Mehdi Amini c94da20917 Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231270 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-04 18:43:29 +00:00

1002 lines
40 KiB
C++

//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion, attempting to remove as much
// code from the body of a loop as possible. It does this by either hoisting
// code into the preheader block, or by sinking code to the exit blocks if it is
// safe. This pass also promotes must-aliased memory locations in the loop to
// live in registers, thus hoisting and sinking "invariant" loads and stores.
//
// This pass uses alias analysis for two purposes:
//
// 1. Moving loop invariant loads and calls out of loops. If we can determine
// that a load or call inside of a loop never aliases anything stored to,
// we can hoist it or sink it like any other instruction.
// 2. Scalar Promotion of Memory - If there is a store instruction inside of
// the loop, we try to move the store to happen AFTER the loop instead of
// inside of the loop. This can only happen if a few conditions are true:
// A. The pointer stored through is loop invariant
// B. There are no stores or loads in the loop which _may_ alias the
// pointer. There are no calls in the loop which mod/ref the pointer.
// If these conditions are true, we can promote the loads and stores in the
// loop of the pointer to use a temporary alloca'd variable. We then use
// the SSAUpdater to construct the appropriate SSA form for the value.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PredIteratorCache.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "licm"
STATISTIC(NumSunk , "Number of instructions sunk out of loop");
STATISTIC(NumHoisted , "Number of instructions hoisted out of loop");
STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
STATISTIC(NumPromoted , "Number of memory locations promoted to registers");
static cl::opt<bool>
DisablePromotion("disable-licm-promotion", cl::Hidden,
cl::desc("Disable memory promotion in LICM pass"));
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
static bool isNotUsedInLoop(Instruction &I, Loop *CurLoop);
static bool hoist(Instruction &I, BasicBlock *Preheader);
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
Loop *CurLoop, AliasSetTracker *CurAST );
static bool isGuaranteedToExecute(Instruction &Inst, DominatorTree *DT,
Loop *CurLoop, LICMSafetyInfo * SafetyInfo);
static bool isSafeToExecuteUnconditionally(Instruction &Inst,DominatorTree *DT,
const DataLayout *DL, Loop *CurLoop,
LICMSafetyInfo * SafetyInfo);
static bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
const AAMDNodes &AAInfo,
AliasSetTracker *CurAST);
static Instruction *CloneInstructionInExitBlock(Instruction &I,
BasicBlock &ExitBlock,
PHINode &PN, LoopInfo *LI);
static bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA,
DominatorTree *DT, const DataLayout *DL,
Loop *CurLoop, AliasSetTracker *CurAST,
LICMSafetyInfo * SafetyInfo);
namespace {
struct LICM : public LoopPass {
static char ID; // Pass identification, replacement for typeid
LICM() : LoopPass(ID) {
initializeLICMPass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG...
///
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addPreserved<ScalarEvolution>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
using llvm::Pass::doFinalization;
bool doFinalization() override {
assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
return false;
}
private:
AliasAnalysis *AA; // Current AliasAnalysis information
LoopInfo *LI; // Current LoopInfo
DominatorTree *DT; // Dominator Tree for the current Loop.
const DataLayout *DL; // DataLayout for constant folding.
TargetLibraryInfo *TLI; // TargetLibraryInfo for constant folding.
// State that is updated as we process loops.
bool Changed; // Set to true when we change anything.
BasicBlock *Preheader; // The preheader block of the current loop...
Loop *CurLoop; // The current loop we are working on...
AliasSetTracker *CurAST; // AliasSet information for the current loop...
DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
Loop *L) override;
/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
/// set.
void deleteAnalysisValue(Value *V, Loop *L) override;
/// Simple Analysis hook. Delete loop L from alias set map.
void deleteAnalysisLoop(Loop *L) override;
};
}
char LICM::ID = 0;
INITIALIZE_PASS_BEGIN(LICM, "licm", "Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(LICM, "licm", "Loop Invariant Code Motion", false, false)
Pass *llvm::createLICMPass() { return new LICM(); }
/// Hoist expressions out of the specified loop. Note, alias info for inner
/// loop is not preserved so it is not a good idea to run LICM multiple
/// times on one loop.
