mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11729 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			956 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			956 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains a printer that converts from our internal
 | |
| // representation of machine-dependent LLVM code to Intel-format
 | |
| // assembly language. This printer is the output mechanism used
 | |
| // by `llc' and `lli -print-machineinstrs' on X86.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/Mangler.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include "Support/StringExtras.h"
 | |
| #include "Support/CommandLine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
 | |
| 
 | |
|   // FIXME: This should be automatically picked up by autoconf from the C
 | |
|   // frontend
 | |
|   cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
 | |
|          cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
 | |
| 
 | |
|   struct Printer : public MachineFunctionPass {
 | |
|     /// Output stream on which we're printing assembly code.
 | |
|     ///
 | |
|     std::ostream &O;
 | |
| 
 | |
|     /// Target machine description which we query for reg. names, data
 | |
|     /// layout, etc.
 | |
|     ///
 | |
|     TargetMachine &TM;
 | |
| 
 | |
|     /// Name-mangler for global names.
 | |
|     ///
 | |
|     Mangler *Mang;
 | |
| 
 | |
|     Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
 | |
| 
 | |
|     /// We name each basic block in a Function with a unique number, so
 | |
|     /// that we can consistently refer to them later. This is cleared
 | |
|     /// at the beginning of each call to runOnMachineFunction().
 | |
|     ///
 | |
|     typedef std::map<const Value *, unsigned> ValueMapTy;
 | |
|     ValueMapTy NumberForBB;
 | |
| 
 | |
|     /// Cache of mangled name for current function. This is
 | |
|     /// recalculated at the beginning of each call to
 | |
|     /// runOnMachineFunction().
 | |
|     ///
 | |
|     std::string CurrentFnName;
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 Assembly Printer";
 | |
|     }
 | |
| 
 | |
|     void checkImplUses (const TargetInstrDescriptor &Desc);
 | |
|     void printMachineInstruction(const MachineInstr *MI);
 | |
|     void printOp(const MachineOperand &MO,
 | |
| 		 bool elideOffsetKeyword = false);
 | |
|     void printMemReference(const MachineInstr *MI, unsigned Op);
 | |
|     void printConstantPool(MachineConstantPool *MCP);
 | |
|     bool runOnMachineFunction(MachineFunction &F);    
 | |
|     bool doInitialization(Module &M);
 | |
|     bool doFinalization(Module &M);
 | |
|     void emitGlobalConstant(const Constant* CV);
 | |
|     void emitConstantValueOnly(const Constant *CV);
 | |
|   };
 | |
| } // end of anonymous namespace
 | |
| 
 | |
| /// createX86CodePrinterPass - Returns a pass that prints the X86
 | |
| /// assembly code for a MachineFunction to the given output stream,
 | |
| /// using the given target machine description.  This should work
 | |
| /// regardless of whether the function is in SSA form.
 | |
| ///
 | |
| FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
 | |
|   return new Printer(o, tm);
 | |
| }
 | |
| 
 | |
| /// toOctal - Convert the low order bits of X into an octal digit.
 | |
| ///
 | |
| static inline char toOctal(int X) {
 | |
|   return (X&7)+'0';
 | |
| }
 | |
| 
 | |
| /// getAsCString - Return the specified array as a C compatible
 | |
| /// string, only if the predicate isStringCompatible is true.
 | |
| ///
 | |
| static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
 | |
|   assert(CVA->isString() && "Array is not string compatible!");
 | |
| 
 | |
|   O << "\"";
 | |
|   for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
 | |
|     unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
 | |
| 
 | |
|     if (C == '"') {
 | |
|       O << "\\\"";
 | |
|     } else if (C == '\\') {
 | |
|       O << "\\\\";
 | |
|     } else if (isprint(C)) {
 | |
|       O << C;
 | |
|     } else {
 | |
|       switch(C) {
 | |
|       case '\b': O << "\\b"; break;
 | |
|       case '\f': O << "\\f"; break;
 | |
|       case '\n': O << "\\n"; break;
 | |
|       case '\r': O << "\\r"; break;
 | |
|       case '\t': O << "\\t"; break;
 | |
|       default:
 | |
|         O << '\\';
 | |
|         O << toOctal(C >> 6);
 | |
|         O << toOctal(C >> 3);
 | |
|         O << toOctal(C >> 0);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   O << "\"";
 | |
| }
 | |
| 
 | |
| // Print out the specified constant, without a storage class.  Only the
 | |
| // constants valid in constant expressions can occur here.
 | |
| void Printer::emitConstantValueOnly(const Constant *CV) {
 | |
|   if (CV->isNullValue())
 | |
|     O << "0";
 | |
|   else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
 | |
|     assert(CB == ConstantBool::True);
 | |
|     O << "1";
 | |
|   } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
 | |
|     if (((CI->getValue() << 32) >> 32) == CI->getValue())
 | |
|       O << CI->getValue();
 | |
|     else
 | |
|       O << (unsigned long long)CI->getValue();
 | |
|   else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
 | |
|     O << CI->getValue();
 | |
|   else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
 | |
|     // This is a constant address for a global variable or function.  Use the
 | |
|     // name of the variable or function as the address value.
