadInst *OriginalLPad,
 | |
|                                             FrameVarInfoMap &FrameVarInfo) {
 | |
|   // Get the nested block and erase the unreachable instruction that was
 | |
|   // temporarily inserted as its terminator.
 | |
|   LLVMContext &Context = ParentFn->getContext();
 | |
|   BasicBlock *OutlinedBB = OutlinedLPad->getParent();
 | |
|   // If the nested landing pad was outlined before the landing pad that enclosed
 | |
|   // it, it will already be in outlined form.  In that case, we just need to see
 | |
|   // if the returns and the enclosing branch instruction need to be updated.
 | |
|   IndirectBrInst *Branch =
 | |
|       dyn_cast<IndirectBrInst>(OutlinedBB->getTerminator());
 | |
|   if (!Branch) {
 | |
|     // If the landing pad wasn't in outlined form, it should be a stub with
 | |
|     // an unreachable terminator.
 | |
|     assert(isa<UnreachableInst>(OutlinedBB->getTerminator()));
 | |
|     OutlinedBB->getTerminator()->eraseFromParent();
 | |
|     // That should leave OutlinedLPad as the last instruction in its block.
 | |
|     assert(&OutlinedBB->back() == OutlinedLPad);
 | |
|   }
 | |
| 
 | |
|   // The original landing pad will have already had its action intrinsic
 | |
|   // built by the outlining loop.  We need to clone that into the outlined
 | |
|   // location.  It may also be necessary to add references to the exception
 | |
|   // variables to the outlined handler in which this landing pad is nested
 | |
|   // and remap return instructions in the nested handlers that should return
 | |
|   // to an address in the outlined handler.
 | |
|   Function *OutlinedHandlerFn = OutlinedBB->getParent();
 | |
|   BasicBlock::const_iterator II = OriginalLPad;
 | |
|   ++II;
 | |
|   // The instruction after the landing pad should now be a call to eh.actions.
 | |
|   const Instruction *Recover = II;
 | |
|   assert(match(Recover, m_Intrinsic<Intrinsic::eh_actions>()));
 | |
|   const IntrinsicInst *EHActions = cast<IntrinsicInst>(Recover);
 | |
| 
 | |
|   // Remap the return target in the nested handler.
 | |
|   SmallVector<BlockAddress *, 4> ActionTargets;
 | |
|   SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
 | |
|   parseEHActions(EHActions, ActionList);
 | |
|   for (const auto &Action : ActionList) {
 | |
|     auto *Catch = dyn_cast<CatchHandler>(Action.get());
 | |
|     if (!Catch)
 | |
|       continue;
 | |
|     // The dyn_cast to function here selects C++ catch handlers and skips
 | |
|     // SEH catch handlers.
 | |
|     auto *Handler = dyn_cast<Function>(Catch->getHandlerBlockOrFunc());
 | |
|     if (!Handler)
 | |
|       continue;
 | |
|     // Visit all the return instructions, looking for places that return
 | |
|     // to a location within OutlinedHandlerFn.
 | |
|     for (BasicBlock &NestedHandlerBB : *Handler) {
 | |
|       auto *Ret = dyn_cast<ReturnInst>(NestedHandlerBB.getTerminator());
 | |
|       if (!Ret)
 | |
|         continue;
 | |
| 
 | |
|       // Handler functions must always return a block address.
 | |
|       BlockAddress *BA = cast<BlockAddress>(Ret->getReturnValue());
 | |
|       // The original target will have been in the main parent function,
 | |
|       // but if it is the address of a block that has been outlined, it
 | |
|       // should be a block that was outlined into OutlinedHandlerFn.
 | |
|       assert(BA->getFunction() == ParentFn);
 | |
| 
 | |
|       // Ignore targets that aren't part of an outlined handler function.
 | |
|       if (!LPadTargetBlocks.count(BA->getBasicBlock()))
 | |
|         continue;
 | |
| 
 | |
|       // If the return value is the address ofF a block that we
 | |
|       // previously outlined into the parent handler function, replace
 | |
|       // the return instruction and add the mapped target to the list
 | |
|       // of possible return addresses.
 | |
|       BasicBlock *MappedBB = LPadTargetBlocks[BA->getBasicBlock()];
 | |
|       assert(MappedBB->getParent() == OutlinedHandlerFn);
 | |
|       BlockAddress *NewBA = BlockAddress::get(OutlinedHandlerFn, MappedBB);
 | |
|       Ret->eraseFromParent();
 | |
|       ReturnInst::Create(Context, NewBA, &NestedHandlerBB);
 | |
|       ActionTargets.push_back(NewBA);
 | |
|     }
 | |
|   }
 | |
|   ActionList.clear();
 | |
| 
 | |
|   if (Branch) {
 | |
|     // If the landing pad was already in outlined form, just update its targets.
 | |
|     for (unsigned int I = Branch->getNumDestinations(); I > 0; --I)
 | |
|       Branch->removeDestination(I);
 | |
|     // Add the previously collected action targets.
 | |
|     for (auto *Target : ActionTargets)
 | |
|       Branch->addDestination(Target->getBasicBlock());
 | |
|   } else {
 | |
|     // If the landing pad was previously stubbed out, fill in its outlined form.
 | |
|     IntrinsicInst *NewEHActions = cast<IntrinsicInst>(EHActions->clone());
 | |
|     OutlinedBB->getInstList().push_back(NewEHActions);
 | |
| 
 | |
|     // Insert an indirect branch into the outlined landing pad BB.
 | |
|     IndirectBrInst *IBr = IndirectBrInst::Create(NewEHActions, 0, OutlinedBB);
 | |
|     // Add the previously collected action targets.
 | |
|     for (auto *Target : ActionTargets)
 | |
|       IBr->addDestination(Target->getBasicBlock());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This function examines a block to determine whether the block ends with a
 | |
| // conditional branch to a catch handler based on a selector comparison.
 | |
| // This function is used both by the WinEHPrepare::findSelectorComparison() and
 | |
| // WinEHCleanupDirector::handleTypeIdFor().
 | |
| static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
 | |
|                                Constant *&Selector, BasicBlock *&NextBB) {
 | |
|   ICmpInst::Predicate Pred;
 | |
|   BasicBlock *TBB, *FBB;
 | |
|   Value *LHS, *RHS;
 | |
| 
 | |
|   if (!match(BB->getTerminator(),
 | |
|              m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB)))
 | |
|     return false;
 | |
| 
 | |
|   if (!match(LHS,
 | |
|              m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) &&
 | |
|       !match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))))
 | |
|     return false;
 | |
| 
 | |
|   if (Pred == CmpInst::ICMP_EQ) {
 | |
|     CatchHandler = TBB;
 | |
|     NextBB = FBB;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Pred == CmpInst::ICMP_NE) {
 | |
|     CatchHandler = FBB;
 | |
|     NextBB = TBB;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isCatchBlock(BasicBlock *BB) {
 | |
|   for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
 | |
|        II != IE; ++II) {
 | |
|     if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_begincatch>()))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static BasicBlock *createStubLandingPad(Function *Handler,
 | |
|                                         Value *PersonalityFn) {
 | |
|   // FIXME: Finish this!
 | |
|   LLVMContext &Context = Handler->getContext();
 | |
|   BasicBlock *StubBB = BasicBlock::Create(Context, "stub");
 | |
|   Handler->getBasicBlockList().push_back(StubBB);
 | |
|   IRBuilder<> Builder(StubBB);
 | |
|   LandingPadInst *LPad = Builder.CreateLandingPad(
 | |
|       llvm::StructType::get(Type::getInt8PtrTy(Context),
 | |
|                             Type::getInt32Ty(Context), nullptr),
 | |
|       PersonalityFn, 0);
 | |
|   // Insert a call to llvm.eh.actions so that we don't try to outline this lpad.
 | |
|   Function *ActionIntrin =
 | |
|       Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::eh_actions);
 | |
|   Builder.CreateCall(ActionIntrin, {}, "recover");
 | |
|   LPad->setCleanup(true);
 | |
|   Builder.CreateUnreachable();
 | |
|   return StubBB;
 | |
| }
 | |
| 
 | |
| // Cycles through the blocks in an outlined handler function looking for an
 | |
| // invoke instruction and inserts an invoke of llvm.donothing with an empty
 | |
| // landing pad if none is found.  The code that generates the .xdata tables for
 | |
| // the handler needs at least one landing pad to identify the parent function's
 | |
| // personality.
 | |
| void WinEHPrepare::addStubInvokeToHandlerIfNeeded(Function *Handler,
 | |
|                                                   Value *PersonalityFn) {
 | |
|   ReturnInst *Ret = nullptr;
 | |
|   UnreachableInst *Unreached = nullptr;
 | |
|   for (BasicBlock &BB : *Handler) {
 | |
|     TerminatorInst *Terminator = BB.getTerminator();
 | |
|     // If we find an invoke, there is nothing to be done.
 | |
|     auto *II = dyn_cast<InvokeInst>(Terminator);
 | |
|     if (II)
 | |
|       return;
 | |
|     // If we've already recorded a return instruction, keep looking for invokes.
 | |
|     if (!Ret)
 | |
|       Ret = dyn_cast<ReturnInst>(Terminator);
 | |
|     // If we haven't recorded an unreachable instruction, try this terminator.
 | |
|     if (!Unreached)
 | |
|       Unreached = dyn_cast<UnreachableInst>(Terminator);
 | |
|   }
 | |
| 
 | |
|   // If we got this far, the handler contains no invokes.  We should have seen
 | |
|   // at least one return or unreachable instruction.  We'll insert an invoke of
 | |
|   // llvm.donothing ahead of that instruction.
 | |
|   assert(Ret || Unreached);
 | |
|   TerminatorInst *Term;
 | |
|   if (Ret)
 | |
|     Term = Ret;
 | |
|   else
 | |
|     Term = Unreached;
 | |
|   BasicBlock *OldRetBB = Term->getParent();
 | |
|   BasicBlock *NewRetBB = SplitBlock(OldRetBB, Term, DT);
 | |
|   // SplitBlock adds an unconditional branch instruction at the end of the
 | |
|   // parent block.  We want to replace that with an invoke call, so we can
 | |
|   // erase it now.
 | |
|   OldRetBB->getTerminator()->eraseFromParent();
 | |
|   BasicBlock *StubLandingPad = createStubLandingPad(Handler, PersonalityFn);
 | |
|   Function *F =
 | |
|       Intrinsic::getDeclaration(Handler->getParent(), Intrinsic::donothing);
 | |
|   InvokeInst::Create(F, NewRetBB, StubLandingPad, None, "", OldRetBB);
 | |
| }
 | |
| 
 | |
| // FIXME: Consider sinking this into lib/Target/X86 somehow. TargetLowering
 | |
| // usually doesn't build LLVM IR, so that's probably the wrong place.