///
bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
if (skipOptnoneFunction(L))
return false;
Changed = false;
// Get our Loop and Alias Analysis information...
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
AA = &getAnalysis<AliasAnalysis>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
DL = &L->getHeader()->getModule()->getDataLayout();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
CurAST = new AliasSetTracker(*AA);
// Collect Alias info from subloops.
for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
LoopItr != LoopItrE; ++LoopItr) {
Loop *InnerL = *LoopItr;
AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
assert(InnerAST && "Where is my AST?");
// What if InnerLoop was modified by other passes ?
CurAST->add(*InnerAST);
// Once we've incorporated the inner loop's AST into ours, we don't need the
// subloop's anymore.
delete InnerAST;
LoopToAliasSetMap.erase(InnerL);
}
CurLoop = L;
// Get the preheader block to move instructions into...
Preheader = L->getLoopPreheader();
// Loop over the body of this loop, looking for calls, invokes, and stores.
// Because subloops have already been incorporated into AST, we skip blocks in
// subloops.
//
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops.
CurAST->add(*BB); // Incorporate the specified basic block
}
// Compute loop safety information.
LICMSafetyInfo SafetyInfo;
computeLICMSafetyInfo(&SafetyInfo, CurLoop);
// We want to visit all of the instructions in this loop... that are not parts
// of our subloops (they have already had their invariants hoisted out of
// their loop, into this loop, so there is no need to process the BODIES of
// the subloops).
//
// Traverse the body of the loop in depth first order on the dominator tree so
// that we are guaranteed to see definitions before we see uses. This allows
// us to sink instructions in one pass, without iteration. After sinking
// instructions, we perform another pass to hoist them out of the loop.
//
if (L->hasDedicatedExits())
Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, DL, TLI,
CurLoop, CurAST, &SafetyInfo);
if (Preheader)
Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, DL, TLI,
CurLoop, CurAST, &SafetyInfo);
// Now that all loop invariants have been removed from the loop, promote any
// memory references to scalars that we can.
if (!DisablePromotion && (Preheader || L->hasDedicatedExits())) {
SmallVector<BasicBlock *, 8> ExitBlocks;
SmallVector<Instruction *, 8> InsertPts;
PredIteratorCache PIC;
// Loop over all of the alias sets in the tracker object.
for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
I != E; ++I)
Changed |= promoteLoopAccessesToScalars(*I, ExitBlocks, InsertPts,
PIC, LI, DT, CurLoop,
CurAST, &SafetyInfo);
// Once we have promoted values across the loop body we have to recursively
// reform LCSSA as any nested loop may now have values defined within the
// loop used in the outer loop.
// FIXME: This is really heavy handed. It would be a bit better to use an
// SSAUpdater strategy during promotion that was LCSSA aware and reformed
// it as it went.
if (Changed)
formLCSSARecursively(*L, *DT, LI,
getAnalysisIfAvailable<ScalarEvolution>());
}
// Check that neither this loop nor its parent have had LCSSA broken. LICM is
// specifically moving instructions across the loop boundary and so it is
// especially in need of sanity checking here.
assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
"Parent loop not left in LCSSA form after LICM!");
// Clear out loops state information for the next iteration
CurLoop = nullptr;
Preheader = nullptr;
// If this loop is nested inside of another one, save the alias information
// for when we process the outer loop.
if (L->getParentLoop())
LoopToAliasSetMap[L] = CurAST;
else
delete CurAST;
return Changed;
}
/// Walk the specified region of the CFG (defined by all blocks dominated by
/// the specified block, and that are in the current loop) in reverse depth
/// first order w.r.t the DominatorTree. This allows us to visit uses before
/// definitions, allowing us to sink a loop body in one pass without iteration.