 | |
|     O << Mang->getValueName(CPR->getValue());
 | |
|   else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
 | |
|     const TargetData &TD = TM.getTargetData();
 | |
|     switch(CE->getOpcode()) {
 | |
|     case Instruction::GetElementPtr: {
 | |
|       // generate a symbolic expression for the byte address
 | |
|       const Constant *ptrVal = CE->getOperand(0);
 | |
|       std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
 | |
|       if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
 | |
|         O << "(";
 | |
|         emitConstantValueOnly(ptrVal);
 | |
|         O << ") + " << Offset;
 | |
|       } else {
 | |
|         emitConstantValueOnly(ptrVal);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Cast: {
 | |
|       // Support only non-converting or widening casts for now, that is, ones
 | |
|       // that do not involve a change in value.  This assertion is really gross,
 | |
|       // and may not even be a complete check.
 | |
|       Constant *Op = CE->getOperand(0);
 | |
|       const Type *OpTy = Op->getType(), *Ty = CE->getType();
 | |
| 
 | |
|       // Remember, kids, pointers on x86 can be losslessly converted back and
 | |
|       // forth into 32-bit or wider integers, regardless of signedness. :-P
 | |
|       assert(((isa<PointerType>(OpTy)
 | |
|                && (Ty == Type::LongTy || Ty == Type::ULongTy
 | |
|                    || Ty == Type::IntTy || Ty == Type::UIntTy))
 | |
|               || (isa<PointerType>(Ty)
 | |
|                   && (OpTy == Type::LongTy || OpTy == Type::ULongTy
 | |
|                       || OpTy == Type::IntTy || OpTy == Type::UIntTy))
 | |
|               || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
 | |
|                    && OpTy->isLosslesslyConvertibleTo(Ty))))
 | |
|              && "FIXME: Don't yet support this kind of constant cast expr");
 | |
|       O << "(";
 | |
|       emitConstantValueOnly(Op);
 | |
|       O << ")";
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Add:
 | |
|       O << "(";
 | |
|       emitConstantValueOnly(CE->getOperand(0));
 | |
|       O << ") + (";
 | |
|       emitConstantValueOnly(CE->getOperand(1));
 | |
|       O << ")";
 | |
|       break;
 | |
|     default:
 | |
|       assert(0 && "Unsupported operator!");
 | |
|     }
 | |
|   } else {
 | |
|     assert(0 && "Unknown constant value!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Print a constant value or values, with the appropriate storage class as a
 | |
| // prefix.
 | |
| void Printer::emitGlobalConstant(const Constant *CV) {  
 | |
|   const TargetData &TD = TM.getTargetData();
 | |
| 
 | |
|   if (CV->isNullValue()) {
 | |
|     O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";      
 | |
|     return;
 | |
|   } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
 | |
|     if (CVA->isString()) {
 | |
|       O << "\t.ascii\t";
 | |
|       printAsCString(O, CVA);
 | |
|       O << "\n";
 | |
|     } else { // Not a string.  Print the values in successive locations
 | |
|       const std::vector<Use> &constValues = CVA->getValues();
 | |
|       for (unsigned i=0; i < constValues.size(); i++)
 | |
|         emitGlobalConstant(cast<Constant>(constValues[i].get()));
 | |
|     }
 | |
|     return;
 | |
|   } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
 | |
|     // Print the fields in successive locations. Pad to align if needed!
 | |
|     const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
 | |
|     const std::vector<Use>& constValues = CVS->getValues();
 | |
|     unsigned sizeSoFar = 0;
 | |
|     for (unsigned i=0, N = constValues.size(); i < N; i++) {
 | |
|       const Constant* field = cast<Constant>(constValues[i].get());
 | |
| 
 | |
|       // Check if padding is needed and insert one or more 0s.
 | |
|       unsigned fieldSize = TD.getTypeSize(field->getType());
 | |
|       unsigned padSize = ((i == N-1? cvsLayout->StructSize
 | |
|                            : cvsLayout->MemberOffsets[i+1])
 | |
|                           - cvsLayout->MemberOffsets[i]) - fieldSize;
 | |
|       sizeSoFar += fieldSize + padSize;
 | |
| 
 | |
|       // Now print the actual field value
 | |
|       emitGlobalConstant(field);
 | |
| 
 | |
|       // Insert the field padding unless it's zero bytes...
 | |
|       if (padSize)
 | |
|         O << "\t.zero\t " << padSize << "\n";      
 | |
|     }
 | |
|     assert(sizeSoFar == cvsLayout->StructSize &&
 | |
|            "Layout of constant struct may be incorrect!");
 | |
|     return;
 | |
|   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | |
|     // FP Constants are printed as integer constants to avoid losing
 | |
|     // precision...