 | |
| Function *WinEHPrepare::createHandlerFunc(Type *RetTy, const Twine &Name,
 | |
|                                           Module *M, Value *&ParentFP) {
 | |
|   // x64 uses a two-argument prototype where the parent FP is the second
 | |
|   // argument. x86 uses no arguments, just the incoming EBP value.
 | |
|   LLVMContext &Context = M->getContext();
 | |
|   FunctionType *FnType;
 | |
|   if (TheTriple.getArch() == Triple::x86_64) {
 | |
|     Type *Int8PtrType = Type::getInt8PtrTy(Context);
 | |
|     Type *ArgTys[2] = {Int8PtrType, Int8PtrType};
 | |
|     FnType = FunctionType::get(RetTy, ArgTys, false);
 | |
|   } else {
 | |
|     FnType = FunctionType::get(RetTy, None, false);
 | |
|   }
 | |
| 
 | |
|   Function *Handler =
 | |
|       Function::Create(FnType, GlobalVariable::InternalLinkage, Name, M);
 | |
|   BasicBlock *Entry = BasicBlock::Create(Context, "entry");
 | |
|   Handler->getBasicBlockList().push_front(Entry);
 | |
|   if (TheTriple.getArch() == Triple::x86_64) {
 | |
|     ParentFP = &(Handler->getArgumentList().back());
 | |
|   } else {
 | |
|     assert(M);
 | |
|     Function *FrameAddressFn =
 | |
|         Intrinsic::getDeclaration(M, Intrinsic::frameaddress);
 | |
|     Value *Args[1] = {ConstantInt::get(Type::getInt32Ty(Context), 1)};
 | |
|     ParentFP = CallInst::Create(FrameAddressFn, Args, "parent_fp",
 | |
|                                 &Handler->getEntryBlock());
 | |
|   }
 | |
|   return Handler;
 | |
| }
 | |
| 
 | |
| bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
 | |
|                                   LandingPadInst *LPad, BasicBlock *StartBB,
 | |
|                                   FrameVarInfoMap &VarInfo) {
 | |
|   Module *M = SrcFn->getParent();
 | |
|   LLVMContext &Context = M->getContext();
 | |
|   Type *Int8PtrType = Type::getInt8PtrTy(Context);
 | |
| 
 | |
|   // Create a new function to receive the handler contents.
 | |
|   Value *ParentFP;
 | |
|   Function *Handler;
 | |
|   if (Action->getType() == Catch) {
 | |
|     Handler = createHandlerFunc(Int8PtrType, SrcFn->getName() + ".catch", M,
 | |
|                                 ParentFP);
 | |
|   } else {
 | |
|     Handler = createHandlerFunc(Type::getVoidTy(Context),
 | |
|                                 SrcFn->getName() + ".cleanup", M, ParentFP);
 | |
|   }
 | |
|   HandlerToParentFP[Handler] = ParentFP;
 | |
|   Handler->addFnAttr("wineh-parent", SrcFn->getName());
 | |
|   BasicBlock *Entry = &Handler->getEntryBlock();
 | |
| 
 | |
|   // Generate a standard prolog to setup the frame recovery structure.
 | |
|   IRBuilder<> Builder(Context);
 | |
|   Builder.SetInsertPoint(Entry);
 | |
|   Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
 | |
| 
 | |
|   std::unique_ptr<WinEHCloningDirectorBase> Director;
 | |
| 
 | |
|   ValueToValueMapTy VMap;
 | |
| 
 | |
|   LandingPadMap &LPadMap = LPadMaps[LPad];
 | |
|   if (!LPadMap.isInitialized())
 | |
|     LPadMap.mapLandingPad(LPad);
 | |
|   if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
 | |
|     Constant *Sel = CatchAction->getSelector();
 | |
|     Director.reset(new WinEHCatchDirector(Handler, ParentFP, Sel, VarInfo,
 | |
|                                           LPadMap, NestedLPtoOriginalLP, DT,
 | |
|                                           EHBlocks));
 | |
|     LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
 | |
|                           ConstantInt::get(Type::getInt32Ty(Context), 1));
 | |
|   } else {
 | |
|     Director.reset(
 | |
|         new WinEHCleanupDirector(Handler, ParentFP, VarInfo, LPadMap));
 | |
|     LPadMap.remapEHValues(VMap, UndefValue::get(Int8PtrType),
 | |
|                           UndefValue::get(Type::getInt32Ty(Context)));
 | |
|   }
 | |
| 
 | |
|   SmallVector<ReturnInst *, 8> Returns;
 | |
|   ClonedCodeInfo OutlinedFunctionInfo;
 | |
| 
 | |
|   // If the start block contains PHI nodes, we need to map them.
 | |
|   BasicBlock::iterator II = StartBB->begin();
 | |
|   while (auto *PN = dyn_cast<PHINode>(II)) {
 | |
|     bool Mapped = false;
 | |
|     // Look for PHI values that we have already mapped (such as the selector).
 | |
|     for (Value *Val : PN->incoming_values()) {
 | |
|       if (VMap.count(Val)) {
 | |
|         VMap[PN] = VMap[Val];
 | |
|         Mapped = true;
 | |
|       }
 | |
|     }
 | |
|     // If we didn't find a match for this value, map it as an undef.
 | |
|     if (!Mapped) {
 | |
|       VMap[PN] = UndefValue::get(PN->getType());
 | |
|     }
 | |
|     ++II;
 | |
|   }
 | |
| 
 | |
|   // The landing pad value may be used by PHI nodes.  It will ultimately be
 | |
|   // eliminated, but we need it in the map for intermediate handling.
 | |
|   VMap[LPad] = UndefValue::get(LPad->getType());
 | |
| 
 | |
|   // Skip over PHIs and, if applicable, landingpad instructions.
 | |
|   II = StartBB->getFirstInsertionPt();
 | |
| 
 | |
|   CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap,
 | |
|                             /*ModuleLevelChanges=*/false, Returns, "",
 | |
|                             &OutlinedFunctionInfo, Director.get());
 | |
| 
 | |
|   // Move all the instructions in the cloned "entry" block into our entry block.
 | |
|   // Depending on how the parent function was laid out, the block that will
 | |
|   // correspond to the outlined entry block may not be the first block in the
 | |
|   // list.  We can recognize it, however, as the cloned block which has no
 | |
|   // predecessors.  Any other block wouldn't have been cloned if it didn't
 | |
|   // have a predecessor which was also cloned.
 | |
|   Function::iterator ClonedIt = std::next(Function::iterator(Entry));
 | |
|   while (!pred_empty(ClonedIt))
 | |
|     ++ClonedIt;
 | |
|   BasicBlock *ClonedEntryBB = ClonedIt;
 | |
|   assert(ClonedEntryBB);
 | |
|   Entry->getInstList().splice(Entry->end(), ClonedEntryBB->getInstList());
 | |
|   ClonedEntryBB->eraseFromParent();
 | |
| 
 | |
|   // Make sure we can identify the handler's personality later.
 | |
|   addStubInvokeToHandlerIfNeeded(Handler, LPad->getPersonalityFn());
 | |
| 
 | |
|   if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
 | |
|     WinEHCatchDirector *CatchDirector =
 | |
|         reinterpret_cast<WinEHCatchDirector *>(Director.get());
 | |
|     CatchAction->setExceptionVar(CatchDirector->getExceptionVar());
 | |
|     CatchAction->setReturnTargets(CatchDirector->getReturnTargets());
 | |
| 
 | |
|     // Look for blocks that are not part of the landing pad that we just
 | |
|     // outlined but terminate with a call to llvm.eh.endcatch and a
 | |
|     // branch to a block that is in the handler we just outlined.
 | |
|     // These blocks will be part of a nested landing pad that intends to
 | |
|     // return to an address in this handler.  This case is best handled
 | |
|     // after both landing pads have been outlined, so for now we'll just
 | |
|     // save the association of the blocks in LPadTargetBlocks.  The
 | |
|     // return instructions which are created from these branches will be
 | |
|     // replaced after all landing pads have been outlined.
 | |
|     for (const auto MapEntry : VMap) {
 | |
|       // VMap maps all values and blocks that were just cloned, but dead
 | |
|       // blocks which were pruned will map to nullptr.
 | |
|       if (!isa<BasicBlock>(MapEntry.first) || MapEntry.second == nullptr)
 | |
|         continue;
 | |
|       const BasicBlock *MappedBB = cast<BasicBlock>(MapEntry.first);
 | |
|       for (auto *Pred : predecessors(const_cast<BasicBlock *>(MappedBB))) {
 | |
|         auto *Branch = dyn_cast<BranchInst>(Pred->getTerminator());
 | |
|         if (!Branch || !Branch->isUnconditional() || Pred->size() <= 1)
 | |
|           continue;
 | |
|         BasicBlock::iterator II = const_cast<BranchInst *>(Branch);
 | |
|         --II;
 | |
|         if (match(cast<Value>(II), m_Intrinsic<Intrinsic::eh_endcatch>())) {
 | |
|           // This would indicate that a nested landing pad wants to return
 | |
|           // to a block that is outlined into two different handlers.
 | |
|           assert(!LPadTargetBlocks.count(MappedBB));
 | |
|           LPadTargetBlocks[MappedBB] = cast<BasicBlock>(MapEntry.second);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } // End if (CatchAction)
 | |
| 
 | |
|   Action->setHandlerBlockOrFunc(Handler);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// This BB must end in a selector dispatch. All we need to do is pass the
 | |
| /// handler block to llvm.eh.actions and list it as a possible indirectbr
 | |
| /// target.
 | |
| void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction,
 | |
|                                           BasicBlock *StartBB) {
 | |
|   BasicBlock *HandlerBB;
 | |
|   BasicBlock *NextBB;
 | |
|   Constant *Selector;
 | |
|   bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB);
 | |
|   if (Res) {
 | |
|     // If this was EH dispatch, this must be a conditional branch to the handler
 | |
|     // block.
 | |
|     // FIXME: Handle instructions in the dispatch block. Currently we drop them,
 | |
|     // leading to crashes if some optimization hoists stuff here.
 | |
|     assert(CatchAction->getSelector() && HandlerBB &&
 | |
|            "expected catch EH dispatch");
 | |
|   } else {
 | |
|     // This must be a catch-all. Split the block after the landingpad.