///
bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
DominatorTree *DT, const DataLayout *DL,
TargetLibraryInfo *TLI, Loop *CurLoop,
AliasSetTracker *CurAST, LICMSafetyInfo * SafetyInfo) {
// Verify inputs.
assert(N != nullptr && AA != nullptr && LI != nullptr &&
DT != nullptr && CurLoop != nullptr && CurAST != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion");
// Set changed as false.
bool Changed = false;
// Get basic block
BasicBlock *BB = N->getBlock();
// If this subregion is not in the top level loop at all, exit.
if (!CurLoop->contains(BB)) return Changed;
// We are processing blocks in reverse dfo, so process children first.
const std::vector<DomTreeNode*> &Children = N->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
Changed |= sinkRegion(Children[i], AA, LI, DT, DL, TLI, CurLoop,
CurAST, SafetyInfo);
// Only need to process the contents of this block if it is not part of a
// subloop (which would already have been processed).
if (inSubLoop(BB,CurLoop,LI)) return Changed;
for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
Instruction &I = *--II;
// If the instruction is dead, we would try to sink it because it isn't used
// in the loop, instead, just delete it.
if (isInstructionTriviallyDead(&I, TLI)) {
DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
++II;
CurAST->deleteValue(&I);
I.eraseFromParent();
Changed = true;
continue;
}
// Check to see if we can sink this instruction to the exit blocks
// of the loop. We can do this if the all users of the instruction are
// outside of the loop. In this case, it doesn't even matter if the
// operands of the instruction are loop invariant.
//
if (isNotUsedInLoop(I, CurLoop) &&
canSinkOrHoistInst(I, AA, DT, DL, CurLoop, CurAST, SafetyInfo)) {
++II;
Changed |= sink(I, LI, DT, CurLoop, CurAST);
}
}
return Changed;
}
/// Walk the specified region of the CFG (defined by all blocks dominated by
/// the specified block, and that are in the current loop) in depth first
/// order w.r.t the DominatorTree. This allows us to visit definitions before
/// uses, allowing us to hoist a loop body in one pass without iteration.
///
bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
DominatorTree *DT, const DataLayout *DL,
TargetLibraryInfo *TLI, Loop *CurLoop,
AliasSetTracker *CurAST, LICMSafetyInfo *SafetyInfo) {
// Verify inputs.
assert(N != nullptr && AA != nullptr && LI != nullptr &&
DT != nullptr && CurLoop != nullptr && CurAST != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion");
// Set changed as false.
bool Changed = false;
// Get basic block
BasicBlock *BB = N->getBlock();
// If this subregion is not in the top level loop at all, exit.
if (!CurLoop->contains(BB)) return Changed;
// Only need to process the contents of this block if it is not part of a
// subloop (which would already have been processed).
if (!inSubLoop(BB, CurLoop, LI))
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
Instruction &I = *II++;
// Try constant folding this instruction. If all the operands are
// constants, it is technically hoistable, but it would be better to just
// fold it.
if (Constant *C = ConstantFoldInstruction(&I, DL, TLI)) {
DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C << '\n');
CurAST->copyValue(&I, C);
CurAST->deleteValue(&I);
I.replaceAllUsesWith(C);
I.eraseFromParent();
continue;
}
// Try hoisting the instruction out to the preheader. We can only do this
// if all of the operands of the instruction are loop invariant and if it
// is safe to hoist the instruction.
//
if (CurLoop->hasLoopInvariantOperands(&I) &&
canSinkOrHoistInst(I, AA, DT, DL, CurLoop, CurAST, SafetyInfo) &&
isSafeToExecuteUnconditionally(I, DT, DL, CurLoop, SafetyInfo))
Changed |= hoist(I, CurLoop->getLoopPreheader());
}
const std::vector<DomTreeNode*> &Children = N->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
Changed |= hoistRegion(Children[i], AA, LI, DT, DL, TLI, CurLoop,
CurAST, SafetyInfo);
return Changed;
}
/// Computes loop safety information, checks loop body & header
/// for the possiblity of may throw exception.