 | |
|     double Val = CFP->getValue();
 | |
|     switch (CFP->getType()->getPrimitiveID()) {
 | |
|     default: assert(0 && "Unknown floating point type!");
 | |
|     case Type::FloatTyID: {
 | |
|       union FU {                            // Abide by C TBAA rules
 | |
|         float FVal;
 | |
|         unsigned UVal;
 | |
|       } U;
 | |
|       U.FVal = Val;
 | |
|       O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
 | |
|       return;
 | |
|     }
 | |
|     case Type::DoubleTyID: {
 | |
|       union DU {                            // Abide by C TBAA rules
 | |
|         double FVal;
 | |
|         uint64_t UVal;
 | |
|       } U;
 | |
|       U.FVal = Val;
 | |
|       O << ".quad\t" << U.UVal << "\t# double " << Val << "\n";
 | |
|       return;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const Type *type = CV->getType();
 | |
|   O << "\t";
 | |
|   switch (type->getPrimitiveID()) {
 | |
|   case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
 | |
|     O << ".byte";
 | |
|     break;
 | |
|   case Type::UShortTyID: case Type::ShortTyID:
 | |
|     O << ".word";
 | |
|     break;
 | |
|   case Type::FloatTyID: case Type::PointerTyID:
 | |
|   case Type::UIntTyID: case Type::IntTyID:
 | |
|     O << ".long";
 | |
|     break;
 | |
|   case Type::DoubleTyID:
 | |
|   case Type::ULongTyID: case Type::LongTyID:
 | |
|     O << ".quad";
 | |
|     break;
 | |
|   default:
 | |
|     assert (0 && "Can't handle printing this type of thing");
 | |
|     break;
 | |
|   }
 | |
|   O << "\t";
 | |
|   emitConstantValueOnly(CV);
 | |
|   O << "\n";
 | |
| }
 | |
| 
 | |
| /// printConstantPool - Print to the current output stream assembly
 | |
| /// representations of the constants in the constant pool MCP. This is
 | |
| /// used to print out constants which have been "spilled to memory" by
 | |
| /// the code generator.
 | |
| ///
 | |
| void Printer::printConstantPool(MachineConstantPool *MCP) {
 | |
|   const std::vector<Constant*> &CP = MCP->getConstants();
 | |
|   const TargetData &TD = TM.getTargetData();
 | |
|  
 | |
|   if (CP.empty()) return;
 | |
| 
 | |
|   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
 | |
|     O << "\t.section .rodata\n";
 | |
|     O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
 | |
|       << "\n";
 | |
|     O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
 | |
|       << *CP[i] << "\n";
 | |
|     emitGlobalConstant(CP[i]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// runOnMachineFunction - This uses the printMachineInstruction()
 | |
| /// method to print assembly for each instruction.
 | |
| ///
 | |
| bool Printer::runOnMachineFunction(MachineFunction &MF) {
 | |
|   // BBNumber is used here so that a given Printer will never give two
 | |
|   // BBs the same name. (If you have a better way, please let me know!)
 | |
|   static unsigned BBNumber = 0;
 | |
| 
 | |
|   O << "\n\n";
 | |
|   // What's my mangled name?
 | |
|   CurrentFnName = Mang->getValueName(MF.getFunction());
 | |
| 
 | |
|   // Print out constants referenced by the function
 | |
|   printConstantPool(MF.getConstantPool());
 | |
| 
 | |
|   // Print out labels for the function.
 | |
|   O << "\t.text\n";
 | |
|   O << "\t.align 16\n";
 | |
|   O << "\t.globl\t" << CurrentFnName << "\n";
 | |
|   if (!EmitCygwin)
 | |
|     O << "\t.type\t" << CurrentFnName << ", @function\n";
 | |
|   O << CurrentFnName << ":\n";
 | |
| 
 | |
|   // Number each basic block so that we can consistently refer to them
 | |
|   // in PC-relative references.
 | |
|   NumberForBB.clear();
 | |
|   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
 | |
|        I != E; ++I) {
 | |
|     NumberForBB[I->getBasicBlock()] = BBNumber++;
 | |
|   }
 | |
| 
 | |
|   // Print out code for the function.
 | |
|   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
 | |
|        I != E; ++I) {
 | |
|     // Print a label for the basic block.
 | |
|     O << ".LBB" << NumberForBB[I->getBasicBlock()] << ":\t# "
 | |
|       << I->getBasicBlock()->getName() << "\n";
 | |
|     for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
 | |
| 	 II != E; ++II) {
 | |
|       // Print the assembly for the instruction.
 | |
|       O << "\t";
 | |
|       printMachineInstruction(II);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We didn't modify anything.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isScale(const MachineOperand &MO) {
 | |
|   return MO.isImmediate() &&
 | |
|     (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
 | |
|      MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
 | |
| }
 | |
| 
 | |
| static bool isMem(const MachineInstr *MI, unsigned Op) {
 | |
|   if (MI->getOperand(Op).isFrameIndex()) return true;
 | |
|   if (MI->getOperand(Op).isConstantPoolIndex()) return true;
 | |
|   return Op+4 <= MI->getNumOperands() &&
 | |
|     MI->getOperand(Op  ).isRegister() &&isScale(MI->getOperand(Op+1)) &&
 | |
|     MI->getOperand(Op+2).isRegister() &&MI->getOperand(Op+3).isImmediate();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void Printer::printOp(const MachineOperand &MO,
 | |
| 		      bool elideOffsetKeyword /* = false */) {
 | |
|   const MRegisterInfo &RI = *TM.getRegisterInfo();
 | |
|   switch (MO.getType()) {
 | |
|   case MachineOperand::MO_VirtualRegister:
 | |
|     if (Value *V = MO.getVRegValueOrNull()) {
 | |
|       O << "<" << V->getName() << ">";
 | |
|       return;
 | |
|     }
 | |
|     // FALLTHROUGH
 | |
|   case MachineOperand::MO_MachineRegister:
 | |
|     if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
 | |
|       // Bug Workaround: See note in Printer::doInitialization about %.