 | |
|     assert(CatchAction->getSelector()->isNullValue() && "expected catch-all");
 | |
|     HandlerBB = SplitBlock(StartBB, StartBB->getFirstInsertionPt(), DT);
 | |
|   }
 | |
|   IRBuilder<> Builder(HandlerBB->getFirstInsertionPt());
 | |
|   Function *EHCodeFn = Intrinsic::getDeclaration(
 | |
|       StartBB->getParent()->getParent(), Intrinsic::eh_exceptioncode);
 | |
|   Value *Code = Builder.CreateCall(EHCodeFn, {}, "sehcode");
 | |
|   Code = Builder.CreateIntToPtr(Code, SEHExceptionCodeSlot->getAllocatedType());
 | |
|   Builder.CreateStore(Code, SEHExceptionCodeSlot);
 | |
|   CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB));
 | |
|   TinyPtrVector<BasicBlock *> Targets(HandlerBB);
 | |
|   CatchAction->setReturnTargets(Targets);
 | |
| }
 | |
| 
 | |
| void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
 | |
|   // Each instance of this class should only ever be used to map a single
 | |
|   // landing pad.
 | |
|   assert(OriginLPad == nullptr || OriginLPad == LPad);
 | |
| 
 | |
|   // If the landing pad has already been mapped, there's nothing more to do.
 | |
|   if (OriginLPad == LPad)
 | |
|     return;
 | |
| 
 | |
|   OriginLPad = LPad;
 | |
| 
 | |
|   // The landingpad instruction returns an aggregate value.  Typically, its
 | |
|   // value will be passed to a pair of extract value instructions and the
 | |
|   // results of those extracts will have been promoted to reg values before
 | |
|   // this routine is called.
 | |
|   for (auto *U : LPad->users()) {
 | |
|     const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
 | |
|     if (!Extract)
 | |
|       continue;
 | |
|     assert(Extract->getNumIndices() == 1 &&
 | |
|            "Unexpected operation: extracting both landing pad values");
 | |
|     unsigned int Idx = *(Extract->idx_begin());
 | |
|     assert((Idx == 0 || Idx == 1) &&
 | |
|            "Unexpected operation: extracting an unknown landing pad element");
 | |
|     if (Idx == 0) {
 | |
|       ExtractedEHPtrs.push_back(Extract);
 | |
|     } else if (Idx == 1) {
 | |
|       ExtractedSelectors.push_back(Extract);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const {
 | |
|   return BB->getLandingPadInst() == OriginLPad;
 | |
| }
 | |
| 
 | |
| bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const {
 | |
|   if (Inst == OriginLPad)
 | |
|     return true;
 | |
|   for (auto *Extract : ExtractedEHPtrs) {
 | |
|     if (Inst == Extract)
 | |
|       return true;
 | |
|   }
 | |
|   for (auto *Extract : ExtractedSelectors) {
 | |
|     if (Inst == Extract)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LandingPadMap::remapEHValues(ValueToValueMapTy &VMap, Value *EHPtrValue,
 | |
|                                   Value *SelectorValue) const {
 | |
|   // Remap all landing pad extract instructions to the specified values.
 | |
|   for (auto *Extract : ExtractedEHPtrs)
 | |
|     VMap[Extract] = EHPtrValue;
 | |
|   for (auto *Extract : ExtractedSelectors)
 | |
|     VMap[Extract] = SelectorValue;
 | |
| }
 | |
| 
 | |
| static bool isFrameAddressCall(const Value *V) {
 | |
|   return match(const_cast<Value *>(V),
 | |
|                m_Intrinsic<Intrinsic::frameaddress>(m_SpecificInt(0)));
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
 | |
|     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | |
|   // If this is one of the boilerplate landing pad instructions, skip it.
 | |
|   // The instruction will have already been remapped in VMap.
 | |
|   if (LPadMap.isLandingPadSpecificInst(Inst))
 | |
|     return CloningDirector::SkipInstruction;
 | |
| 
 | |
|   // Nested landing pads that have not already been outlined will be cloned as
 | |
|   // stubs, with just the landingpad instruction and an unreachable instruction.
 | |
|   // When all landingpads have been outlined, we'll replace this with the
 | |
|   // llvm.eh.actions call and indirect branch created when the landing pad was
 | |
|   // outlined.
 | |
|   if (auto *LPad = dyn_cast<LandingPadInst>(Inst)) {
 | |
|     return handleLandingPad(VMap, LPad, NewBB);
 | |
|   }
 | |
| 
 | |
|   // Nested landing pads that have already been outlined will be cloned in their
 | |
|   // outlined form, but we need to intercept the ibr instruction to filter out
 | |
|   // targets that do not return to the handler we are outlining.
 | |
|   if (auto *IBr = dyn_cast<IndirectBrInst>(Inst)) {
 | |
|     return handleIndirectBr(VMap, IBr, NewBB);
 | |
|   }
 | |
| 
 | |
|   if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
 | |
|     return handleInvoke(VMap, Invoke, NewBB);
 | |
| 
 | |
|   if (auto *Resume = dyn_cast<ResumeInst>(Inst))
 | |
|     return handleResume(VMap, Resume, NewBB);
 | |
| 
 | |
|   if (auto *Cmp = dyn_cast<CmpInst>(Inst))
 | |
|     return handleCompare(VMap, Cmp, NewBB);
 | |
| 
 | |
|   if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
 | |
|     return handleBeginCatch(VMap, Inst, NewBB);
 | |
|   if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
 | |
|     return handleEndCatch(VMap, Inst, NewBB);
 | |
|   if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
 | |
|     return handleTypeIdFor(VMap, Inst, NewBB);
 | |
| 
 | |
|   // When outlining llvm.frameaddress(i32 0), remap that to the second argument,
 | |
|   // which is the FP of the parent.
 | |
|   if (isFrameAddressCall(Inst)) {
 | |
|     VMap[Inst] = ParentFP;
 | |
|     return CloningDirector::SkipInstruction;
 | |
|   }
 | |
| 
 | |
|   // Continue with the default cloning behavior.
 | |
|   return CloningDirector::CloneInstruction;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCatchDirector::handleLandingPad(
 | |
|     ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
 | |
|   // If the instruction after the landing pad is a call to llvm.eh.actions
 | |
|   // the landing pad has already been outlined.  In this case, we should
 | |
|   // clone it because it may return to a block in the handler we are
 | |
|   // outlining now that would otherwise be unreachable.  The landing pads
 | |
|   // are sorted before outlining begins to enable this case to work
 | |
|   // properly.
 | |
|   const Instruction *NextI = LPad->getNextNode();
 | |
|   if (match(NextI, m_Intrinsic<Intrinsic::eh_actions>()))
 | |
|     return CloningDirector::CloneInstruction;
 | |
| 
 | |
|   // If the landing pad hasn't been outlined yet, the landing pad we are
 | |
|   // outlining now does not dominate it and so it cannot return to a block
 | |
|   // in this handler.  In that case, we can just insert a stub landing
 | |
|   // pad now and patch it up later.
 | |
|   Instruction *NewInst = LPad->clone();
 | |
|   if (LPad->hasName())
 | |
|     NewInst->setName(LPad->getName());
 | |
|   // Save this correlation for later processing.
 | |
|   NestedLPtoOriginalLP[cast<LandingPadInst>(NewInst)] = LPad;
 | |
|   VMap[LPad] = NewInst;
 | |
|   BasicBlock::InstListType &InstList = NewBB->getInstList();
 | |
|   InstList.push_back(NewInst);
 | |
|   InstList.push_back(new UnreachableInst(NewBB->getContext()));
 | |
|   return CloningDirector::StopCloningBB;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
 | |
|     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | |
|   // The argument to the call is some form of the first element of the
 | |
|   // landingpad aggregate value, but that doesn't matter.  It isn't used
 | |
|   // here.
 | |
|   // The second argument is an outparameter where the exception object will be
 | |
|   // stored. Typically the exception object is a scalar, but it can be an
 | |
|   // aggregate when catching by value.
 | |
|   // FIXME: Leave something behind to indicate where the exception object lives
 | |
|   // for this handler. Should it be part of llvm.eh.actions?
 | |
|   assert(ExceptionObjectVar == nullptr && "Multiple calls to "
 | |
|                                           "llvm.eh.begincatch found while "
 | |
|                                           "outlining catch handler.");
 | |
|   ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts();
 | |
|   if (isa<ConstantPointerNull>(ExceptionObjectVar))
 | |
|     return CloningDirector::SkipInstruction;
 | |
|   assert(cast<AllocaInst>(ExceptionObjectVar)->isStaticAlloca() &&
 | |
|          "catch parameter is not static alloca");
 | |
|   Materializer.escapeCatchObject(ExceptionObjectVar);
 | |
|   return CloningDirector::SkipInstruction;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction
 | |
| WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
 | |
|                                    const Instruction *Inst, BasicBlock *NewBB) {
 | |
|   auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
 | |
|   // It might be interesting to track whether or not we are inside a catch
 | |
|   // function, but that might make the algorithm more brittle than it needs
 | |
|   // to be.
 | |
| 
 | |
|   // The end catch call can occur in one of two places: either in a
 | |
|   // landingpad block that is part of the catch handlers exception mechanism,
 | |
|   // or at the end of the catch block.  However, a catch-all handler may call
 | |
|   // end catch from the original landing pad.  If the call occurs in a nested
 | |
|   // landing pad block, we must skip it and continue so that the landing pad
 | |
|   // gets cloned.
 | |
|   auto *ParentBB = IntrinCall->getParent();
 | |
|   if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB))
 | |
|     return CloningDirector::SkipInstruction;
 | |
| 
 | |
|   // If an end catch occurs anywhere else we want to terminate the handler
 | |
|   // with a return to the code that follows the endcatch call.  If the
 | |
|   // next instruction is not an unconditional branch, we need to split the
 | |
|   // block to provide a clear target for the return instruction.
 | |
|   BasicBlock *ContinueBB;
 | |
|   auto Next = std::next(BasicBlock::const_iterator(IntrinCall));
 | |
|   const BranchInst *Branch = dyn_cast<BranchInst>(Next);
 | |
|   if (!Branch || !Branch->isUnconditional()) {
 | |
|     // We're interrupting the cloning process at this location, so the
 | |
|     // const_cast we're doing here will not cause a problem.
 | |
|     ContinueBB = SplitBlock(const_cast<BasicBlock *>(ParentBB),
 | |
|                             const_cast<Instruction *>(cast<Instruction>(Next)));
 | |
|   } else {
 | |
|     ContinueBB = Branch->getSuccessor(0);
 | |
|   }
 | |
| 
 | |
|   ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueBB), NewBB);
 | |
|   ReturnTargets.push_back(ContinueBB);
 | |
| 
 | |
|   // We just added a terminator to the cloned block.
 | |
|   // Tell the caller to stop processing the current basic block so that
 | |
|   // the branch instruction will be skipped.
