mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82898 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			620 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			620 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The ScalarEvolution class is an LLVM pass which can be used to analyze and
 | 
						|
// catagorize scalar expressions in loops.  It specializes in recognizing
 | 
						|
// general induction variables, representing them with the abstract and opaque
 | 
						|
// SCEV class.  Given this analysis, trip counts of loops and other important
 | 
						|
// properties can be obtained.
 | 
						|
//
 | 
						|
// This analysis is primarily useful for induction variable substitution and
 | 
						|
// strength reduction.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
 | 
						|
#define LLVM_ANALYSIS_SCALAREVOLUTION_H
 | 
						|
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/Allocator.h"
 | 
						|
#include "llvm/Support/ConstantRange.h"
 | 
						|
#include "llvm/ADT/FoldingSet.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include <map>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  class APInt;
 | 
						|
  class Constant;
 | 
						|
  class ConstantInt;
 | 
						|
  class DominatorTree;
 | 
						|
  class Type;
 | 
						|
  class ScalarEvolution;
 | 
						|
  class TargetData;
 | 
						|
  class LLVMContext;
 | 
						|
  class Loop;
 | 
						|
  class LoopInfo;
 | 
						|
  class Operator;
 | 
						|
 | 
						|
  /// SCEV - This class represents an analyzed expression in the program.  These
 | 
						|
  /// are opaque objects that the client is not allowed to do much with
 | 
						|
  /// directly.
 | 
						|
  ///
 | 
						|
  class SCEV : public FastFoldingSetNode {
 | 
						|
    // The SCEV baseclass this node corresponds to
 | 
						|
    const unsigned short SCEVType;
 | 
						|
 | 
						|
  protected:
 | 
						|
    /// SubclassData - This field is initialized to zero and may be used in
 | 
						|
    /// subclasses to store miscelaneous information.
 | 
						|
    unsigned short SubclassData;
 | 
						|
 | 
						|
  private:
 | 
						|
    SCEV(const SCEV &);            // DO NOT IMPLEMENT
 | 
						|
    void operator=(const SCEV &);  // DO NOT IMPLEMENT
 | 
						|
  protected:
 | 
						|
    virtual ~SCEV();
 | 
						|
  public:
 | 
						|
    explicit SCEV(const FoldingSetNodeID &ID, unsigned SCEVTy) :
 | 
						|
      FastFoldingSetNode(ID), SCEVType(SCEVTy), SubclassData(0) {}
 | 
						|
 | 
						|
    unsigned getSCEVType() const { return SCEVType; }
 | 
						|
 | 
						|
    /// isLoopInvariant - Return true if the value of this SCEV is unchanging in
 | 
						|
    /// the specified loop.
 | 
						|
    virtual bool isLoopInvariant(const Loop *L) const = 0;
 | 
						|
 | 
						|
    /// hasComputableLoopEvolution - Return true if this SCEV changes value in a
 | 
						|
    /// known way in the specified loop.  This property being true implies that
 | 
						|
    /// the value is variant in the loop AND that we can emit an expression to
 | 
						|
    /// compute the value of the expression at any particular loop iteration.
 | 
						|
    virtual bool hasComputableLoopEvolution(const Loop *L) const = 0;
 | 
						|
 | 
						|
    /// getType - Return the LLVM type of this SCEV expression.
 | 
						|
    ///
 | 
						|
    virtual const Type *getType() const = 0;
 | 
						|
 | 
						|
    /// isZero - Return true if the expression is a constant zero.
 | 
						|
    ///
 | 
						|
    bool isZero() const;
 | 
						|
 | 
						|
    /// isOne - Return true if the expression is a constant one.
 | 
						|
    ///
 | 
						|
    bool isOne() const;
 | 
						|
 | 
						|
    /// isAllOnesValue - Return true if the expression is a constant
 | 
						|
    /// all-ones value.