 | |
|       O << "%" << RI.get(MO.getReg()).Name;
 | |
|     else
 | |
|       O << "%reg" << MO.getReg();
 | |
|     return;
 | |
| 
 | |
|   case MachineOperand::MO_SignExtendedImmed:
 | |
|   case MachineOperand::MO_UnextendedImmed:
 | |
|     O << (int)MO.getImmedValue();
 | |
|     return;
 | |
|   case MachineOperand::MO_PCRelativeDisp: {
 | |
|     ValueMapTy::const_iterator i = NumberForBB.find(MO.getVRegValue());
 | |
|     assert (i != NumberForBB.end()
 | |
|             && "Could not find a BB in the NumberForBB map!");
 | |
|     O << ".LBB" << i->second << " # PC rel: " << MO.getVRegValue()->getName();
 | |
|     return;
 | |
|   }
 | |
|   case MachineOperand::MO_GlobalAddress:
 | |
|     if (!elideOffsetKeyword)
 | |
|       O << "OFFSET ";
 | |
|     O << Mang->getValueName(MO.getGlobal());
 | |
|     return;
 | |
|   case MachineOperand::MO_ExternalSymbol:
 | |
|     O << MO.getSymbolName();
 | |
|     return;
 | |
|   default:
 | |
|     O << "<unknown operand type>"; return;    
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const std::string sizePtr(const TargetInstrDescriptor &Desc) {
 | |
|   switch (Desc.TSFlags & X86II::ArgMask) {
 | |
|   default: assert(0 && "Unknown arg size!");
 | |
|   case X86II::Arg8:   return "BYTE PTR"; 
 | |
|   case X86II::Arg16:  return "WORD PTR"; 
 | |
|   case X86II::Arg32:  return "DWORD PTR"; 
 | |
|   case X86II::Arg64:  return "QWORD PTR"; 
 | |
|   case X86II::ArgF32:  return "DWORD PTR"; 
 | |
|   case X86II::ArgF64:  return "QWORD PTR"; 
 | |
|   case X86II::ArgF80:  return "XWORD PTR"; 
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Printer::printMemReference(const MachineInstr *MI, unsigned Op) {
 | |
|   assert(isMem(MI, Op) && "Invalid memory reference!");
 | |
| 
 | |
|   if (MI->getOperand(Op).isFrameIndex()) {
 | |
|     O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
 | |
|     if (MI->getOperand(Op+3).getImmedValue())
 | |
|       O << " + " << MI->getOperand(Op+3).getImmedValue();
 | |
|     O << "]";
 | |
|     return;
 | |
|   } else if (MI->getOperand(Op).isConstantPoolIndex()) {
 | |
|     O << "[.CPI" << CurrentFnName << "_"
 | |
|       << MI->getOperand(Op).getConstantPoolIndex();
 | |
|     if (MI->getOperand(Op+3).getImmedValue())
 | |
|       O << " + " << MI->getOperand(Op+3).getImmedValue();
 | |
|     O << "]";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const MachineOperand &BaseReg  = MI->getOperand(Op);
 | |
|   int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
 | |
|   const MachineOperand &IndexReg = MI->getOperand(Op+2);
 | |
|   int DispVal                    = MI->getOperand(Op+3).getImmedValue();
 | |
| 
 | |
|   O << "[";
 | |
|   bool NeedPlus = false;
 | |
|   if (BaseReg.getReg()) {
 | |
|     printOp(BaseReg);
 | |
|     NeedPlus = true;
 | |
|   }
 | |
| 
 | |
|   if (IndexReg.getReg()) {
 | |
|     if (NeedPlus) O << " + ";
 | |
|     if (ScaleVal != 1)
 | |
|       O << ScaleVal << "*";
 | |
|     printOp(IndexReg);
 | |
|     NeedPlus = true;
 | |
|   }
 | |
| 
 | |
|   if (DispVal) {
 | |
|     if (NeedPlus)
 | |
|       if (DispVal > 0)
 | |
| 	O << " + ";
 | |
|       else {
 | |
| 	O << " - ";
 | |
| 	DispVal = -DispVal;
 | |
|       }
 | |
|     O << DispVal;
 | |
|   }
 | |
|   O << "]";
 | |
| }
 | |
| 
 | |
| /// checkImplUses - Emit the implicit-use registers for the
 | |
| /// instruction described by DESC, if its PrintImplUses flag is set.
 | |
| ///
 | |
| void Printer::checkImplUses (const TargetInstrDescriptor &Desc) {
 | |
|   const MRegisterInfo &RI = *TM.getRegisterInfo();
 | |
|   if (Desc.TSFlags & X86II::PrintImplUses) {
 | |
|     for (const unsigned *p = Desc.ImplicitUses; *p; ++p) {
 | |
|       // Bug Workaround: See note in Printer::doInitialization about %.
 | |
|       O << ", %" << RI.get(*p).Name;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// printMachineInstruction -- Print out a single X86 LLVM instruction
 | |
| /// MI in Intel syntax to the current output stream.