 | |
|   return CloningDirector::StopCloningBB;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
 | |
|     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | |
|   auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
 | |
|   Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
 | |
|   // This causes a replacement that will collapse the landing pad CFG based
 | |
|   // on the filter function we intend to match.
 | |
|   if (Selector == CurrentSelector)
 | |
|     VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
 | |
|   else
 | |
|     VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
 | |
|   // Tell the caller not to clone this instruction.
 | |
|   return CloningDirector::SkipInstruction;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCatchDirector::handleIndirectBr(
 | |
|     ValueToValueMapTy &VMap,
 | |
|     const IndirectBrInst *IBr,
 | |
|     BasicBlock *NewBB) {
 | |
|   // If this indirect branch is not part of a landing pad block, just clone it.
 | |
|   const BasicBlock *ParentBB = IBr->getParent();
 | |
|   if (!ParentBB->isLandingPad())
 | |
|     return CloningDirector::CloneInstruction;
 | |
| 
 | |
|   // If it is part of a landing pad, we want to filter out target blocks
 | |
|   // that are not part of the handler we are outlining.
 | |
|   const LandingPadInst *LPad = ParentBB->getLandingPadInst();
 | |
| 
 | |
|   // Save this correlation for later processing.
 | |
|   NestedLPtoOriginalLP[cast<LandingPadInst>(VMap[LPad])] = LPad;
 | |
| 
 | |
|   // We should only get here for landing pads that have already been outlined.
 | |
|   assert(match(LPad->getNextNode(), m_Intrinsic<Intrinsic::eh_actions>()));
 | |
| 
 | |
|   // Copy the indirectbr, but only include targets that were previously
 | |
|   // identified as EH blocks and are dominated by the nested landing pad.
 | |
|   SetVector<const BasicBlock *> ReturnTargets;
 | |
|   for (int I = 0, E = IBr->getNumDestinations(); I < E; ++I) {
 | |
|     auto *TargetBB = IBr->getDestination(I);
 | |
|     if (EHBlocks.count(const_cast<BasicBlock*>(TargetBB)) &&
 | |
|         DT->dominates(ParentBB, TargetBB)) {
 | |
|       DEBUG(dbgs() << "  Adding destination " << TargetBB->getName() << "\n");
 | |
|       ReturnTargets.insert(TargetBB);
 | |
|     }
 | |
|   }
 | |
|   IndirectBrInst *NewBranch = 
 | |
|         IndirectBrInst::Create(const_cast<Value *>(IBr->getAddress()),
 | |
|                                ReturnTargets.size(), NewBB);
 | |
|   for (auto *Target : ReturnTargets)
 | |
|     NewBranch->addDestination(const_cast<BasicBlock*>(Target));
 | |
| 
 | |
|   // The operands and targets of the branch instruction are remapped later
 | |
|   // because it is a terminator.  Tell the cloning code to clone the
 | |
|   // blocks we just added to the target list.
 | |
|   return CloningDirector::CloneSuccessors;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction
 | |
| WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
 | |
|                                  const InvokeInst *Invoke, BasicBlock *NewBB) {
 | |
|   return CloningDirector::CloneInstruction;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction
 | |
| WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
 | |
|                                  const ResumeInst *Resume, BasicBlock *NewBB) {
 | |
|   // Resume instructions shouldn't be reachable from catch handlers.
 | |
|   // We still need to handle it, but it will be pruned.
 | |
|   BasicBlock::InstListType &InstList = NewBB->getInstList();
 | |
|   InstList.push_back(new UnreachableInst(NewBB->getContext()));
 | |
|   return CloningDirector::StopCloningBB;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction
 | |
| WinEHCatchDirector::handleCompare(ValueToValueMapTy &VMap,
 | |
|                                   const CmpInst *Compare, BasicBlock *NewBB) {
 | |
|   const IntrinsicInst *IntrinCall = nullptr;
 | |
|   if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
 | |
|     IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(0));
 | |
|   } else if (match(Compare->getOperand(1),
 | |
|                    m_Intrinsic<Intrinsic::eh_typeid_for>())) {
 | |
|     IntrinCall = dyn_cast<IntrinsicInst>(Compare->getOperand(1));
 | |
|   }
 | |
|   if (IntrinCall) {
 | |
|     Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
 | |
|     // This causes a replacement that will collapse the landing pad CFG based
 | |
|     // on the filter function we intend to match.
 | |
|     if (Selector == CurrentSelector->stripPointerCasts()) {
 | |
|       VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
 | |
|     } else {
 | |
|       VMap[Compare] = ConstantInt::get(SelectorIDType, 0);
 | |
|     }
 | |
|     return CloningDirector::SkipInstruction;
 | |
|   }
 | |
|   return CloningDirector::CloneInstruction;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCleanupDirector::handleLandingPad(
 | |
|     ValueToValueMapTy &VMap, const LandingPadInst *LPad, BasicBlock *NewBB) {
 | |
|   // The MS runtime will terminate the process if an exception occurs in a
 | |
|   // cleanup handler, so we shouldn't encounter landing pads in the actual
 | |
|   // cleanup code, but they may appear in catch blocks.  Depending on where
 | |
|   // we started cloning we may see one, but it will get dropped during dead
 | |
|   // block pruning.
 | |
|   Instruction *NewInst = new UnreachableInst(NewBB->getContext());
 | |
|   VMap[LPad] = NewInst;
 | |
|   BasicBlock::InstListType &InstList = NewBB->getInstList();
 | |
|   InstList.push_back(NewInst);
 | |
|   return CloningDirector::StopCloningBB;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
 | |
|     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | |
|   // Cleanup code may flow into catch blocks or the catch block may be part
 | |
|   // of a branch that will be optimized away.  We'll insert a return
 | |
|   // instruction now, but it may be pruned before the cloning process is
 | |
|   // complete.
 | |
|   ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
 | |
|   return CloningDirector::StopCloningBB;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
 | |
|     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | |
|   // Cleanup handlers nested within catch handlers may begin with a call to
 | |
|   // eh.endcatch.  We can just ignore that instruction.
 | |
|   return CloningDirector::SkipInstruction;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
 | |
|     ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
 | |
|   // If we encounter a selector comparison while cloning a cleanup handler,
 | |
|   // we want to stop cloning immediately.  Anything after the dispatch
 | |
|   // will be outlined into a different handler.
 | |
|   BasicBlock *CatchHandler;
 | |
|   Constant *Selector;
 | |
|   BasicBlock *NextBB;
 | |
|   if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()),
 | |
|                          CatchHandler, Selector, NextBB)) {
 | |
|     ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
 | |
|     return CloningDirector::StopCloningBB;
 | |
|   }
 | |
|   // If eg.typeid.for is called for any other reason, it can be ignored.
 | |
|   VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
 | |
|   return CloningDirector::SkipInstruction;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCleanupDirector::handleIndirectBr(
 | |
|     ValueToValueMapTy &VMap,
 | |
|     const IndirectBrInst *IBr,
 | |
|     BasicBlock *NewBB) {
 | |
|   // No special handling is required for cleanup cloning.
 | |
|   return CloningDirector::CloneInstruction;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
 | |
|     ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
 | |
|   // All invokes in cleanup handlers can be replaced with calls.
 | |
|   SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3);
 | |
|   // Insert a normal call instruction...
 | |
|   CallInst *NewCall =
 | |
|       CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs,
 | |
|                        Invoke->getName(), NewBB);
 | |
|   NewCall->setCallingConv(Invoke->getCallingConv());
 | |
|   NewCall->setAttributes(Invoke->getAttributes());
 | |
|   NewCall->setDebugLoc(Invoke->getDebugLoc());
 | |
|   VMap[Invoke] = NewCall;
 | |
| 
 | |
|   // Remap the operands.
 | |
|   llvm::RemapInstruction(NewCall, VMap, RF_None, nullptr, &Materializer);
 | |
| 
 | |
|   // Insert an unconditional branch to the normal destination.
 | |
|   BranchInst::Create(Invoke->getNormalDest(), NewBB);
 | |
| 
 | |
|   // The unwind destination won't be cloned into the new function, so
 | |
|   // we don't need to clean up its phi nodes.
 | |
| 
 | |
|   // We just added a terminator to the cloned block.
 | |
|   // Tell the caller to stop processing the current basic block.
 | |
|   return CloningDirector::CloneSuccessors;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
 | |
|     ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
 | |
|   ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
 | |
| 
 | |
|   // We just added a terminator to the cloned block.
 | |
|   // Tell the caller to stop processing the current basic block so that
 | |
|   // the branch instruction will be skipped.
 | |
|   return CloningDirector::StopCloningBB;
 | |
| }
 | |
| 
 | |
| CloningDirector::CloningAction
 | |
| WinEHCleanupDirector::handleCompare(ValueToValueMapTy &VMap,
 | |
|                                     const CmpInst *Compare, BasicBlock *NewBB) {
 | |
|   if (match(Compare->getOperand(0), m_Intrinsic<Intrinsic::eh_typeid_for>()) ||
 | |
|       match(Compare->getOperand(1), m_Intrinsic<Intrinsic::eh_typeid_for>())) {
 | |
|     VMap[Compare] = ConstantInt::get(SelectorIDType, 1);
 | |
|     return CloningDirector::SkipInstruction;
 | |
|   }
 | |
|   return CloningDirector::CloneInstruction;
 | |
| }
 | |
| 
 | |
| WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
 | |
|     Function *OutlinedFn, Value *ParentFP, FrameVarInfoMap &FrameVarInfo)
 | |
|     : FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
 | |
|   BasicBlock *EntryBB = &OutlinedFn->getEntryBlock();
 | |
| 
 | |
|   // New allocas should be inserted in the entry block, but after the parent FP
 | |
|   // is established if it is an instruction.
 | |
|   Instruction *InsertPoint = EntryBB->getFirstInsertionPt();
 | |
|   if (auto *FPInst = dyn_cast<Instruction>(ParentFP))
 | |
|     InsertPoint = FPInst->getNextNode();
 | |
|   Builder.SetInsertPoint(EntryBB, InsertPoint);
 | |
| }
 | |
| 
 | |
| Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
 | |
|   // If we're asked to materialize a static alloca, we temporarily create an
 | |
|   // alloca in the outlined function and add this to the FrameVarInfo map.  When
 | |
|   // all the outlining is complete, we'll replace these temporary allocas with
 | |
|   // calls to llvm.framerecover.