///
void llvm::computeLICMSafetyInfo(LICMSafetyInfo * SafetyInfo, Loop * CurLoop) {
assert(CurLoop != nullptr && "CurLoop cant be null");
BasicBlock *Header = CurLoop->getHeader();
// Setting default safety values.
SafetyInfo->MayThrow = false;
SafetyInfo->HeaderMayThrow = false;
// Iterate over header and compute dafety info.
for (BasicBlock::iterator I = Header->begin(), E = Header->end();
(I != E) && !SafetyInfo->HeaderMayThrow; ++I)
SafetyInfo->HeaderMayThrow |= I->mayThrow();
SafetyInfo->MayThrow = SafetyInfo->HeaderMayThrow;
// Iterate over loop instructions and compute safety info.
for (Loop::block_iterator BB = CurLoop->block_begin(),
BBE = CurLoop->block_end(); (BB != BBE) && !SafetyInfo->MayThrow ; ++BB)
for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end();
(I != E) && !SafetyInfo->MayThrow; ++I)
SafetyInfo->MayThrow |= I->mayThrow();
}
/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
/// instruction.
///
bool canSinkOrHoistInst(Instruction &I, AliasAnalysis *AA,
DominatorTree *DT, const DataLayout *DL,
Loop *CurLoop, AliasSetTracker *CurAST,
LICMSafetyInfo * SafetyInfo) {
// Loads have extra constraints we have to verify before we can hoist them.
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (!LI->isUnordered())
return false; // Don't hoist volatile/atomic loads!
// Loads from constant memory are always safe to move, even if they end up
// in the same alias set as something that ends up being modified.
if (AA->pointsToConstantMemory(LI->getOperand(0)))
return true;
if (LI->getMetadata(LLVMContext::MD_invariant_load))
return true;
// Don't hoist loads which have may-aliased stores in loop.
uint64_t Size = 0;
if (LI->getType()->isSized())
Size = AA->getTypeStoreSize(LI->getType());
AAMDNodes AAInfo;
LI->getAAMetadata(AAInfo);
return !pointerInvalidatedByLoop(LI->getOperand(0), Size, AAInfo, CurAST);
} else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
// Don't sink or hoist dbg info; it's legal, but not useful.
if (isa<DbgInfoIntrinsic>(I))
return false;
// Handle simple cases by querying alias analysis.
AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
if (Behavior == AliasAnalysis::DoesNotAccessMemory)
return true;
if (AliasAnalysis::onlyReadsMemory(Behavior)) {
// If this call only reads from memory and there are no writes to memory
// in the loop, we can hoist or sink the call as appropriate.
bool FoundMod = false;
for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
I != E; ++I) {
AliasSet &AS = *I;
if (!AS.isForwardingAliasSet() && AS.isMod()) {
FoundMod = true;
break;
}
}
if (!FoundMod) return true;
}
// FIXME: This should use mod/ref information to see if we can hoist or
// sink the call.
return false;
}
// Only these instructions are hoistable/sinkable.
if (!isa<BinaryOperator>(I) && !isa<CastInst>(I) && !isa<SelectInst>(I) &&
!isa<GetElementPtrInst>(I) && !isa<CmpInst>(I) &&
!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
!isa<ShuffleVectorInst>(I) && !isa<ExtractValueInst>(I) &&
!isa<InsertValueInst>(I))
return false;
return isSafeToExecuteUnconditionally(I, DT, DL, CurLoop, SafetyInfo);
}
/// Returns true if a PHINode is a trivially replaceable with an
/// Instruction.
/// This is true when all incoming values are that instruction.
/// This pattern occurs most often with LCSSA PHI nodes.
///
static bool isTriviallyReplacablePHI(PHINode &PN, Instruction &I) {
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
if (PN.getIncomingValue(i) != &I)
return false;
return true;
}
/// Return true if the only users of this instruction are outside of
/// the loop. If this is true, we can sink the instruction to the exit
/// blocks of the loop.