 | 
						|
    ///
 | 
						|
    bool isAllOnesValue() const;
 | 
						|
 | 
						|
    /// hasOperand - Test whether this SCEV has Op as a direct or
 | 
						|
    /// indirect operand.
 | 
						|
    virtual bool hasOperand(const SCEV *Op) const = 0;
 | 
						|
 | 
						|
    /// dominates - Return true if elements that makes up this SCEV dominates
 | 
						|
    /// the specified basic block.
 | 
						|
    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const = 0;
 | 
						|
 | 
						|
    /// properlyDominates - Return true if elements that makes up this SCEV
 | 
						|
    /// properly dominate the specified basic block.
 | 
						|
    virtual bool properlyDominates(BasicBlock *BB, DominatorTree *DT) const = 0;
 | 
						|
 | 
						|
    /// print - Print out the internal representation of this scalar to the
 | 
						|
    /// specified stream.  This should really only be used for debugging
 | 
						|
    /// purposes.
 | 
						|
    virtual void print(raw_ostream &OS) const = 0;
 | 
						|
 | 
						|
    /// dump - This method is used for debugging.
 | 
						|
    ///
 | 
						|
    void dump() const;
 | 
						|
  };
 | 
						|
 | 
						|
  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
 | 
						|
    S.print(OS);
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
 | 
						|
  /// SCEVCouldNotCompute - An object of this class is returned by queries that
 | 
						|
  /// could not be answered.  For example, if you ask for the number of
 | 
						|
  /// iterations of a linked-list traversal loop, you will get one of these.
 | 
						|
  /// None of the standard SCEV operations are valid on this class, it is just a
 | 
						|
  /// marker.
 | 
						|
  struct SCEVCouldNotCompute : public SCEV {
 | 
						|
    SCEVCouldNotCompute();
 | 
						|
 | 
						|
    // None of these methods are valid for this object.
 | 
						|
    virtual bool isLoopInvariant(const Loop *L) const;
 | 
						|
    virtual const Type *getType() const;
 | 
						|
    virtual bool hasComputableLoopEvolution(const Loop *L) const;
 | 
						|
    virtual void print(raw_ostream &OS) const;
 | 
						|
    virtual bool hasOperand(const SCEV *Op) const;
 | 
						|
 | 
						|
    virtual bool dominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
    static inline bool classof(const SCEVCouldNotCompute *S) { return true; }
 | 
						|
    static bool classof(const SCEV *S);
 | 
						|
  };
 | 
						|
 | 
						|
  /// ScalarEvolution - This class is the main scalar evolution driver.  Because
 | 
						|
  /// client code (intentionally) can't do much with the SCEV objects directly,
 | 
						|
  /// they must ask this class for services.
 | 
						|
  ///
 | 
						|
  class ScalarEvolution : public FunctionPass {
 | 
						|
    /// SCEVCallbackVH - A CallbackVH to arrange for ScalarEvolution to be
 | 
						|
    /// notified whenever a Value is deleted.
 | 
						|
    class SCEVCallbackVH : public CallbackVH {
 | 
						|
      ScalarEvolution *SE;
 | 
						|
      virtual void deleted();
 | 
						|
      virtual void allUsesReplacedWith(Value *New);
 | 
						|
    public:
 | 
						|
      SCEVCallbackVH(Value *V, ScalarEvolution *SE = 0);
 | 
						|
    };
 | 
						|
 | 
						|
    friend class SCEVCallbackVH;
 | 
						|
    friend struct SCEVExpander;
 | 
						|
 | 
						|
    /// F - The function we are analyzing.
 | 
						|
    ///
 | 
						|
    Function *F;
 | 
						|
 | 
						|
    /// LI - The loop information for the function we are currently analyzing.
 | 
						|
    ///
 | 
						|
    LoopInfo *LI;
 | 
						|
 | 
						|
    /// TD - The target data information for the target we are targetting.