 | |
| ///
 | |
| void Printer::printMachineInstruction(const MachineInstr *MI) {
 | |
|   unsigned Opcode = MI->getOpcode();
 | |
|   const TargetInstrInfo &TII = TM.getInstrInfo();
 | |
|   const TargetInstrDescriptor &Desc = TII.get(Opcode);
 | |
| 
 | |
|   ++EmittedInsts;
 | |
|   switch (Desc.TSFlags & X86II::FormMask) {
 | |
|   case X86II::Pseudo:
 | |
|     // Print pseudo-instructions as comments; either they should have been
 | |
|     // turned into real instructions by now, or they don't need to be
 | |
|     // seen by the assembler (e.g., IMPLICIT_USEs.)
 | |
|     O << "# ";
 | |
|     if (Opcode == X86::PHI) {
 | |
|       printOp(MI->getOperand(0));
 | |
|       O << " = phi ";
 | |
|       for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
 | |
| 	if (i != 1) O << ", ";
 | |
| 	O << "[";
 | |
| 	printOp(MI->getOperand(i));
 | |
| 	O << ", ";
 | |
| 	printOp(MI->getOperand(i+1));
 | |
| 	O << "]";
 | |
|       }
 | |
|     } else {
 | |
|       unsigned i = 0;
 | |
|       if (MI->getNumOperands() && MI->getOperand(0).isDef()) {
 | |
| 	printOp(MI->getOperand(0));
 | |
| 	O << " = ";
 | |
| 	++i;
 | |
|       }
 | |
|       O << TII.getName(MI->getOpcode());
 | |
| 
 | |
|       for (unsigned e = MI->getNumOperands(); i != e; ++i) {
 | |
| 	O << " ";
 | |
| 	if (MI->getOperand(i).isDef()) O << "*";
 | |
| 	printOp(MI->getOperand(i));
 | |
| 	if (MI->getOperand(i).isDef()) O << "*";
 | |
|       }
 | |
|     }
 | |
|     O << "\n";
 | |
|     return;
 | |
| 
 | |
|   case X86II::RawFrm:
 | |
|     // The accepted forms of Raw instructions are:
 | |
|     //   1. nop     - No operand required
 | |
|     //   2. jmp foo - PC relative displacement operand
 | |
|     //   3. call bar - GlobalAddress Operand or External Symbol Operand
 | |
|     //
 | |
|     assert(MI->getNumOperands() == 0 ||
 | |
|            (MI->getNumOperands() == 1 &&
 | |
| 	    (MI->getOperand(0).isPCRelativeDisp() ||
 | |
| 	     MI->getOperand(0).isGlobalAddress() ||
 | |
| 	     MI->getOperand(0).isExternalSymbol())) &&
 | |
|            "Illegal raw instruction!");
 | |
|     O << TII.getName(MI->getOpcode()) << " ";
 | |
| 
 | |
|     if (MI->getNumOperands() == 1) {
 | |
|       printOp(MI->getOperand(0), true); // Don't print "OFFSET"...
 | |
|     }
 | |
|     O << "\n";
 | |
|     return;
 | |
| 
 | |
|   case X86II::AddRegFrm: {
 | |
|     // There are currently two forms of acceptable AddRegFrm instructions.
 | |
|     // Either the instruction JUST takes a single register (like inc, dec, etc),
 | |
|     // or it takes a register and an immediate of the same size as the register
 | |
|     // (move immediate f.e.).  Note that this immediate value might be stored as
 | |
|     // an LLVM value, to represent, for example, loading the address of a global
 | |
|     // into a register.  The initial register might be duplicated if this is a
 | |
|     // M_2_ADDR_REG instruction
 | |
|     //
 | |
|     assert(MI->getOperand(0).isRegister() &&
 | |
|            (MI->getNumOperands() == 1 || 
 | |
|             (MI->getNumOperands() == 2 &&
 | |
|              (MI->getOperand(1).getVRegValueOrNull() ||
 | |
|               MI->getOperand(1).isImmediate() ||
 | |
| 	      MI->getOperand(1).isRegister() ||
 | |
| 	      MI->getOperand(1).isGlobalAddress() ||
 | |
| 	      MI->getOperand(1).isExternalSymbol()))) &&
 | |
|            "Illegal form for AddRegFrm instruction!");
 | |
| 
 | |
|     unsigned Reg = MI->getOperand(0).getReg();
 | |
|     
 | |
|     O << TII.getName(MI->getOpcode()) << " ";
 | |
|     printOp(MI->getOperand(0));
 | |
|     if (MI->getNumOperands() == 2 &&
 | |
| 	(!MI->getOperand(1).isRegister() ||
 | |
| 	 MI->getOperand(1).getVRegValueOrNull() ||
 | |
| 	 MI->getOperand(1).isGlobalAddress() ||
 | |
| 	 MI->getOperand(1).isExternalSymbol())) {
 | |
|       O << ", ";
 | |
|       printOp(MI->getOperand(1));
 | |
|     }
 | |
|     checkImplUses(Desc);
 | |
|     O << "\n";
 | |
|     return;
 | |
|   }
 | |
|   case X86II::MRMDestReg: {
 | |
|     // There are three forms of MRMDestReg instructions, those with 2
 | |
|     // or 3 operands:
 | |
|     //
 | |
|     // 2 Operands: this is for things like mov that do not read a
 | |
|     // second input.
 | |
|     //
 | |
|     // 2 Operands: two address instructions which def&use the first
 | |
|     // argument and use the second as input.