///
static bool isNotUsedInLoop(Instruction &I, Loop *CurLoop) {
for (User *U : I.users()) {
Instruction *UI = cast<Instruction>(U);
if (PHINode *PN = dyn_cast<PHINode>(UI)) {
// A PHI node where all of the incoming values are this instruction are
// special -- they can just be RAUW'ed with the instruction and thus
// don't require a use in the predecessor. This is a particular important
// special case because it is the pattern found in LCSSA form.
if (isTriviallyReplacablePHI(*PN, I)) {
if (CurLoop->contains(PN))
return false;
else
continue;
}
// Otherwise, PHI node uses occur in predecessor blocks if the incoming
// values. Check for such a use being inside the loop.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == &I)
if (CurLoop->contains(PN->getIncomingBlock(i)))
return false;
continue;
}
if (CurLoop->contains(UI))
return false;
}
return true;
}
static Instruction *CloneInstructionInExitBlock(Instruction &I,
BasicBlock &ExitBlock,
PHINode &PN, LoopInfo *LI) {
Instruction *New = I.clone();
ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
if (!I.getName().empty()) New->setName(I.getName() + ".le");
// Build LCSSA PHI nodes for any in-loop operands. Note that this is
// particularly cheap because we can rip off the PHI node that we're
// replacing for the number and blocks of the predecessors.
// OPT: If this shows up in a profile, we can instead finish sinking all
// invariant instructions, and then walk their operands to re-establish
// LCSSA. That will eliminate creating PHI nodes just to nuke them when
// sinking bottom-up.
for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
++OI)
if (Instruction *OInst = dyn_cast<Instruction>(*OI))
if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
if (!OLoop->contains(&PN)) {
PHINode *OpPN =
PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
OInst->getName() + ".lcssa", ExitBlock.begin());
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
*OI = OpPN;
}
return New;
}
/// When an instruction is found to only be used outside of the loop, this
/// function moves it to the exit blocks and patches up SSA form as needed.
/// This method is guaranteed to remove the original instruction from its
/// position, and may either delete it or move it to outside of the loop.
///
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
Loop *CurLoop, AliasSetTracker *CurAST ) {
DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
bool Changed = false;
if (isa<LoadInst>(I)) ++NumMovedLoads;
else if (isa<CallInst>(I)) ++NumMovedCalls;
++NumSunk;
Changed = true;
#ifndef NDEBUG
SmallVector<BasicBlock *, 32> ExitBlocks;
CurLoop->getUniqueExitBlocks(ExitBlocks);
SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
ExitBlocks.end());
#endif
// Clones of this instruction. Don't create more than one per exit block!
SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
// If this instruction is only used outside of the loop, then all users are
// PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
// the instruction.
while (!I.use_empty()) {
Instruction *User = I.user_back();
if (!DT->isReachableFromEntry(User->getParent())) {
User->replaceUsesOfWith(&I, UndefValue::get(I.getType()));
continue;
}
// The user must be a PHI node.
PHINode *PN = cast<PHINode>(User);
BasicBlock *ExitBlock = PN->getParent();
assert(ExitBlockSet.count(ExitBlock) &&
"The LCSSA PHI is not in an exit block!");
Instruction *New;
auto It = SunkCopies.find(ExitBlock);
if (It != SunkCopies.end())
New = It->second;
else
New = SunkCopies[ExitBlock] =
CloneInstructionInExitBlock(I, *ExitBlock, *PN, LI);
PN->replaceAllUsesWith(New);
PN->eraseFromParent();
}
CurAST->deleteValue(&I);
I.eraseFromParent();
return Changed;
}
/// When an instruction is found to only use loop invariant operands that
/// is safe to hoist, this instruction is called to do the dirty work.
///
static bool hoist(Instruction &I, BasicBlock *Preheader) {
DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
<< I << "\n");
// Move the new node to the Preheader, before its terminator.
I.moveBefore(Preheader->getTerminator());
if (isa<LoadInst>(I)) ++NumMovedLoads;
else if (isa<CallInst>(I)) ++NumMovedCalls;
++NumHoisted;
return true;
}
/// Only sink or hoist an instruction if it is not a trapping instruction
/// or if it is a trapping instruction and is guaranteed to execute.