 | |
|   if (auto *AV = dyn_cast<AllocaInst>(V)) {
 | |
|     assert(AV->isStaticAlloca() &&
 | |
|            "cannot materialize un-demoted dynamic alloca");
 | |
|     AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
 | |
|     Builder.Insert(NewAlloca, AV->getName());
 | |
|     FrameVarInfo[AV].push_back(NewAlloca);
 | |
|     return NewAlloca;
 | |
|   }
 | |
| 
 | |
|   if (isa<Instruction>(V) || isa<Argument>(V)) {
 | |
|     Function *Parent = isa<Instruction>(V)
 | |
|                            ? cast<Instruction>(V)->getParent()->getParent()
 | |
|                            : cast<Argument>(V)->getParent();
 | |
|     errs()
 | |
|         << "Failed to demote instruction used in exception handler of function "
 | |
|         << GlobalValue::getRealLinkageName(Parent->getName()) << ":\n";
 | |
|     errs() << "  " << *V << '\n';
 | |
|     report_fatal_error("WinEHPrepare failed to demote instruction");
 | |
|   }
 | |
| 
 | |
|   // Don't materialize other values.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void WinEHFrameVariableMaterializer::escapeCatchObject(Value *V) {
 | |
|   // Catch parameter objects have to live in the parent frame. When we see a use
 | |
|   // of a catch parameter, add a sentinel to the multimap to indicate that it's
 | |
|   // used from another handler. This will prevent us from trying to sink the
 | |
|   // alloca into the handler and ensure that the catch parameter is present in
 | |
|   // the call to llvm.frameescape.
 | |
|   FrameVarInfo[V].push_back(getCatchObjectSentinel());
 | |
| }
 | |
| 
 | |
| // This function maps the catch and cleanup handlers that are reachable from the
 | |
| // specified landing pad. The landing pad sequence will have this basic shape:
 | |
| //
 | |
| //  <cleanup handler>
 | |
| //  <selector comparison>
 | |
| //  <catch handler>
 | |
| //  <cleanup handler>
 | |
| //  <selector comparison>
 | |
| //  <catch handler>
 | |
| //  <cleanup handler>
 | |
| //  ...
 | |
| //
 | |
| // Any of the cleanup slots may be absent.  The cleanup slots may be occupied by
 | |
| // any arbitrary control flow, but all paths through the cleanup code must
 | |
| // eventually reach the next selector comparison and no path can skip to a
 | |
| // different selector comparisons, though some paths may terminate abnormally.
 | |
| // Therefore, we will use a depth first search from the start of any given
 | |
| // cleanup block and stop searching when we find the next selector comparison.
 | |
| //
 | |
| // If the landingpad instruction does not have a catch clause, we will assume
 | |
| // that any instructions other than selector comparisons and catch handlers can
 | |
| // be ignored.  In practice, these will only be the boilerplate instructions.
 | |
| //
 | |
| // The catch handlers may also have any control structure, but we are only
 | |
| // interested in the start of the catch handlers, so we don't need to actually
 | |
| // follow the flow of the catch handlers.  The start of the catch handlers can
 | |
| // be located from the compare instructions, but they can be skipped in the
 | |
| // flow by following the contrary branch.
 | |
| void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
 | |
|                                        LandingPadActions &Actions) {
 | |
|   unsigned int NumClauses = LPad->getNumClauses();
 | |
|   unsigned int HandlersFound = 0;
 | |
|   BasicBlock *BB = LPad->getParent();
 | |
| 
 | |
|   DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n");
 | |
| 
 | |
|   if (NumClauses == 0) {
 | |
|     findCleanupHandlers(Actions, BB, nullptr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   VisitedBlockSet VisitedBlocks;
 | |
| 
 | |
|   while (HandlersFound != NumClauses) {
 | |
|     BasicBlock *NextBB = nullptr;
 | |
| 
 | |
|     // Skip over filter clauses.
 | |
|     if (LPad->isFilter(HandlersFound)) {
 | |
|       ++HandlersFound;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // See if the clause we're looking for is a catch-all.
 | |
|     // If so, the catch begins immediately.
 | |
|     Constant *ExpectedSelector =
 | |
|         LPad->getClause(HandlersFound)->stripPointerCasts();
 | |
|     if (isa<ConstantPointerNull>(ExpectedSelector)) {
 | |
|       // The catch all must occur last.
 | |
|       assert(HandlersFound == NumClauses - 1);
 | |
| 
 | |
|       // There can be additional selector dispatches in the call chain that we
 | |
|       // need to ignore.
 | |
|       BasicBlock *CatchBlock = nullptr;
 | |
|       Constant *Selector;
 | |
|       while (BB && isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
 | |
|         DEBUG(dbgs() << "  Found extra catch dispatch in block "
 | |
|                      << CatchBlock->getName() << "\n");
 | |
|         BB = NextBB;
 | |
|       }
 | |
| 
 | |
|       // Add the catch handler to the action list.
 | |
|       CatchHandler *Action = nullptr;
 | |
|       if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
 | |
|         // If the CatchHandlerMap already has an entry for this BB, re-use it.
 | |
|         Action = CatchHandlerMap[BB];
 | |
|         assert(Action->getSelector() == ExpectedSelector);
 | |
|       } else {
 | |
|         // We don't expect a selector dispatch, but there may be a call to
 | |
|         // llvm.eh.begincatch, which separates catch handling code from
 | |
|         // cleanup code in the same control flow.  This call looks for the
 | |
|         // begincatch intrinsic.
 | |
|         Action = findCatchHandler(BB, NextBB, VisitedBlocks);
 | |
|         if (Action) {
 | |
|           // For C++ EH, check if there is any interesting cleanup code before
 | |
|           // we begin the catch. This is important because cleanups cannot
 | |
|           // rethrow exceptions but code called from catches can. For SEH, it
 | |
|           // isn't important if some finally code before a catch-all is executed
 | |
|           // out of line or after recovering from the exception.
 | |
|           if (Personality == EHPersonality::MSVC_CXX)
 | |
|             findCleanupHandlers(Actions, BB, BB);
 | |
|         } else {
 | |
|           // If an action was not found, it means that the control flows
 | |
|           // directly into the catch-all handler and there is no cleanup code.
 | |
|           // That's an expected situation and we must create a catch action.
 | |
|           // Since this is a catch-all handler, the selector won't actually
 | |
|           // appear in the code anywhere.  ExpectedSelector here is the constant
 | |
|           // null ptr that we got from the landing pad instruction.
 | |
|           Action = new CatchHandler(BB, ExpectedSelector, nullptr);
 | |
|           CatchHandlerMap[BB] = Action;
 | |
|         }
 | |
|       }
 | |
|       Actions.insertCatchHandler(Action);
 | |
|       DEBUG(dbgs() << "  Catch all handler at block " << BB->getName() << "\n");
 | |
|       ++HandlersFound;
 | |
| 
 | |
|       // Once we reach a catch-all, don't expect to hit a resume instruction.
 | |
|       BB = nullptr;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks);
 | |
|     assert(CatchAction);
 | |
| 
 | |
|     // See if there is any interesting code executed before the dispatch.
 | |
|     findCleanupHandlers(Actions, BB, CatchAction->getStartBlock());
 | |
| 
 | |
|     // When the source program contains multiple nested try blocks the catch
 | |
|     // handlers can get strung together in such a way that we can encounter
 | |
|     // a dispatch for a selector that we've already had a handler for.
 | |
|     if (CatchAction->getSelector()->stripPointerCasts() == ExpectedSelector) {
 | |
|       ++HandlersFound;
 | |
| 
 | |
|       // Add the catch handler to the action list.
 | |
|       DEBUG(dbgs() << "  Found catch dispatch in block "
 | |
|                    << CatchAction->getStartBlock()->getName() << "\n");
 | |
|       Actions.insertCatchHandler(CatchAction);
 | |
|     } else {
 | |
|       // Under some circumstances optimized IR will flow unconditionally into a
 | |
|       // handler block without checking the selector.  This can only happen if
 | |
|       // the landing pad has a catch-all handler and the handler for the
 | |
|       // preceeding catch clause is identical to the catch-call handler
 | |
|       // (typically an empty catch).  In this case, the handler must be shared
 | |
|       // by all remaining clauses.
 | |
|       if (isa<ConstantPointerNull>(
 | |
|               CatchAction->getSelector()->stripPointerCasts())) {
 | |
|         DEBUG(dbgs() << "  Applying early catch-all handler in block "
 | |
|                      << CatchAction->getStartBlock()->getName()
 | |
|                      << "  to all remaining clauses.\n");
 | |
|         Actions.insertCatchHandler(CatchAction);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << "  Found extra catch dispatch in block "
 | |
|                    << CatchAction->getStartBlock()->getName() << "\n");
 | |
|     }
 | |
| 
 | |
|     // Move on to the block after the catch handler.
 | |
|     BB = NextBB;
 | |
|   }
 | |
| 
 | |
|   // If we didn't wind up in a catch-all, see if there is any interesting code
 | |
|   // executed before the resume.
 | |
|   findCleanupHandlers(Actions, BB, BB);
 | |
| 
 | |
|   // It's possible that some optimization moved code into a landingpad that
 | |
|   // wasn't
 | |
|   // previously being used for cleanup.  If that happens, we need to execute
 | |
|   // that
 | |
|   // extra code from a cleanup handler.
 | |
|   if (Actions.includesCleanup() && !LPad->isCleanup())
 | |
|     LPad->setCleanup(true);
 | |
| }
 | |
| 
 | |
| // This function searches starting with the input block for the next
 | |
| // block that terminates with a branch whose condition is based on a selector
 | |
| // comparison.  This may be the input block.  See the mapLandingPadBlocks
 | |
| // comments for a discussion of control flow assumptions.
 | |
| //
 | |
| CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
 | |
|                                              BasicBlock *&NextBB,
 | |
|                                              VisitedBlockSet &VisitedBlocks) {
 | |
|   // See if we've already found a catch handler use it.
 | |
|   // Call count() first to avoid creating a null entry for blocks
 | |
|   // we haven't seen before.
 | |
|   if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
 | |
|     CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]);
 | |
|     NextBB = Action->getNextBB();
 | |
|     return Action;
 | |
|   }
 | |
| 
 | |
|   // VisitedBlocks applies only to the current search.  We still
 | |
|   // need to consider blocks that we've visited while mapping other
 | |
|   // landing pads.
 | |
|   VisitedBlocks.insert(BB);
 | |
| 
 | |
|   BasicBlock *CatchBlock = nullptr;
 | |
|   Constant *Selector = nullptr;
 | |
| 
 | |
|   // If this is the first time we've visited this block from any landing pad
 | |
|   // look to see if it is a selector dispatch block.
 | |
|   if (!CatchHandlerMap.count(BB)) {
 | |
|     if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
 | |
|       CatchHandler *Action = new CatchHandler(BB, Selector, NextBB);
 | |
|       CatchHandlerMap[BB] = Action;
 | |
|       return Action;
 | |
|     }
 | |
|     // If we encounter a block containing an llvm.eh.begincatch before we
 | |
|     // find a selector dispatch block, the handler is assumed to be
 | |
|     // reached unconditionally.  This happens for catch-all blocks, but
 | |
|     // it can also happen for other catch handlers that have been combined
 | |
|     // with the catch-all handler during optimization.