 | |
|     //
 | |
|     // 3 Operands: in this form, two address instructions are the same
 | |
|     // as in 2 but have a constant argument as well.
 | |
|     //
 | |
|     bool isTwoAddr = TII.isTwoAddrInstr(Opcode);
 | |
|     assert(MI->getOperand(0).isRegister() &&
 | |
|            (MI->getNumOperands() == 2 ||
 | |
|             (MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate()))
 | |
|            && "Bad format for MRMDestReg!");
 | |
| 
 | |
|     O << TII.getName(MI->getOpcode()) << " ";
 | |
|     printOp(MI->getOperand(0));
 | |
|     O << ", ";
 | |
|     printOp(MI->getOperand(1));
 | |
|     if (MI->getNumOperands() == 3) {
 | |
|       O << ", ";
 | |
|       printOp(MI->getOperand(2));
 | |
|     }
 | |
|     O << "\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMDestMem: {
 | |
|     // These instructions are the same as MRMDestReg, but instead of having a
 | |
|     // register reference for the mod/rm field, it's a memory reference.
 | |
|     //
 | |
|     assert(isMem(MI, 0) && 
 | |
|            (MI->getNumOperands() == 4+1 ||
 | |
|             (MI->getNumOperands() == 4+2 && MI->getOperand(5).isImmediate()))
 | |
|            && "Bad format for MRMDestMem!");
 | |
| 
 | |
|     O << TII.getName(MI->getOpcode()) << " " << sizePtr(Desc) << " ";
 | |
|     printMemReference(MI, 0);
 | |
|     O << ", ";
 | |
|     printOp(MI->getOperand(4));
 | |
|     if (MI->getNumOperands() == 4+2) {
 | |
|       O << ", ";
 | |
|       printOp(MI->getOperand(5));
 | |
|     }
 | |
|     O << "\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMSrcReg: {
 | |
|     // There are three forms that are acceptable for MRMSrcReg
 | |
|     // instructions, those with 2 or 3 operands:
 | |
|     //
 | |
|     // 2 Operands: this is for things like mov that do not read a
 | |
|     // second input.
 | |
|     //
 | |
|     // 2 Operands: in this form, the last register is the ModR/M
 | |
|     // input.  The first operand is a def&use.  This is for things
 | |
|     // like: add r32, r/m32
 | |
|     //
 | |
|     // 3 Operands: in this form, we can have 'INST R1, R2, imm', which is used
 | |
|     // for instructions like the IMULrri instructions.
 | |
|     //
 | |
|     //
 | |
|     assert(MI->getOperand(0).isRegister() &&
 | |
|            MI->getOperand(1).isRegister() &&
 | |
|            (MI->getNumOperands() == 2 ||
 | |
|             (MI->getNumOperands() == 3 &&
 | |
|              (MI->getOperand(2).isImmediate())))
 | |
|            && "Bad format for MRMSrcReg!");
 | |
| 
 | |
|     O << TII.getName(MI->getOpcode()) << " ";
 | |
|     printOp(MI->getOperand(0));
 | |
|     O << ", ";
 | |
|     printOp(MI->getOperand(1));
 | |
|     if (MI->getNumOperands() == 3) {
 | |
|         O << ", ";
 | |
|         printOp(MI->getOperand(2));
 | |
|     }
 | |
|     O << "\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMSrcMem: {
 | |
|     // These instructions are the same as MRMSrcReg, but instead of having a
 | |
|     // register reference for the mod/rm field, it's a memory reference.
 | |
|     //
 | |
|     assert(MI->getOperand(0).isRegister() &&
 | |
|            (MI->getNumOperands() == 1+4 && isMem(MI, 1)) || 
 | |
| (MI->getNumOperands() == 2+4 && MI->getOperand(5).isImmediate() && isMem(MI, 1))
 | |
|            && "Bad format for MRMSrcMem!");
 | |
|     O << TII.getName(MI->getOpcode()) << " ";
 | |
|     printOp(MI->getOperand(0));
 | |
|     O << ", " << sizePtr(Desc) << " ";
 | |
|     printMemReference(MI, 1);
 | |
|     if (MI->getNumOperands() == 2+4) {
 | |
|       O << ", ";
 | |
|       printOp(MI->getOperand(5));
 | |
|     }
 | |
|     O << "\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMS0r: case X86II::MRMS1r:
 | |
|   case X86II::MRMS2r: case X86II::MRMS3r:
 | |
|   case X86II::MRMS4r: case X86II::MRMS5r:
 | |
|   case X86II::MRMS6r: case X86II::MRMS7r: {
 | |
|     // In this form, the following are valid formats:
 | |
|     //  1. sete r
 | |
|     //  2. cmp reg, immediate
 | |
|     //  2. shl rdest, rinput  <implicit CL or 1>
 | |
|     //  3. sbb rdest, rinput, immediate   [rdest = rinput]
 | |
|     //    
 | |
|     assert(MI->getNumOperands() > 0 && MI->getNumOperands() < 4 &&
 | |
|            MI->getOperand(0).isRegister() && "Bad MRMSxR format!");
 | |
|     assert((MI->getNumOperands() != 2 ||
 | |
|             MI->getOperand(1).isRegister() || MI->getOperand(1).isImmediate())&&
 | |
|            "Bad MRMSxR format!");
 | |
|     assert((MI->getNumOperands() < 3 ||
 | |
| 	    (MI->getOperand(1).isRegister() && MI->getOperand(2).isImmediate())) &&
 | |
|            "Bad MRMSxR format!");