///
static bool isSafeToExecuteUnconditionally(Instruction &Inst, DominatorTree *DT,
const DataLayout *DL, Loop *CurLoop,
LICMSafetyInfo * SafetyInfo) {
// If it is not a trapping instruction, it is always safe to hoist.
if (isSafeToSpeculativelyExecute(&Inst, DL))
return true;
return isGuaranteedToExecute(Inst, DT, CurLoop, SafetyInfo);
}
static bool isGuaranteedToExecute(Instruction &Inst, DominatorTree *DT,
Loop *CurLoop, LICMSafetyInfo * SafetyInfo) {
// We have to check to make sure that the instruction dominates all
// of the exit blocks. If it doesn't, then there is a path out of the loop
// which does not execute this instruction, so we can't hoist it.
// If the instruction is in the header block for the loop (which is very
// common), it is always guaranteed to dominate the exit blocks. Since this
// is a common case, and can save some work, check it now.
if (Inst.getParent() == CurLoop->getHeader())
// If there's a throw in the header block, we can't guarantee we'll reach
// Inst.
return !SafetyInfo->HeaderMayThrow;
// Somewhere in this loop there is an instruction which may throw and make us
// exit the loop.
if (SafetyInfo->MayThrow)
return false;
// Get the exit blocks for the current loop.
SmallVector<BasicBlock*, 8> ExitBlocks;
CurLoop->getExitBlocks(ExitBlocks);
// Verify that the block dominates each of the exit blocks of the loop.
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (!DT->dominates(Inst.getParent(), ExitBlocks[i]))
return false;
// As a degenerate case, if the loop is statically infinite then we haven't
// proven anything since there are no exit blocks.
if (ExitBlocks.empty())
return false;
return true;
}
namespace {
class LoopPromoter : public LoadAndStorePromoter {
Value *SomePtr; // Designated pointer to store to.
SmallPtrSetImpl<Value*> &PointerMustAliases;
SmallVectorImpl<BasicBlock*> &LoopExitBlocks;
SmallVectorImpl<Instruction*> &LoopInsertPts;
PredIteratorCache &PredCache;
AliasSetTracker &AST;
LoopInfo &LI;
DebugLoc DL;
int Alignment;
AAMDNodes AATags;
Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
if (Instruction *I = dyn_cast<Instruction>(V))
if (Loop *L = LI.getLoopFor(I->getParent()))
if (!L->contains(BB)) {
// We need to create an LCSSA PHI node for the incoming value and
// store that.
PHINode *PN = PHINode::Create(
I->getType(), PredCache.GetNumPreds(BB),
I->getName() + ".lcssa", BB->begin());
for (BasicBlock **PI = PredCache.GetPreds(BB); *PI; ++PI)
PN->addIncoming(I, *PI);
return PN;
}
return V;
}
public:
LoopPromoter(Value *SP, const SmallVectorImpl<Instruction *> &Insts,
SSAUpdater &S, SmallPtrSetImpl<Value *> &PMA,
SmallVectorImpl<BasicBlock *> &LEB,
SmallVectorImpl<Instruction *> &LIP, PredIteratorCache &PIC,
AliasSetTracker &ast, LoopInfo &li, DebugLoc dl, int alignment,
const AAMDNodes &AATags)
: LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
LoopExitBlocks(LEB), LoopInsertPts(LIP), PredCache(PIC), AST(ast),
LI(li), DL(dl), Alignment(alignment), AATags(AATags) {}
bool isInstInList(Instruction *I,
const SmallVectorImpl<Instruction*> &) const override {
Value *Ptr;
if (LoadInst *LI = dyn_cast<LoadInst>(I))
Ptr = LI->getOperand(0);
else
Ptr = cast<StoreInst>(I)->getPointerOperand();
return PointerMustAliases.count(Ptr);
}
void doExtraRewritesBeforeFinalDeletion() const override {
// Insert stores after in the loop exit blocks. Each exit block gets a
// store of the live-out values that feed them. Since we've already told
// the SSA updater about the defs in the loop and the preheader
// definition, it is all set and we can start using it.
for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBlock = LoopExitBlocks[i];
Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
Instruction *InsertPos = LoopInsertPts[i];
StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
NewSI->setAlignment(Alignment);
NewSI->setDebugLoc(DL);
if (AATags) NewSI->setAAMetadata(AATags);
}
}
void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
// Update alias analysis.