 | |
|     if (isCatchBlock(BB)) {
 | |
|       PointerType *Int8PtrTy = Type::getInt8PtrTy(BB->getContext());
 | |
|       Constant *NullSelector = ConstantPointerNull::get(Int8PtrTy);
 | |
|       CatchHandler *Action = new CatchHandler(BB, NullSelector, nullptr);
 | |
|       CatchHandlerMap[BB] = Action;
 | |
|       return Action;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Visit each successor, looking for the dispatch.
 | |
|   // FIXME: We expect to find the dispatch quickly, so this will probably
 | |
|   //        work better as a breadth first search.
 | |
|   for (BasicBlock *Succ : successors(BB)) {
 | |
|     if (VisitedBlocks.count(Succ))
 | |
|       continue;
 | |
| 
 | |
|     CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks);
 | |
|     if (Action)
 | |
|       return Action;
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // These are helper functions to combine repeated code from findCleanupHandlers.
 | |
| static void createCleanupHandler(LandingPadActions &Actions,
 | |
|                                  CleanupHandlerMapTy &CleanupHandlerMap,
 | |
|                                  BasicBlock *BB) {
 | |
|   CleanupHandler *Action = new CleanupHandler(BB);
 | |
|   CleanupHandlerMap[BB] = Action;
 | |
|   Actions.insertCleanupHandler(Action);
 | |
|   DEBUG(dbgs() << "  Found cleanup code in block "
 | |
|                << Action->getStartBlock()->getName() << "\n");
 | |
| }
 | |
| 
 | |
| static CallSite matchOutlinedFinallyCall(BasicBlock *BB,
 | |
|                                          Instruction *MaybeCall) {
 | |
|   // Look for finally blocks that Clang has already outlined for us.
 | |
|   //   %fp = call i8* @llvm.frameaddress(i32 0)
 | |
|   //   call void @"fin$parent"(iN 1, i8* %fp)
 | |
|   if (isFrameAddressCall(MaybeCall) && MaybeCall != BB->getTerminator())
 | |
|     MaybeCall = MaybeCall->getNextNode();
 | |
|   CallSite FinallyCall(MaybeCall);
 | |
|   if (!FinallyCall || FinallyCall.arg_size() != 2)
 | |
|     return CallSite();
 | |
|   if (!match(FinallyCall.getArgument(0), m_SpecificInt(1)))
 | |
|     return CallSite();
 | |
|   if (!isFrameAddressCall(FinallyCall.getArgument(1)))
 | |
|     return CallSite();
 | |
|   return FinallyCall;
 | |
| }
 | |
| 
 | |
| static BasicBlock *followSingleUnconditionalBranches(BasicBlock *BB) {
 | |
|   // Skip single ubr blocks.
 | |
|   while (BB->getFirstNonPHIOrDbg() == BB->getTerminator()) {
 | |
|     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|     if (Br && Br->isUnconditional())
 | |
|       BB = Br->getSuccessor(0);
 | |
|     else
 | |
|       return BB;
 | |
|   }
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| // This function searches starting with the input block for the next block that
 | |
| // contains code that is not part of a catch handler and would not be eliminated
 | |
| // during handler outlining.
 | |
| //
 | |
| void WinEHPrepare::findCleanupHandlers(LandingPadActions &Actions,
 | |
|                                        BasicBlock *StartBB, BasicBlock *EndBB) {
 | |
|   // Here we will skip over the following:
 | |
|   //
 | |
|   // landing pad prolog:
 | |
|   //
 | |
|   // Unconditional branches
 | |
|   //
 | |
|   // Selector dispatch
 | |
|   //
 | |
|   // Resume pattern
 | |
|   //
 | |
|   // Anything else marks the start of an interesting block
 | |
| 
 | |
|   BasicBlock *BB = StartBB;
 | |
|   // Anything other than an unconditional branch will kick us out of this loop
 | |
|   // one way or another.
 | |
|   while (BB) {
 | |
|     BB = followSingleUnconditionalBranches(BB);
 | |
|     // If we've already scanned this block, don't scan it again.  If it is
 | |
|     // a cleanup block, there will be an action in the CleanupHandlerMap.
 | |
|     // If we've scanned it and it is not a cleanup block, there will be a
 | |
|     // nullptr in the CleanupHandlerMap.  If we have not scanned it, there will
 | |
|     // be no entry in the CleanupHandlerMap.  We must call count() first to
 | |
|     // avoid creating a null entry for blocks we haven't scanned.
 | |
|     if (CleanupHandlerMap.count(BB)) {
 | |
|       if (auto *Action = CleanupHandlerMap[BB]) {
 | |
|         Actions.insertCleanupHandler(Action);
 | |
|         DEBUG(dbgs() << "  Found cleanup code in block "
 | |
|                      << Action->getStartBlock()->getName() << "\n");
 | |
|         // FIXME: This cleanup might chain into another, and we need to discover
 | |
|         // that.
 | |
|         return;
 | |
|       } else {
 | |
|         // Here we handle the case where the cleanup handler map contains a
 | |
|         // value for this block but the value is a nullptr.  This means that
 | |
|         // we have previously analyzed the block and determined that it did
 | |
|         // not contain any cleanup code.  Based on the earlier analysis, we
 | |
|         // know the the block must end in either an unconditional branch, a
 | |
|         // resume or a conditional branch that is predicated on a comparison
 | |
|         // with a selector.  Either the resume or the selector dispatch
 | |
|         // would terminate the search for cleanup code, so the unconditional
 | |
|         // branch is the only case for which we might need to continue
 | |
|         // searching.
 | |
|         BasicBlock *SuccBB = followSingleUnconditionalBranches(BB);
 | |
|         if (SuccBB == BB || SuccBB == EndBB)
 | |
|           return;
 | |
|         BB = SuccBB;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Create an entry in the cleanup handler map for this block.  Initially
 | |
|     // we create an entry that says this isn't a cleanup block.  If we find
 | |
|     // cleanup code, the caller will replace this entry.
 | |
|     CleanupHandlerMap[BB] = nullptr;
 | |
| 
 | |
|     TerminatorInst *Terminator = BB->getTerminator();
 | |
| 
 | |
|     // Landing pad blocks have extra instructions we need to accept.
 | |
|     LandingPadMap *LPadMap = nullptr;
 | |
|     if (BB->isLandingPad()) {
 | |
|       LandingPadInst *LPad = BB->getLandingPadInst();
 | |
|       LPadMap = &LPadMaps[LPad];
 | |
|       if (!LPadMap->isInitialized())
 | |
|         LPadMap->mapLandingPad(LPad);
 | |
|     }
 | |
| 
 | |
|     // Look for the bare resume pattern:
 | |
|     //   %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn, 0
 | |
|     //   %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel, 1
 | |
|     //   resume { i8*, i32 } %lpad.val2
 | |
|     if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) {
 | |
|       InsertValueInst *Insert1 = nullptr;
 | |
|       InsertValueInst *Insert2 = nullptr;
 | |
|       Value *ResumeVal = Resume->getOperand(0);
 | |
|       // If the resume value isn't a phi or landingpad value, it should be a
 | |
|       // series of insertions. Identify them so we can avoid them when scanning
 | |
|       // for cleanups.
 | |
|       if (!isa<PHINode>(ResumeVal) && !isa<LandingPadInst>(ResumeVal)) {
 | |
|         Insert2 = dyn_cast<InsertValueInst>(ResumeVal);
 | |
|         if (!Insert2)
 | |
|           return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | |
|         Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand());
 | |
|         if (!Insert1)
 | |
|           return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | |
|       }
 | |
|       for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
 | |
|            II != IE; ++II) {
 | |
|         Instruction *Inst = II;
 | |
|         if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
 | |
|           continue;
 | |
|         if (Inst == Insert1 || Inst == Insert2 || Inst == Resume)
 | |
|           continue;
 | |
|         if (!Inst->hasOneUse() ||
 | |
|             (Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) {
 | |
|           return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | |
|         }
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
 | |
|     if (Branch && Branch->isConditional()) {
 | |
|       // Look for the selector dispatch.
 | |
|       //   %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
 | |
|       //   %matches = icmp eq i32 %sel, %2
 | |
|       //   br i1 %matches, label %catch14, label %eh.resume
 | |
|       CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
 | |
|       if (!Compare || !Compare->isEquality())
 | |
|         return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | |
|       for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
 | |
|            II != IE; ++II) {
 | |
|         Instruction *Inst = II;
 | |
|         if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
 | |
|           continue;
 | |
|         if (Inst == Compare || Inst == Branch)
 | |
|           continue;
 | |
|         if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
 | |
|           continue;
 | |
|         return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | |
|       }
 | |
|       // The selector dispatch block should always terminate our search.
 | |
|       assert(BB == EndBB);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (isAsynchronousEHPersonality(Personality)) {
 | |
|       // If this is a landingpad block, split the block at the first non-landing
 | |
|       // pad instruction.
 | |
|       Instruction *MaybeCall = BB->getFirstNonPHIOrDbg();
 | |
|       if (LPadMap) {
 | |
|         while (MaybeCall != BB->getTerminator() &&
 | |
|                LPadMap->isLandingPadSpecificInst(MaybeCall))
 | |
|           MaybeCall = MaybeCall->getNextNode();
 | |
|       }
 | |
| 
 | |
|       // Look for outlined finally calls.
 | |
|       if (CallSite FinallyCall = matchOutlinedFinallyCall(BB, MaybeCall)) {
 | |
|         Function *Fin = FinallyCall.getCalledFunction();
 | |
|         assert(Fin && "outlined finally call should be direct");
 | |
|         auto *Action = new CleanupHandler(BB);
 | |
|         Action->setHandlerBlockOrFunc(Fin);
 | |
|         Actions.insertCleanupHandler(Action);
 | |
|         CleanupHandlerMap[BB] = Action;
 | |
|         DEBUG(dbgs() << "  Found frontend-outlined finally call to "
 | |
|                      << Fin->getName() << " in block "
 | |
|                      << Action->getStartBlock()->getName() << "\n");
 | |
| 
 | |
|         // Split the block if there were more interesting instructions and look
 | |
|         // for finally calls in the normal successor block.