 | 
						|
    ///
 | 
						|
    TargetData *TD;
 | 
						|
 | 
						|
    /// CouldNotCompute - This SCEV is used to represent unknown trip
 | 
						|
    /// counts and things.
 | 
						|
    SCEVCouldNotCompute CouldNotCompute;
 | 
						|
 | 
						|
    /// Scalars - This is a cache of the scalars we have analyzed so far.
 | 
						|
    ///
 | 
						|
    std::map<SCEVCallbackVH, const SCEV *> Scalars;
 | 
						|
 | 
						|
    /// BackedgeTakenInfo - Information about the backedge-taken count
 | 
						|
    /// of a loop. This currently inclues an exact count and a maximum count.
 | 
						|
    ///
 | 
						|
    struct BackedgeTakenInfo {
 | 
						|
      /// Exact - An expression indicating the exact backedge-taken count of
 | 
						|
      /// the loop if it is known, or a SCEVCouldNotCompute otherwise.
 | 
						|
      const SCEV *Exact;
 | 
						|
 | 
						|
      /// Max - An expression indicating the least maximum backedge-taken
 | 
						|
      /// count of the loop that is known, or a SCEVCouldNotCompute.
 | 
						|
      const SCEV *Max;
 | 
						|
 | 
						|
      /*implicit*/ BackedgeTakenInfo(const SCEV *exact) :
 | 
						|
        Exact(exact), Max(exact) {}
 | 
						|
 | 
						|
      BackedgeTakenInfo(const SCEV *exact, const SCEV *max) :
 | 
						|
        Exact(exact), Max(max) {}
 | 
						|
 | 
						|
      /// hasAnyInfo - Test whether this BackedgeTakenInfo contains any
 | 
						|
      /// computed information, or whether it's all SCEVCouldNotCompute
 | 
						|
      /// values.
 | 
						|
      bool hasAnyInfo() const {
 | 
						|
        return !isa<SCEVCouldNotCompute>(Exact) ||
 | 
						|
               !isa<SCEVCouldNotCompute>(Max);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    /// BackedgeTakenCounts - Cache the backedge-taken count of the loops for
 | 
						|
    /// this function as they are computed.
 | 
						|
    std::map<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
 | 
						|
 | 
						|
    /// ConstantEvolutionLoopExitValue - This map contains entries for all of
 | 
						|
    /// the PHI instructions that we attempt to compute constant evolutions for.
 | 
						|
    /// This allows us to avoid potentially expensive recomputation of these
 | 
						|
    /// properties.  An instruction maps to null if we are unable to compute its
 | 
						|
    /// exit value.
 | 
						|
    std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
 | 
						|
 | 
						|
    /// ValuesAtScopes - This map contains entries for all the expressions
 | 
						|
    /// that we attempt to compute getSCEVAtScope information for, which can
 | 
						|
    /// be expensive in extreme cases.
 | 
						|
    std::map<const SCEV *,
 | 
						|
             std::map<const Loop *, const SCEV *> > ValuesAtScopes;
 | 
						|
 | 
						|
    /// createSCEV - We know that there is no SCEV for the specified value.
 | 
						|
    /// Analyze the expression.
 | 
						|
    const SCEV *createSCEV(Value *V);
 | 
						|
 | 
						|
    /// createNodeForPHI - Provide the special handling we need to analyze PHI
 | 
						|
    /// SCEVs.
 | 
						|
    const SCEV *createNodeForPHI(PHINode *PN);
 | 
						|
 | 
						|
    /// createNodeForGEP - Provide the special handling we need to analyze GEP
 | 
						|
    /// SCEVs.
 | 
						|
    const SCEV *createNodeForGEP(Operator *GEP);
 | 
						|
 | 
						|
    /// computeSCEVAtScope - Implementation code for getSCEVAtScope; called
 | 
						|
    /// at most once for each SCEV+Loop pair.