AST.copyValue(LI, V);
}
void instructionDeleted(Instruction *I) const override {
AST.deleteValue(I);
}
};
} // end anon namespace
/// Try to promote memory values to scalars by sinking stores out of the
/// loop and moving loads to before the loop. We do this by looping over
/// the stores in the loop, looking for stores to Must pointers which are
/// loop invariant.
///
bool llvm::promoteLoopAccessesToScalars(AliasSet &AS,
SmallVectorImpl<BasicBlock*>&ExitBlocks,
SmallVectorImpl<Instruction*>&InsertPts,
PredIteratorCache &PIC, LoopInfo *LI,
DominatorTree *DT, Loop *CurLoop,
AliasSetTracker *CurAST,
LICMSafetyInfo * SafetyInfo) {
// Verify inputs.
assert(LI != nullptr && DT != nullptr &&
CurLoop != nullptr && CurAST != nullptr &&
SafetyInfo != nullptr &&
"Unexpected Input to promoteLoopAccessesToScalars");
// Initially set Changed status to false.
bool Changed = false;
// We can promote this alias set if it has a store, if it is a "Must" alias
// set, if the pointer is loop invariant, and if we are not eliminating any
// volatile loads or stores.
if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
return Changed;
assert(!AS.empty() &&
"Must alias set should have at least one pointer element in it!");
Value *SomePtr = AS.begin()->getValue();
BasicBlock * Preheader = CurLoop->getLoopPreheader();
// It isn't safe to promote a load/store from the loop if the load/store is
// conditional. For example, turning:
//
// for () { if (c) *P += 1; }
//
// into:
//
// tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
//
// is not safe, because *P may only be valid to access if 'c' is true.
//
// It is safe to promote P if all uses are direct load/stores and if at
// least one is guaranteed to be executed.
bool GuaranteedToExecute = false;
SmallVector<Instruction*, 64> LoopUses;
SmallPtrSet<Value*, 4> PointerMustAliases;
// We start with an alignment of one and try to find instructions that allow
// us to prove better alignment.
unsigned Alignment = 1;
AAMDNodes AATags;
bool HasDedicatedExits = CurLoop->hasDedicatedExits();
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
// different sizes. While we are at it, collect alignment and AA info.
for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
Value *ASIV = ASI->getValue();
PointerMustAliases.insert(ASIV);
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
// different sizes.
if (SomePtr->getType() != ASIV->getType())
return Changed;
for (User *U : ASIV->users()) {
// Ignore instructions that are outside the loop.
Instruction *UI = dyn_cast<Instruction>(U);
if (!UI || !CurLoop->contains(UI))
continue;
// If there is an non-load/store instruction in the loop, we can't promote
// it.
if (LoadInst *load = dyn_cast<LoadInst>(UI)) {
assert(!load->isVolatile() && "AST broken");
if (!load->isSimple())
return Changed;
} else if (StoreInst *store = dyn_cast<StoreInst>(UI)) {
// Stores *of* the pointer are not interesting, only stores *to* the
// pointer.
if (UI->getOperand(1) != ASIV)
continue;
assert(!store->isVolatile() && "AST broken");
if (!store->isSimple())
return Changed;
// Don't sink stores from loops without dedicated block exits. Exits
// containing indirect branches are not transformed by loop simplify,
// make sure we catch that. An additional load may be generated in the
// preheader for SSA updater, so also avoid sinking when no preheader
// is available.
if (!HasDedicatedExits || !Preheader)
return Changed;
// Note that we only check GuaranteedToExecute inside the store case
// so that we do not introduce stores where they did not exist before
// (which would break the LLVM concurrency model).