 | |
|         BasicBlock *SuccBB = BB;
 | |
|         if (FinallyCall.getInstruction() != BB->getTerminator() &&
 | |
|             FinallyCall.getInstruction()->getNextNode() !=
 | |
|                 BB->getTerminator()) {
 | |
|           SuccBB =
 | |
|               SplitBlock(BB, FinallyCall.getInstruction()->getNextNode(), DT);
 | |
|         } else {
 | |
|           if (FinallyCall.isInvoke()) {
 | |
|             SuccBB =
 | |
|                 cast<InvokeInst>(FinallyCall.getInstruction())->getNormalDest();
 | |
|           } else {
 | |
|             SuccBB = BB->getUniqueSuccessor();
 | |
|             assert(SuccBB &&
 | |
|                    "splitOutlinedFinallyCalls didn't insert a branch");
 | |
|           }
 | |
|         }
 | |
|         BB = SuccBB;
 | |
|         if (BB == EndBB)
 | |
|           return;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Anything else is either a catch block or interesting cleanup code.
 | |
|     for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
 | |
|          II != IE; ++II) {
 | |
|       Instruction *Inst = II;
 | |
|       if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
 | |
|         continue;
 | |
|       // Unconditional branches fall through to this loop.
 | |
|       if (Inst == Branch)
 | |
|         continue;
 | |
|       // If this is a catch block, there is no cleanup code to be found.
 | |
|       if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
 | |
|         return;
 | |
|       // If this a nested landing pad, it may contain an endcatch call.
 | |
|       if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
 | |
|         return;
 | |
|       // Anything else makes this interesting cleanup code.
 | |
|       return createCleanupHandler(Actions, CleanupHandlerMap, BB);
 | |
|     }
 | |
| 
 | |
|     // Only unconditional branches in empty blocks should get this far.
 | |
|     assert(Branch && Branch->isUnconditional());
 | |
|     if (BB == EndBB)
 | |
|       return;
 | |
|     BB = Branch->getSuccessor(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This is a public function, declared in WinEHFuncInfo.h and is also
 | |
| // referenced by WinEHNumbering in FunctionLoweringInfo.cpp.
 | |
| void llvm::parseEHActions(
 | |
|     const IntrinsicInst *II,
 | |
|     SmallVectorImpl<std::unique_ptr<ActionHandler>> &Actions) {
 | |
|   for (unsigned I = 0, E = II->getNumArgOperands(); I != E;) {
 | |
|     uint64_t ActionKind =
 | |
|         cast<ConstantInt>(II->getArgOperand(I))->getZExtValue();
 | |
|     if (ActionKind == /*catch=*/1) {
 | |
|       auto *Selector = cast<Constant>(II->getArgOperand(I + 1));
 | |
|       ConstantInt *EHObjIndex = cast<ConstantInt>(II->getArgOperand(I + 2));
 | |
|       int64_t EHObjIndexVal = EHObjIndex->getSExtValue();
 | |
|       Constant *Handler = cast<Constant>(II->getArgOperand(I + 3));
 | |
|       I += 4;
 | |
|       auto CH = make_unique<CatchHandler>(/*BB=*/nullptr, Selector,
 | |
|                                           /*NextBB=*/nullptr);
 | |
|       CH->setHandlerBlockOrFunc(Handler);
 | |
|       CH->setExceptionVarIndex(EHObjIndexVal);
 | |
|       Actions.push_back(std::move(CH));
 | |
|     } else if (ActionKind == 0) {
 | |
|       Constant *Handler = cast<Constant>(II->getArgOperand(I + 1));
 | |
|       I += 2;
 | |
|       auto CH = make_unique<CleanupHandler>(/*BB=*/nullptr);
 | |
|       CH->setHandlerBlockOrFunc(Handler);
 | |
|       Actions.push_back(std::move(CH));
 | |
|     } else {
 | |
|       llvm_unreachable("Expected either a catch or cleanup handler!");
 | |
|     }
 | |
|   }
 | |
|   std::reverse(Actions.begin(), Actions.end());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct WinEHNumbering {
 | |
|   WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo),
 | |
|       CurrentBaseState(-1), NextState(0) {}
 | |
| 
 | |
|   WinEHFuncInfo &FuncInfo;
 | |
|   int CurrentBaseState;
 | |
|   int NextState;
 | |
| 
 | |
|   SmallVector<std::unique_ptr<ActionHandler>, 4> HandlerStack;
 | |
|   SmallPtrSet<const Function *, 4> VisitedHandlers;
 | |
| 
 | |
|   int currentEHNumber() const {
 | |
|     return HandlerStack.empty() ? CurrentBaseState : HandlerStack.back()->getEHState();
 | |
|   }
 | |
| 
 | |
|   void createUnwindMapEntry(int ToState, ActionHandler *AH);
 | |
|   void createTryBlockMapEntry(int TryLow, int TryHigh,
 | |
|                               ArrayRef<CatchHandler *> Handlers);
 | |
|   void processCallSite(MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
 | |
|                        ImmutableCallSite CS);
 | |
|   void popUnmatchedActions(int FirstMismatch);
 | |
|   void calculateStateNumbers(const Function &F);
 | |
|   void findActionRootLPads(const Function &F);
 | |
| };
 | |
| }
 | |
| 
 | |
| void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
 | |
|   WinEHUnwindMapEntry UME;
 | |
|   UME.ToState = ToState;
 | |
|   if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
 | |
|     UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc());
 | |
|   else
 | |
|     UME.Cleanup = nullptr;
 | |
|   FuncInfo.UnwindMap.push_back(UME);
 | |
| }
 | |
| 
 | |
| void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
 | |
|                                             ArrayRef<CatchHandler *> Handlers) {
 | |
|   // See if we already have an entry for this set of handlers.
 | |
|   // This is using iterators rather than a range-based for loop because
 | |
|   // if we find the entry we're looking for we'll need the iterator to erase it.
 | |
|   int NumHandlers = Handlers.size();
 | |
|   auto I = FuncInfo.TryBlockMap.begin();
 | |
|   auto E = FuncInfo.TryBlockMap.end();
 | |
|   for ( ; I != E; ++I) {
 | |
|     auto &Entry = *I;
 | |
|     if (Entry.HandlerArray.size() != (size_t)NumHandlers)
 | |
|       continue;
 | |
|     int N;
 | |
|     for (N = 0; N < NumHandlers; ++N) {
 | |
|       if (Entry.HandlerArray[N].Handler != Handlers[N]->getHandlerBlockOrFunc())
 | |
|         break; // breaks out of inner loop
 | |
|     }
 | |
|     // If all the handlers match, this is what we were looking for.
 | |
|     if (N == NumHandlers) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we found an existing entry for this set of handlers, extend the range
 | |
|   // but move the entry to the end of the map vector.  The order of entries
 | |
|   // in the map is critical to the way that the runtime finds handlers.
 | |
|   // FIXME: Depending on what has happened with block ordering, this may
 | |
|   //        incorrectly combine entries that should remain separate.
 | |
|   if (I != E) {
 | |
|     // Copy the existing entry.
 | |
|     WinEHTryBlockMapEntry Entry = *I;
 | |
|     Entry.TryLow = std::min(TryLow, Entry.TryLow);
 | |
|     Entry.TryHigh = std::max(TryHigh, Entry.TryHigh);
 | |
|     assert(Entry.TryLow <= Entry.TryHigh);
 | |
|     // Erase the old entry and add this one to the back.
 | |
|     FuncInfo.TryBlockMap.erase(I);
 | |
|     FuncInfo.TryBlockMap.push_back(Entry);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we didn't find an entry, create a new one.
 | |
|   WinEHTryBlockMapEntry TBME;
 | |
|   TBME.TryLow = TryLow;
 | |
|   TBME.TryHigh = TryHigh;
 | |
|   assert(TBME.TryLow <= TBME.TryHigh);
 | |
|   for (CatchHandler *CH : Handlers) {
 | |
|     WinEHHandlerType HT;
 | |
|     if (CH->getSelector()->isNullValue()) {
 | |
|       HT.Adjectives = 0x40;
 | |
|       HT.TypeDescriptor = nullptr;
 | |
|     } else {
 | |
|       auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts());
 | |
|       // Selectors are always pointers to GlobalVariables with 'struct' type.
 | |
|       // The struct has two fields, adjectives and a type descriptor.
 | |
|       auto *CS = cast<ConstantStruct>(GV->getInitializer());
 | |
|       HT.Adjectives =
 | |
|           cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
 | |
|       HT.TypeDescriptor =
 | |
|           cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
 | |
|     }
 | |
|     HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc());
 | |
|     HT.CatchObjRecoverIdx = CH->getExceptionVarIndex();
 | |
|     TBME.HandlerArray.push_back(HT);
 | |
|   }
 | |
|   FuncInfo.TryBlockMap.push_back(TBME);
 | |
| }
 | |
| 
 | |
| static void print_name(const Value *V) {
 | |
| #ifndef NDEBUG
 | |
|   if (!V) {
 | |
|     DEBUG(dbgs() << "null");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *F = dyn_cast<Function>(V))
 | |
|     DEBUG(dbgs() << F->getName());
 | |
|   else
 | |
|     DEBUG(V->dump());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void WinEHNumbering::processCallSite(
 | |
|     MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
 | |
|     ImmutableCallSite CS) {
 | |
|   DEBUG(dbgs() << "processCallSite (EH state = " << currentEHNumber()
 | |
|                << ") for: ");
 | |
|   print_name(CS ? CS.getCalledValue() : nullptr);
 | |
|   DEBUG(dbgs() << '\n');
 | |
| 
 | |
|   DEBUG(dbgs() << "HandlerStack: \n");
 | |
|   for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
 | |
|     DEBUG(dbgs() << "  ");
 | |
|     print_name(HandlerStack[I]->getHandlerBlockOrFunc());
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
|   DEBUG(dbgs() << "Actions: \n");
 | |
|   for (int I = 0, E = Actions.size(); I < E; ++I) {
 | |
|     DEBUG(dbgs() << "  ");
 | |
|     print_name(Actions[I]->getHandlerBlockOrFunc());
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
|   int FirstMismatch = 0;
 | |
|   for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E;
 | |
|        ++FirstMismatch) {
 | |
|     if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() !=
 | |
|         Actions[FirstMismatch]->getHandlerBlockOrFunc())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Remove unmatched actions from the stack and process their EH states.
 | |
|   popUnmatchedActions(FirstMismatch);
 | |
| 
 | |
|   DEBUG(dbgs() << "Pushing actions for CallSite: ");
 | |
|   print_name(CS ? CS.getCalledValue() : nullptr);
 | |
|   DEBUG(dbgs() << '\n');
 | |
| 
 | |
|   bool LastActionWasCatch = false;
 | |
|   const LandingPadInst *LastRootLPad = nullptr;
 | |
|   for (size_t I = FirstMismatch; I != Actions.size(); ++I) {
 | |
|     // We can reuse eh states when pushing two catches for the same invoke.