 | 
						|
    ///
 | 
						|
    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
 | 
						|
 | 
						|
    /// ForgetSymbolicValue - This looks up computed SCEV values for all
 | 
						|
    /// instructions that depend on the given instruction and removes them from
 | 
						|
    /// the Scalars map if they reference SymName. This is used during PHI
 | 
						|
    /// resolution.
 | 
						|
    void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
 | 
						|
 | 
						|
    /// getBECount - Subtract the end and start values and divide by the step,
 | 
						|
    /// rounding up, to get the number of times the backedge is executed. Return
 | 
						|
    /// CouldNotCompute if an intermediate computation overflows.
 | 
						|
    const SCEV *getBECount(const SCEV *Start,
 | 
						|
                           const SCEV *End,
 | 
						|
                           const SCEV *Step,
 | 
						|
                           bool NoWrap);
 | 
						|
 | 
						|
    /// getBackedgeTakenInfo - Return the BackedgeTakenInfo for the given
 | 
						|
    /// loop, lazily computing new values if the loop hasn't been analyzed
 | 
						|
    /// yet.
 | 
						|
    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
 | 
						|
 | 
						|
    /// ComputeBackedgeTakenCount - Compute the number of times the specified
 | 
						|
    /// loop will iterate.
 | 
						|
    BackedgeTakenInfo ComputeBackedgeTakenCount(const Loop *L);
 | 
						|
 | 
						|
    /// ComputeBackedgeTakenCountFromExit - Compute the number of times the
 | 
						|
    /// backedge of the specified loop will execute if it exits via the
 | 
						|
    /// specified block.
 | 
						|
    BackedgeTakenInfo ComputeBackedgeTakenCountFromExit(const Loop *L,
 | 
						|
                                                      BasicBlock *ExitingBlock);
 | 
						|
 | 
						|
    /// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
 | 
						|
    /// backedge of the specified loop will execute if its exit condition
 | 
						|
    /// were a conditional branch of ExitCond, TBB, and FBB.
 | 
						|
    BackedgeTakenInfo
 | 
						|
      ComputeBackedgeTakenCountFromExitCond(const Loop *L,
 | 
						|
                                            Value *ExitCond,
 | 
						|
                                            BasicBlock *TBB,
 | 
						|
                                            BasicBlock *FBB);
 | 
						|
 | 
						|
    /// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of
 | 
						|
    /// times the backedge of the specified loop will execute if its exit
 | 
						|
    /// condition were a conditional branch of the ICmpInst ExitCond, TBB,
 | 
						|
    /// and FBB.
 | 
						|
    BackedgeTakenInfo
 | 
						|
      ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
 | 
						|
                                                ICmpInst *ExitCond,
 | 
						|
                                                BasicBlock *TBB,
 | 
						|
                                                BasicBlock *FBB);
 | 
						|
 | 
						|
    /// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition
 | 
						|
    /// of 'icmp op load X, cst', try to see if we can compute the
 | 
						|
    /// backedge-taken count.
 | 
						|
    const SCEV *
 | 
						|
      ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI,
 | 
						|
                                                   Constant *RHS,
 | 
						|
                                                   const Loop *L,
 | 
						|
                                                   ICmpInst::Predicate p);
 | 
						|
 | 
						|
    /// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute
 | 
						|
    /// a constant number of times (the condition evolves only from constants),
 | 
						|
    /// try to evaluate a few iterations of the loop until we get the exit
 | 
						|
    /// condition gets a value of ExitWhen (true or false).  If we cannot
 | 
						|
    /// evaluate the backedge-taken count of the loop, return CouldNotCompute.
 | 
						|
    const SCEV *ComputeBackedgeTakenCountExhaustively(const Loop *L,
 | 
						|
                                                      Value *Cond,
 | 
						|
                                                      bool ExitWhen);
 | 
						|
 | 
						|
    /// HowFarToZero - Return the number of times a backedge comparing the
 | 
						|
    /// specified value to zero will execute.  If not computable, return
 | 
						|
    /// CouldNotCompute.