// If the alignment of this instruction allows us to specify a more
// restrictive (and performant) alignment and if we are sure this
// instruction will be executed, update the alignment.
// Larger is better, with the exception of 0 being the best alignment.
unsigned InstAlignment = store->getAlignment();
if ((InstAlignment > Alignment || InstAlignment == 0) && Alignment != 0)
if (isGuaranteedToExecute(*UI, DT, CurLoop, SafetyInfo)) {
GuaranteedToExecute = true;
Alignment = InstAlignment;
}
if (!GuaranteedToExecute)
GuaranteedToExecute = isGuaranteedToExecute(*UI, DT,
CurLoop, SafetyInfo);
} else
return Changed; // Not a load or store.
// Merge the AA tags.
if (LoopUses.empty()) {
// On the first load/store, just take its AA tags.
UI->getAAMetadata(AATags);
} else if (AATags) {
UI->getAAMetadata(AATags, /* Merge = */ true);
}
LoopUses.push_back(UI);
}
}
// If there isn't a guaranteed-to-execute instruction, we can't promote.
if (!GuaranteedToExecute)
return Changed;
// Otherwise, this is safe to promote, lets do it!
DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
Changed = true;
++NumPromoted;
// Grab a debug location for the inserted loads/stores; given that the
// inserted loads/stores have little relation to the original loads/stores,
// this code just arbitrarily picks a location from one, since any debug
// location is better than none.
DebugLoc DL = LoopUses[0]->getDebugLoc();
// Figure out the loop exits and their insertion points, if this is the
// first promotion.
if (ExitBlocks.empty()) {
CurLoop->getUniqueExitBlocks(ExitBlocks);
InsertPts.resize(ExitBlocks.size());
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
InsertPts[i] = ExitBlocks[i]->getFirstInsertionPt();
}
// We use the SSAUpdater interface to insert phi nodes as required.
SmallVector<PHINode*, 16> NewPHIs;
SSAUpdater SSA(&NewPHIs);
LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
InsertPts, PIC, *CurAST, *LI, DL, Alignment, AATags);
// Set up the preheader to have a definition of the value. It is the live-out
// value from the preheader that uses in the loop will use.
LoadInst *PreheaderLoad =
new LoadInst(SomePtr, SomePtr->getName()+".promoted",
Preheader->getTerminator());
PreheaderLoad->setAlignment(Alignment);
PreheaderLoad->setDebugLoc(DL);
if (AATags) PreheaderLoad->setAAMetadata(AATags);
SSA.AddAvailableValue(Preheader, PreheaderLoad);
// Rewrite all the loads in the loop and remember all the definitions from
// stores in the loop.
Promoter.run(LoopUses);
// If the SSAUpdater didn't use the load in the preheader, just zap it now.
if (PreheaderLoad->use_empty())
PreheaderLoad->eraseFromParent();
return Changed;
}
/// Simple Analysis hook. Clone alias set info.
///
void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
if (!AST)
return;
AST->copyValue(From, To);
}
/// Simple Analysis hook. Delete value V from alias set
///
void LICM::deleteAnalysisValue(Value *V, Loop *L) {
AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
if (!AST)
return;
AST->deleteValue(V);
}
/// Simple Analysis hook. Delete value L from alias set map.
///
void LICM::deleteAnalysisLoop(Loop *L) {
AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
if (!AST)
return;
delete AST;
LoopToAliasSetMap.erase(L);
}
/// Return true if the body of this loop may store into the memory
/// location pointed to by V.
///
static bool pointerInvalidatedByLoop(Value *V, uint64_t Size,
const AAMDNodes &AAInfo,
AliasSetTracker *CurAST) {
// Check to see if any of the basic blocks in CurLoop invalidate *V.
return CurAST->getAliasSetForPointer(V, Size, AAInfo).isMod();
}
/// Little predicate that returns true if the specified basic block is in
/// a subloop of the current one, not the current one itself.
///
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
return LI->getLoopFor(BB) != CurLoop;
}