 | |
| 
 | |
|     if (MI->getNumOperands() > 1 && MI->getOperand(1).isRegister() && 
 | |
|         MI->getOperand(0).getReg() != MI->getOperand(1).getReg())
 | |
|       O << "**";
 | |
| 
 | |
|     O << TII.getName(MI->getOpcode()) << " ";
 | |
|     printOp(MI->getOperand(0));
 | |
|     if (MI->getOperand(MI->getNumOperands()-1).isImmediate()) {
 | |
|       O << ", ";
 | |
|       printOp(MI->getOperand(MI->getNumOperands()-1));
 | |
|     }
 | |
|     checkImplUses(Desc);
 | |
|     O << "\n";
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRMS0m: case X86II::MRMS1m:
 | |
|   case X86II::MRMS2m: case X86II::MRMS3m:
 | |
|   case X86II::MRMS4m: case X86II::MRMS5m:
 | |
|   case X86II::MRMS6m: case X86II::MRMS7m: {
 | |
|     // In this form, the following are valid formats:
 | |
|     //  1. sete [m]
 | |
|     //  2. cmp [m], immediate
 | |
|     //  2. shl [m], rinput  <implicit CL or 1>
 | |
|     //  3. sbb [m], immediate
 | |
|     //    
 | |
|     assert(MI->getNumOperands() >= 4 && MI->getNumOperands() <= 5 &&
 | |
|            isMem(MI, 0) && "Bad MRMSxM format!");
 | |
|     assert((MI->getNumOperands() != 5 ||
 | |
|             (MI->getOperand(4).isImmediate() ||
 | |
|              MI->getOperand(4).isGlobalAddress())) &&
 | |
|            "Bad MRMSxM format!");
 | |
| 
 | |
|     const MachineOperand &Op3 = MI->getOperand(3);
 | |
| 
 | |
|     // Bug: The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"
 | |
|     // is misassembled by gas in intel_syntax mode as its 32-bit
 | |
|     // equivalent "fstp DWORD PTR [...]". Workaround: Output the raw
 | |
|     // opcode bytes instead of the instruction.
 | |
|     if (MI->getOpcode() == X86::FSTPr80) {
 | |
|       if ((MI->getOperand(0).getReg() == X86::ESP)
 | |
| 	  && (MI->getOperand(1).getImmedValue() == 1)) {
 | |
|         if (Op3.isImmediate() && 
 | |
|             Op3.getImmedValue() >= -128 && Op3.getImmedValue() <= 127) {
 | |
|           // 1 byte disp.
 | |
|           O << ".byte 0xdb, 0x7c, 0x24, 0x" << std::hex
 | |
|             << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# ";
 | |
|         } else {
 | |
|           O << ".byte 0xdb, 0xbc, 0x24\n\t";
 | |
|           O << ".long ";
 | |
|           printOp(Op3);
 | |
|           O << "\t# ";
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Bug: The 80-bit FP load instruction "fld XWORD PTR [...]" is
 | |
|     // misassembled by gas in intel_syntax mode as its 32-bit
 | |
|     // equivalent "fld DWORD PTR [...]". Workaround: Output the raw
 | |
|     // opcode bytes instead of the instruction.
 | |
|     if (MI->getOpcode() == X86::FLDr80 &&
 | |
|         MI->getOperand(0).getReg() == X86::ESP &&
 | |
|         MI->getOperand(1).getImmedValue() == 1) {
 | |
|       if (Op3.isImmediate() && Op3.getImmedValue() >= -128 &&
 | |
|           Op3.getImmedValue() <= 127) {   // 1 byte displacement
 | |
|         O << ".byte 0xdb, 0x6c, 0x24, 0x" << std::hex
 | |
|           << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# ";
 | |
|       } else {
 | |
|         O << ".byte 0xdb, 0xac, 0x24\n\t";
 | |
|         O << ".long ";
 | |
|         printOp(Op3);
 | |
|         O << "\t# ";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Bug: gas intel_syntax mode treats "fild QWORD PTR [...]" as an
 | |
|     // invalid opcode, saying "64 bit operations are only supported in
 | |
|     // 64 bit modes." libopcodes disassembles it as "fild DWORD PTR
 | |
|     // [...]", which is wrong. Workaround: Output the raw opcode bytes
 | |
|     // instead of the instruction.
 | |
|     if (MI->getOpcode() == X86::FILDr64 &&
 | |
|         MI->getOperand(0).getReg() == X86::ESP &&
 | |
|         MI->getOperand(1).getImmedValue() == 1) {
 | |
|       if (Op3.isImmediate() && Op3.getImmedValue() >= -128 &&
 | |
|           Op3.getImmedValue() <= 127) {   // 1 byte displacement
 | |
|         O << ".byte 0xdf, 0x6c, 0x24, 0x" << std::hex
 | |
|           << ((unsigned)Op3.getImmedValue() & 255) << std::dec << "\t# ";
 | |
|       } else {
 | |
|         O << ".byte 0xdf, 0xac, 0x24\n\t";
 | |
|         O << ".long ";
 | |
|         printOp(Op3);
 | |
|         O << std::dec << "\t# ";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Bug: gas intel_syntax mode treats "fistp QWORD PTR [...]" as
 | |
|     // an invalid opcode, saying "64 bit operations are only
 | |
|     // supported in 64 bit modes." libopcodes disassembles it as
 | |
|     // "fistpll DWORD PTR [...]", which is wrong. Workaround: Output
 | |
|     // "fistpll DWORD PTR " instead, which is what libopcodes is
 | |
|     // expecting to see.