 | 
						|
    const SCEV *HowFarToZero(const SCEV *V, const Loop *L);
 | 
						|
 | 
						|
    /// HowFarToNonZero - Return the number of times a backedge checking the
 | 
						|
    /// specified value for nonzero will execute.  If not computable, return
 | 
						|
    /// CouldNotCompute.
 | 
						|
    const SCEV *HowFarToNonZero(const SCEV *V, const Loop *L);
 | 
						|
 | 
						|
    /// HowManyLessThans - Return the number of times a backedge containing the
 | 
						|
    /// specified less-than comparison will execute.  If not computable, return
 | 
						|
    /// CouldNotCompute. isSigned specifies whether the less-than is signed.
 | 
						|
    BackedgeTakenInfo HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
 | 
						|
                                       const Loop *L, bool isSigned);
 | 
						|
 | 
						|
    /// getLoopPredecessor - If the given loop's header has exactly one unique
 | 
						|
    /// predecessor outside the loop, return it. Otherwise return null.
 | 
						|
    BasicBlock *getLoopPredecessor(const Loop *L);
 | 
						|
 | 
						|
    /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
 | 
						|
    /// (which may not be an immediate predecessor) which has exactly one
 | 
						|
    /// successor from which BB is reachable, or null if no such block is
 | 
						|
    /// found.
 | 
						|
    BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
 | 
						|
 | 
						|
    /// isImpliedCond - Test whether the condition described by Pred, LHS,
 | 
						|
    /// and RHS is true whenever the given Cond value evaluates to true.
 | 
						|
    bool isImpliedCond(Value *Cond, ICmpInst::Predicate Pred,
 | 
						|
                       const SCEV *LHS, const SCEV *RHS,
 | 
						|
                       bool Inverse);
 | 
						|
 | 
						|
    /// isImpliedCondOperands - Test whether the condition described by Pred,
 | 
						|
    /// LHS, and RHS is true whenever the condition desribed by Pred, FoundLHS,
 | 
						|
    /// and FoundRHS is true.
 | 
						|
    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
 | 
						|
                               const SCEV *LHS, const SCEV *RHS,
 | 
						|
                               const SCEV *FoundLHS, const SCEV *FoundRHS);
 | 
						|
 | 
						|
    /// isImpliedCondOperandsHelper - Test whether the condition described by
 | 
						|
    /// Pred, LHS, and RHS is true whenever the condition desribed by Pred,
 | 
						|
    /// FoundLHS, and FoundRHS is true.
 | 
						|
    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
 | 
						|
                                     const SCEV *LHS, const SCEV *RHS,
 | 
						|
                                     const SCEV *FoundLHS, const SCEV *FoundRHS);
 | 
						|
 | 
						|
    /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | 
						|
    /// in the header of its containing loop, we know the loop executes a
 | 
						|
    /// constant number of times, and the PHI node is just a recurrence
 | 
						|
    /// involving constants, fold it.
 | 
						|
    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
 | 
						|
                                                const Loop *L);
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    ScalarEvolution();
 | 
						|
 | 
						|
    LLVMContext &getContext() const { return F->getContext(); }
 | 
						|
 | 
						|
    /// isSCEVable - Test if values of the given type are analyzable within
 | 
						|
    /// the SCEV framework. This primarily includes integer types, and it
 | 
						|
    /// can optionally include pointer types if the ScalarEvolution class
 | 
						|
    /// has access to target-specific information.
 | 
						|
    bool isSCEVable(const Type *Ty) const;
 | 
						|
 | 
						|
    /// getTypeSizeInBits - Return the size in bits of the specified type,
 | 
						|
    /// for which isSCEVable must return true.
 | 
						|
    uint64_t getTypeSizeInBits(const Type *Ty) const;
 | 
						|
 | 
						|
    /// getEffectiveSCEVType - Return a type with the same bitwidth as
 | 
						|
    /// the given type and which represents how SCEV will treat the given
 | 
						|
    /// type, for which isSCEVable must return true. For pointer types,
 | 
						|
    /// this is the pointer-sized integer type.