 | |
|     bool CurrActionIsCatch = isa<CatchHandler>(Actions[I].get());
 | |
|     auto *Handler = cast<Function>(Actions[I]->getHandlerBlockOrFunc());
 | |
|     // Various conditions can lead to a handler being popped from the
 | |
|     // stack and re-pushed later.  That shouldn't create a new state.
 | |
|     // FIXME: Can code optimization lead to re-used handlers?
 | |
|     if (FuncInfo.HandlerEnclosedState.count(Handler)) {
 | |
|       // If we already assigned the state enclosed by this handler re-use it.
 | |
|       Actions[I]->setEHState(FuncInfo.HandlerEnclosedState[Handler]);
 | |
|       continue;
 | |
|     }
 | |
|     const LandingPadInst* RootLPad = FuncInfo.RootLPad[Handler];
 | |
|     if (CurrActionIsCatch && LastActionWasCatch && RootLPad == LastRootLPad) {
 | |
|       DEBUG(dbgs() << "setEHState for handler to " << currentEHNumber() << "\n");
 | |
|       Actions[I]->setEHState(currentEHNumber());
 | |
|     } else {
 | |
|       DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", ");
 | |
|       print_name(Actions[I]->getHandlerBlockOrFunc());
 | |
|       DEBUG(dbgs() << ") with EH state " << NextState << "\n");
 | |
|       createUnwindMapEntry(currentEHNumber(), Actions[I].get());
 | |
|       DEBUG(dbgs() << "setEHState for handler to " << NextState << "\n");
 | |
|       Actions[I]->setEHState(NextState);
 | |
|       NextState++;
 | |
|     }
 | |
|     HandlerStack.push_back(std::move(Actions[I]));
 | |
|     LastActionWasCatch = CurrActionIsCatch;
 | |
|     LastRootLPad = RootLPad;
 | |
|   }
 | |
| 
 | |
|   // This is used to defer numbering states for a handler until after the
 | |
|   // last time it appears in an invoke action list.
 | |
|   if (CS.isInvoke()) {
 | |
|     for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
 | |
|       auto *Handler = cast<Function>(HandlerStack[I]->getHandlerBlockOrFunc());
 | |
|       if (FuncInfo.LastInvoke[Handler] != cast<InvokeInst>(CS.getInstruction()))
 | |
|         continue;
 | |
|       FuncInfo.LastInvokeVisited[Handler] = true;
 | |
|       DEBUG(dbgs() << "Last invoke of ");
 | |
|       print_name(Handler);
 | |
|       DEBUG(dbgs() << " has been visited.\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: ");
 | |
|   print_name(CS ? CS.getCalledValue() : nullptr);
 | |
|   DEBUG(dbgs() << '\n');
 | |
| }
 | |
| 
 | |
| void WinEHNumbering::popUnmatchedActions(int FirstMismatch) {
 | |
|   // Don't recurse while we are looping over the handler stack.  Instead, defer
 | |
|   // the numbering of the catch handlers until we are done popping.
 | |
|   SmallVector<CatchHandler *, 4> PoppedCatches;
 | |
|   for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) {
 | |
|     std::unique_ptr<ActionHandler> Handler = HandlerStack.pop_back_val();
 | |
|     if (isa<CatchHandler>(Handler.get()))
 | |
|       PoppedCatches.push_back(cast<CatchHandler>(Handler.release()));
 | |
|   }
 | |
| 
 | |
|   int TryHigh = NextState - 1;
 | |
|   int LastTryLowIdx = 0;
 | |
|   for (int I = 0, E = PoppedCatches.size(); I != E; ++I) {
 | |
|     CatchHandler *CH = PoppedCatches[I];
 | |
|     DEBUG(dbgs() << "Popped handler with state " << CH->getEHState() << "\n");
 | |
|     if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) {
 | |
|       int TryLow = CH->getEHState();
 | |
|       auto Handlers =
 | |
|           makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1);
 | |
|       DEBUG(dbgs() << "createTryBlockMapEntry(" << TryLow << ", " << TryHigh);
 | |
|       for (size_t J = 0; J < Handlers.size(); ++J) {
 | |
|         DEBUG(dbgs() << ", ");
 | |
|         print_name(Handlers[J]->getHandlerBlockOrFunc());
 | |
|       }
 | |
|       DEBUG(dbgs() << ")\n");
 | |
|       createTryBlockMapEntry(TryLow, TryHigh, Handlers);
 | |
|       LastTryLowIdx = I + 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (CatchHandler *CH : PoppedCatches) {
 | |
|     if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc())) {
 | |
|       if (FuncInfo.LastInvokeVisited[F]) {
 | |
|         DEBUG(dbgs() << "Assigning base state " << NextState << " to ");
 | |
|         print_name(F);
 | |
|         DEBUG(dbgs() << '\n');
 | |
|         FuncInfo.HandlerBaseState[F] = NextState;
 | |
|         DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber()
 | |
|                      << ", null)\n");
 | |
|         createUnwindMapEntry(currentEHNumber(), nullptr);
 | |
|         ++NextState;
 | |
|         calculateStateNumbers(*F);
 | |
|       }
 | |
|       else {
 | |
|         DEBUG(dbgs() << "Deferring handling of ");
 | |
|         print_name(F);
 | |
|         DEBUG(dbgs() << " until last invoke visited.\n");
 | |
|       }
 | |
|     }
 | |
|     delete CH;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WinEHNumbering::calculateStateNumbers(const Function &F) {
 | |
|   auto I = VisitedHandlers.insert(&F);
 | |
|   if (!I.second)
 | |
|     return; // We've already visited this handler, don't renumber it.
 | |
| 
 | |
|   int OldBaseState = CurrentBaseState;
 | |
|   if (FuncInfo.HandlerBaseState.count(&F)) {
 | |
|     CurrentBaseState = FuncInfo.HandlerBaseState[&F];
 | |
|   }
 | |
| 
 | |
|   size_t SavedHandlerStackSize = HandlerStack.size();
 | |
| 
 | |
|   DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n');
 | |
|   SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
 | |
|   for (const BasicBlock &BB : F) {
 | |
|     for (const Instruction &I : BB) {
 | |
|       const auto *CI = dyn_cast<CallInst>(&I);
 | |
|       if (!CI || CI->doesNotThrow())
 | |
|         continue;
 | |
|       processCallSite(None, CI);
 | |
|     }
 | |
|     const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
 | |
|     if (!II)
 | |
|       continue;
 | |
|     const LandingPadInst *LPI = II->getLandingPadInst();
 | |
|     auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
 | |
|     if (!ActionsCall)
 | |
|       continue;
 | |
|     assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
 | |
|     parseEHActions(ActionsCall, ActionList);
 | |
|     if (ActionList.empty())
 | |
|       continue;
 | |
|     processCallSite(ActionList, II);
 | |
|     ActionList.clear();
 | |
|     FuncInfo.LandingPadStateMap[LPI] = currentEHNumber();
 | |
|     DEBUG(dbgs() << "Assigning state " << currentEHNumber()
 | |
|                   << " to landing pad at " << LPI->getParent()->getName()
 | |
|                   << '\n');
 | |
|   }
 | |
| 
 | |
|   // Pop any actions that were pushed on the stack for this function.
 | |
|   popUnmatchedActions(SavedHandlerStackSize);
 | |
| 
 | |
|   DEBUG(dbgs() << "Assigning max state " << NextState - 1
 | |
|                << " to " << F.getName() << '\n');
 | |
|   FuncInfo.CatchHandlerMaxState[&F] = NextState - 1;
 | |
| 
 | |
|   CurrentBaseState = OldBaseState;
 | |
| }
 | |
| 
 | |
| // This function follows the same basic traversal as calculateStateNumbers
 | |
| // but it is necessary to identify the root landing pad associated
 | |
| // with each action before we start assigning state numbers.
 | |
| void WinEHNumbering::findActionRootLPads(const Function &F) {
 | |
|   auto I = VisitedHandlers.insert(&F);
 | |
|   if (!I.second)
 | |
|     return; // We've already visited this handler, don't revisit it.
 | |
| 
 | |
|   SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
 | |
|   for (const BasicBlock &BB : F) {
 | |
|     const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
 | |
|     if (!II)
 | |
|       continue;
 | |
|     const LandingPadInst *LPI = II->getLandingPadInst();
 | |
|     auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
 | |
|     if (!ActionsCall)
 | |
|       continue;
 | |
| 
 | |
|     assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
 | |
|     parseEHActions(ActionsCall, ActionList);
 | |
|     if (ActionList.empty())
 | |
|       continue;
 | |
|     for (int I = 0, E = ActionList.size(); I < E; ++I) {
 | |
|       if (auto *Handler
 | |
|               = dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc())) {
 | |
|         FuncInfo.LastInvoke[Handler] = II;
 | |
|         // Don't replace the root landing pad if we previously saw this
 | |
|         // handler in a different function.
 | |
|         if (FuncInfo.RootLPad.count(Handler) &&
 | |
|             FuncInfo.RootLPad[Handler]->getParent()->getParent() != &F)
 | |
|           continue;
 | |
|         DEBUG(dbgs() << "Setting root lpad for ");
 | |
|         print_name(Handler);
 | |
|         DEBUG(dbgs() << " to " << LPI->getParent()->getName() << '\n');
 | |
|         FuncInfo.RootLPad[Handler] = LPI;
 | |
|       }
 | |
|     }
 | |
|     // Walk the actions again and look for nested handlers.  This has to
 | |
|     // happen after all of the actions have been processed in the current
 | |
|     // function.
 | |
|     for (int I = 0, E = ActionList.size(); I < E; ++I)
 | |
|       if (auto *Handler
 | |
|               = dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc()))
 | |
|         findActionRootLPads(*Handler);
 | |
|     ActionList.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void llvm::calculateWinCXXEHStateNumbers(const Function *ParentFn,
 | |
|                                          WinEHFuncInfo &FuncInfo) {
 | |
|   // Return if it's already been done.
 | |
|   if (!FuncInfo.LandingPadStateMap.empty())
 | |
|     return;
 | |
| 
 | |
|   WinEHNumbering Num(FuncInfo);
 | |
|   Num.findActionRootLPads(*ParentFn);
 | |
|   // The VisitedHandlers list is used by both findActionRootLPads and
 | |
|   // calculateStateNumbers, but both functions need to visit all handlers.
 | |
|   Num.VisitedHandlers.clear();
 | |
|   Num.calculateStateNumbers(*ParentFn);
 | |
|   // Pop everything on the handler stack.
 | |
|   // It may be necessary to call this more than once because a handler can
 | |
|   // be pushed on the stack as a result of clearing the stack.
 | |
|   while (!Num.HandlerStack.empty())
 | |
|     Num.processCallSite(None, ImmutableCallSite());
 | |
| }
 |