 | |
|     if (MI->getOpcode() == X86::FISTPr64) {
 | |
|       O << "fistpll DWORD PTR ";
 | |
|       printMemReference(MI, 0);
 | |
|       if (MI->getNumOperands() == 5) {
 | |
| 	O << ", ";
 | |
| 	printOp(MI->getOperand(4));
 | |
|       }
 | |
|       O << "\t# ";
 | |
|     }
 | |
|     
 | |
|     O << TII.getName(MI->getOpcode()) << " ";
 | |
|     O << sizePtr(Desc) << " ";
 | |
|     printMemReference(MI, 0);
 | |
|     if (MI->getNumOperands() == 5) {
 | |
|       O << ", ";
 | |
|       printOp(MI->getOperand(4));
 | |
|     }
 | |
|     O << "\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     O << "\tUNKNOWN FORM:\t\t-"; MI->print(O, TM); break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Printer::doInitialization(Module &M) {
 | |
|   // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
 | |
|   //
 | |
|   // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
 | |
|   // instruction as a reference to the register named sp, and if you try to
 | |
|   // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
 | |
|   // before being looked up in the symbol table. This creates spurious
 | |
|   // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
 | |
|   // mode, and decorate all register names with percent signs.
 | |
|   O << "\t.intel_syntax\n";
 | |
|   Mang = new Mangler(M, EmitCygwin);
 | |
|   return false; // success
 | |
| }
 | |
| 
 | |
| // SwitchSection - Switch to the specified section of the executable if we are
 | |
| // not already in it!
 | |
| //
 | |
| static void SwitchSection(std::ostream &OS, std::string &CurSection,
 | |
|                           const char *NewSection) {
 | |
|   if (CurSection != NewSection) {
 | |
|     CurSection = NewSection;
 | |
|     if (!CurSection.empty())
 | |
|       OS << "\t" << NewSection << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Printer::doFinalization(Module &M) {
 | |
|   const TargetData &TD = TM.getTargetData();
 | |
|   std::string CurSection;
 | |
| 
 | |
|   // Print out module-level global variables here.
 | |
|   for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
 | |
|     if (I->hasInitializer()) {   // External global require no code
 | |
|       O << "\n\n";
 | |
|       std::string name = Mang->getValueName(I);
 | |
|       Constant *C = I->getInitializer();
 | |
|       unsigned Size = TD.getTypeSize(C->getType());
 | |
|       unsigned Align = TD.getTypeAlignment(C->getType());
 | |
| 
 | |
|       if (C->isNullValue() && 
 | |
|           (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
 | |
|            I->hasWeakLinkage() /* FIXME: Verify correct */)) {
 | |
|         SwitchSection(O, CurSection, ".data");
 | |
|         if (I->hasInternalLinkage())
 | |
|           O << "\t.local " << name << "\n";
 | |
|         
 | |
|         O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
 | |
|           << "," << (unsigned)TD.getTypeAlignment(C->getType());
 | |
|         O << "\t\t# ";
 | |
|         WriteAsOperand(O, I, true, true, &M);
 | |
|         O << "\n";
 | |
|       } else {
 | |
|         switch (I->getLinkage()) {
 | |
|         case GlobalValue::LinkOnceLinkage:
 | |
|         case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
 | |
|           // Nonnull linkonce -> weak
 | |
|           O << "\t.weak " << name << "\n";
 | |
|           SwitchSection(O, CurSection, "");
 | |
|           O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
 | |
|           break;
 | |
|         
 | |
|         case GlobalValue::AppendingLinkage:
 | |
|           // FIXME: appending linkage variables should go into a section of
 | |
|           // their name or something.  For now, just emit them as external.
 | |
|         case GlobalValue::ExternalLinkage:
 | |
|           // If external or appending, declare as a global symbol
 | |
|           O << "\t.globl " << name << "\n";
 | |
|           // FALL THROUGH
 | |
|         case GlobalValue::InternalLinkage:
 | |
|           if (C->isNullValue())
 | |
|             SwitchSection(O, CurSection, ".bss");
 | |
|           else
 | |
|             SwitchSection(O, CurSection, ".data");
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         O << "\t.align " << Align << "\n";
 | |
|         O << "\t.type " << name << ",@object\n";
 | |
|         O << "\t.size " << name << "," << Size << "\n";
 | |
|         O << name << ":\t\t\t\t# ";
 | |
|         WriteAsOperand(O, I, true, true, &M);
 | |
|         O << " = ";
 | |
|         WriteAsOperand(O, C, false, false, &M);
 | |
|         O << "\n";
 | |
|         emitGlobalConstant(C);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   delete Mang;
 | |
|   return false; // success
 | |
| }
 |