 | 
						|
    const Type *getEffectiveSCEVType(const Type *Ty) const;
 | 
						|
 | 
						|
    /// getSCEV - Return a SCEV expression for the full generality of the
 | 
						|
    /// specified expression.
 | 
						|
    const SCEV *getSCEV(Value *V);
 | 
						|
 | 
						|
    const SCEV *getConstant(ConstantInt *V);
 | 
						|
    const SCEV *getConstant(const APInt& Val);
 | 
						|
    const SCEV *getConstant(const Type *Ty, uint64_t V, bool isSigned = false);
 | 
						|
    const SCEV *getTruncateExpr(const SCEV *Op, const Type *Ty);
 | 
						|
    const SCEV *getZeroExtendExpr(const SCEV *Op, const Type *Ty);
 | 
						|
    const SCEV *getSignExtendExpr(const SCEV *Op, const Type *Ty);
 | 
						|
    const SCEV *getAnyExtendExpr(const SCEV *Op, const Type *Ty);
 | 
						|
    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops);
 | 
						|
    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS) {
 | 
						|
      SmallVector<const SCEV *, 2> Ops;
 | 
						|
      Ops.push_back(LHS);
 | 
						|
      Ops.push_back(RHS);
 | 
						|
      return getAddExpr(Ops);
 | 
						|
    }
 | 
						|
    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1,
 | 
						|
                           const SCEV *Op2) {
 | 
						|
      SmallVector<const SCEV *, 3> Ops;
 | 
						|
      Ops.push_back(Op0);
 | 
						|
      Ops.push_back(Op1);
 | 
						|
      Ops.push_back(Op2);
 | 
						|
      return getAddExpr(Ops);
 | 
						|
    }
 | 
						|
    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops);
 | 
						|
    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS) {
 | 
						|
      SmallVector<const SCEV *, 2> Ops;
 | 
						|
      Ops.push_back(LHS);
 | 
						|
      Ops.push_back(RHS);
 | 
						|
      return getMulExpr(Ops);
 | 
						|
    }
 | 
						|
    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
 | 
						|
    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
 | 
						|
                              const Loop *L);
 | 
						|
    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
 | 
						|
                              const Loop *L);
 | 
						|
    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
 | 
						|
                              const Loop *L) {
 | 
						|
      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
 | 
						|
      return getAddRecExpr(NewOp, L);
 | 
						|
    }
 | 
						|
    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
 | 
						|
    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
 | 
						|
    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
 | 
						|
    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
 | 
						|
    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
 | 
						|
    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
 | 
						|
    const SCEV *getFieldOffsetExpr(const StructType *STy, unsigned FieldNo);
 | 
						|
    const SCEV *getAllocSizeExpr(const Type *AllocTy);
 | 
						|
    const SCEV *getUnknown(Value *V);
 | 
						|
    const SCEV *getCouldNotCompute();
 | 
						|
 | 
						|
    /// getNegativeSCEV - Return the SCEV object corresponding to -V.
 | 
						|
    ///
 | 
						|
    const SCEV *getNegativeSCEV(const SCEV *V);
 | 
						|
 | 
						|
    /// getNotSCEV - Return the SCEV object corresponding to ~V.
 | 
						|
    ///
 | 
						|
    const SCEV *getNotSCEV(const SCEV *V);
 | 
						|
 | 
						|
    /// getMinusSCEV - Return LHS-RHS.
 | 
						|
    ///
 | 
						|
    const SCEV *getMinusSCEV(const SCEV *LHS,
 | 
						|
                             const SCEV *RHS);
 | 
						|
 | 
						|
    /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion
 | 
						|
    /// of the input value to the specified type.  If the type must be
 | 
						|
    /// extended, it is zero extended.
 | 
						|
    const SCEV *getTruncateOrZeroExtend(const SCEV *V, const Type *Ty);
 | 
						|
 | 
						|
    /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion
 | 
						|
    /// of the input value to the specified type.  If the type must be
 | 
						|
    /// extended, it is sign extended.
 | 
						|
    const SCEV *getTruncateOrSignExtend(const SCEV *V, const Type *Ty);
 | 
						|
 | 
						|
    /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of
 | 
						|
    /// the input value to the specified type.  If the type must be extended,
 | 
						|
    /// it is zero extended.  The conversion must not be narrowing.
 | 
						|
    const SCEV *getNoopOrZeroExtend(const SCEV *V, const Type *Ty);
 | 
						|
 | 
						|
    /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of
 | 
						|
    /// the input value to the specified type.  If the type must be extended,
 | 
						|
    /// it is sign extended.  The conversion must not be narrowing.
 | 
						|
    const SCEV *getNoopOrSignExtend(const SCEV *V, const Type *Ty);
 | 
						|
 | 
						|
    /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
 | 
						|
    /// the input value to the specified type. If the type must be extended,
 | 
						|
    /// it is extended with unspecified bits. The conversion must not be
 | 
						|
    /// narrowing.
 | 
						|
    const SCEV *getNoopOrAnyExtend(const SCEV *V, const Type *Ty);
 | 
						|
 | 
						|
    /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
 | 
						|
    /// input value to the specified type.  The conversion must not be
 | 
						|
    /// widening.
 | 
						|
    const SCEV *getTruncateOrNoop(const SCEV *V, const Type *Ty);
 | 
						|
 | 
						|
    /// getIntegerSCEV - Given a SCEVable type, create a constant for the
 | 
						|
    /// specified signed integer value and return a SCEV for the constant.
 | 
						|
    const SCEV *getIntegerSCEV(int Val, const Type *Ty);
 | 
						|
 | 
						|
    /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
 | 
						|
    /// the types using zero-extension, and then perform a umax operation
 | 
						|
    /// with them.
 | 
						|
    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
 | 
						|
                                           const SCEV *RHS);
 | 
						|
 | 
						|
    /// getUMinFromMismatchedTypes - Promote the operands to the wider of
 | 
						|
    /// the types using zero-extension, and then perform a umin operation
 | 
						|
    /// with them.
 | 
						|
    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
 | 
						|
                                           const SCEV *RHS);
 | 
						|
 | 
						|
    /// getSCEVAtScope - Return a SCEV expression for the specified value
 | 
						|
    /// at the specified scope in the program.  The L value specifies a loop
 | 
						|
    /// nest to evaluate the expression at, where null is the top-level or a
 | 
						|
    /// specified loop is immediately inside of the loop.
 | 
						|
    ///
 | 
						|
    /// This method can be used to compute the exit value for a variable defined
 | 
						|
    /// in a loop by querying what the value will hold in the parent loop.
 | 
						|
    ///
 | 
						|
    /// In the case that a relevant loop exit value cannot be computed, the
 | 
						|
    /// original value V is returned.
 | 
						|
    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
 | 
						|
 | 
						|
    /// getSCEVAtScope - This is a convenience function which does
 | 
						|
    /// getSCEVAtScope(getSCEV(V), L).
 | 
						|
    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
 | 
						|
 | 
						|
    /// isLoopGuardedByCond - Test whether entry to the loop is protected by
 | 
						|
    /// a conditional between LHS and RHS.  This is used to help avoid max
 | 
						|
    /// expressions in loop trip counts, and to eliminate casts.
 | 
						|
    bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
 | 
						|
                             const SCEV *LHS, const SCEV *RHS);
 | 
						|
 | 
						|
    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
 | 
						|
    /// protected by a conditional between LHS and RHS.  This is used to
 | 
						|
    /// to eliminate casts.
 | 
						|
    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
 | 
						|
                                     const SCEV *LHS, const SCEV *RHS);
 | 
						|
 | 
						|
    /// getBackedgeTakenCount - If the specified loop has a predictable
 | 
						|
    /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
 | 
						|
    /// object. The backedge-taken count is the number of times the loop header
 | 
						|
    /// will be branched to from within the loop. This is one less than the
 | 
						|
    /// trip count of the loop, since it doesn't count the first iteration,
 | 
						|
    /// when the header is branched to from outside the loop.
 | 
						|
    ///
 | 
						|
    /// Note that it is not valid to call this method on a loop without a
 | 
						|
    /// loop-invariant backedge-taken count (see
 | 
						|
    /// hasLoopInvariantBackedgeTakenCount).
 | 
						|
    ///
 | 
						|
    const SCEV *getBackedgeTakenCount(const Loop *L);
 | 
						|
 | 
						|
    /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
 | 
						|
    /// return the least SCEV value that is known never to be less than the
 | 
						|
    /// actual backedge taken count.
 | 
						|
    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
 | 
						|
 | 
						|
    /// hasLoopInvariantBackedgeTakenCount - Return true if the specified loop
 | 
						|
    /// has an analyzable loop-invariant backedge-taken count.
 | 
						|
    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
 | 
						|
 | 
						|
    /// forgetLoopBackedgeTakenCount - This method should be called by the
 | 
						|
    /// client when it has changed a loop in a way that may effect
 | 
						|
    /// ScalarEvolution's ability to compute a trip count, or if the loop
 | 
						|
    /// is deleted.
 | 
						|
    void forgetLoopBackedgeTakenCount(const Loop *L);
 | 
						|
 | 
						|
    /// GetMinTrailingZeros - Determine the minimum number of zero bits that S
 | 
						|
    /// is guaranteed to end in (at every loop iteration).  It is, at the same
 | 
						|
    /// time, the minimum number of times S is divisible by 2.  For example,
 | 
						|
    /// given {4,+,8} it returns 2.  If S is guaranteed to be 0, it returns the
 | 
						|
    /// bitwidth of S.
 | 
						|
    uint32_t GetMinTrailingZeros(const SCEV *S);
 | 
						|
 | 
						|
    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
 | 
						|
    ///
 | 
						|
    ConstantRange getUnsignedRange(const SCEV *S);
 | 
						|
 | 
						|
    /// getSignedRange - Determine the signed range for a particular SCEV.
 | 
						|
    ///
 | 
						|
    ConstantRange getSignedRange(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownNegative - Test if the given expression is known to be negative.
 | 
						|
    ///
 | 
						|
    bool isKnownNegative(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownPositive - Test if the given expression is known to be positive.
 | 
						|
    ///
 | 
						|
    bool isKnownPositive(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownNonNegative - Test if the given expression is known to be
 | 
						|
    /// non-negative.
 | 
						|
    ///
 | 
						|
    bool isKnownNonNegative(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownNonPositive - Test if the given expression is known to be
 | 
						|
    /// non-positive.
 | 
						|
    ///
 | 
						|
    bool isKnownNonPositive(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownNonZero - Test if the given expression is known to be
 | 
						|
    /// non-zero.
 | 
						|
    ///
 | 
						|
    bool isKnownNonZero(const SCEV *S);
 | 
						|
 | 
						|
    /// isKnownNonZero - Test if the given expression is known to satisfy
 | 
						|
    /// the condition described by Pred, LHS, and RHS.
 | 
						|
    ///
 | 
						|
    bool isKnownPredicate(ICmpInst::Predicate Pred,
 | 
						|
                          const SCEV *LHS, const SCEV *RHS);
 | 
						|
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
    virtual void releaseMemory();
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | 
						|
    virtual void print(raw_ostream &OS, const Module* = 0) const;
 | 
						|
 | 
						|
  private:
 | 
						|
    FoldingSet<SCEV> UniqueSCEVs;
 | 
						|
    BumpPtrAllocator SCEVAllocator;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |