mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
c94da20917
Summary: DataLayout keeps the string used for its creation. As a side effect it is no longer needed in the Module. This is "almost" NFC, the string is no longer canonicalized, you can't rely on two "equals" DataLayout having the same string returned by getStringRepresentation(). Get rid of DataLayoutPass: the DataLayout is in the Module The DataLayout is "per-module", let's enforce this by not duplicating it more than necessary. One more step toward non-optionality of the DataLayout in the module. Make DataLayout Non-Optional in the Module Module->getDataLayout() will never returns nullptr anymore. Reviewers: echristo Subscribers: resistor, llvm-commits, jholewinski Differential Revision: http://reviews.llvm.org/D7992 From: Mehdi Amini <mehdi.amini@apple.com> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231270 91177308-0d34-0410-b5e6-96231b3b80d8
1098 lines
41 KiB
C++
1098 lines
41 KiB
C++
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs various transformations related to eliminating memcpy
|
|
// calls, or transforming sets of stores into memset's.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <list>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "memcpyopt"
|
|
|
|
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
|
|
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
|
|
STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
|
|
STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
|
|
|
|
static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
|
|
bool &VariableIdxFound, const DataLayout &TD){
|
|
// Skip over the first indices.
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
for (unsigned i = 1; i != Idx; ++i, ++GTI)
|
|
/*skip along*/;
|
|
|
|
// Compute the offset implied by the rest of the indices.
|
|
int64_t Offset = 0;
|
|
for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
|
|
ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
|
|
if (!OpC)
|
|
return VariableIdxFound = true;
|
|
if (OpC->isZero()) continue; // No offset.
|
|
|
|
// Handle struct indices, which add their field offset to the pointer.
|
|
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
|
|
Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we have a sequential type like an array or vector. Multiply
|
|
// the index by the ElementSize.
|
|
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
|
|
Offset += Size*OpC->getSExtValue();
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
|
|
/// constant offset, and return that constant offset. For example, Ptr1 might
|
|
/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
|
|
static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
|
|
const DataLayout &TD) {
|
|
Ptr1 = Ptr1->stripPointerCasts();
|
|
Ptr2 = Ptr2->stripPointerCasts();
|
|
|
|
// Handle the trivial case first.
|
|
if (Ptr1 == Ptr2) {
|
|
Offset = 0;
|
|
return true;
|
|
}
|
|
|
|
GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
|
|
GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
|
|
|
|
bool VariableIdxFound = false;
|
|
|
|
// If one pointer is a GEP and the other isn't, then see if the GEP is a
|
|
// constant offset from the base, as in "P" and "gep P, 1".
|
|
if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
|
|
Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
|
|
return !VariableIdxFound;
|
|
}
|
|
|
|
if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
|
|
Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
|
|
return !VariableIdxFound;
|
|
}
|
|
|
|
// Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
|
|
// base. After that base, they may have some number of common (and
|
|
// potentially variable) indices. After that they handle some constant
|
|
// offset, which determines their offset from each other. At this point, we
|
|
// handle no other case.
|
|
if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
|
|
return false;
|
|
|
|
// Skip any common indices and track the GEP types.
|
|
unsigned Idx = 1;
|
|
for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
|
|
if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
|
|
break;
|
|
|
|
int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
|
|
int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
|
|
if (VariableIdxFound) return false;
|
|
|
|
Offset = Offset2-Offset1;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
|
|
/// This allows us to analyze stores like:
|
|
/// store 0 -> P+1
|
|
/// store 0 -> P+0
|
|
/// store 0 -> P+3
|
|
/// store 0 -> P+2
|
|
/// which sometimes happens with stores to arrays of structs etc. When we see
|
|
/// the first store, we make a range [1, 2). The second store extends the range
|
|
/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
|
|
/// two ranges into [0, 3) which is memset'able.
|
|
namespace {
|
|
struct MemsetRange {
|
|
// Start/End - A semi range that describes the span that this range covers.
|
|
// The range is closed at the start and open at the end: [Start, End).
|
|
int64_t Start, End;
|
|
|
|
/// StartPtr - The getelementptr instruction that points to the start of the
|
|
/// range.
|
|
Value *StartPtr;
|
|
|
|
/// Alignment - The known alignment of the first store.
|
|
unsigned Alignment;
|
|
|
|
/// TheStores - The actual stores that make up this range.
|
|
SmallVector<Instruction*, 16> TheStores;
|
|
|
|
bool isProfitableToUseMemset(const DataLayout &TD) const;
|
|
|
|
};
|
|
} // end anon namespace
|
|
|
|
bool MemsetRange::isProfitableToUseMemset(const DataLayout &TD) const {
|
|
// If we found more than 4 stores to merge or 16 bytes, use memset.
|
|
if (TheStores.size() >= 4 || End-Start >= 16) return true;
|
|
|
|
// If there is nothing to merge, don't do anything.
|
|
if (TheStores.size() < 2) return false;
|
|
|
|
// If any of the stores are a memset, then it is always good to extend the
|
|
// memset.
|
|
for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
|
|
if (!isa<StoreInst>(TheStores[i]))
|
|
return true;
|
|
|
|
// Assume that the code generator is capable of merging pairs of stores
|
|
// together if it wants to.
|
|
if (TheStores.size() == 2) return false;
|
|
|
|
// If we have fewer than 8 stores, it can still be worthwhile to do this.
|
|
// For example, merging 4 i8 stores into an i32 store is useful almost always.
|
|
// However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
|
|
// memset will be split into 2 32-bit stores anyway) and doing so can
|
|
// pessimize the llvm optimizer.
|
|
//
|
|
// Since we don't have perfect knowledge here, make some assumptions: assume
|
|
// the maximum GPR width is the same size as the largest legal integer
|
|
// size. If so, check to see whether we will end up actually reducing the
|
|
// number of stores used.
|
|
unsigned Bytes = unsigned(End-Start);
|
|
unsigned MaxIntSize = TD.getLargestLegalIntTypeSize();
|
|
if (MaxIntSize == 0)
|
|
MaxIntSize = 1;
|
|
unsigned NumPointerStores = Bytes / MaxIntSize;
|
|
|
|
// Assume the remaining bytes if any are done a byte at a time.
|
|
unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize;
|
|
|
|
// If we will reduce the # stores (according to this heuristic), do the
|
|
// transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
|
|
// etc.
|
|
return TheStores.size() > NumPointerStores+NumByteStores;
|
|
}
|
|
|
|
|
|
namespace {
|
|
class MemsetRanges {
|
|
/// Ranges - A sorted list of the memset ranges. We use std::list here
|
|
/// because each element is relatively large and expensive to copy.
|
|
std::list<MemsetRange> Ranges;
|
|
typedef std::list<MemsetRange>::iterator range_iterator;
|
|
const DataLayout &DL;
|
|
public:
|
|
MemsetRanges(const DataLayout &DL) : DL(DL) {}
|
|
|
|
typedef std::list<MemsetRange>::const_iterator const_iterator;
|
|
const_iterator begin() const { return Ranges.begin(); }
|
|
const_iterator end() const { return Ranges.end(); }
|
|
bool empty() const { return Ranges.empty(); }
|
|
|
|
void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
|
|
addStore(OffsetFromFirst, SI);
|
|
else
|
|
addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
|
|
}
|
|
|
|
void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
|
|
int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
|
|
|
|
addRange(OffsetFromFirst, StoreSize,
|
|
SI->getPointerOperand(), SI->getAlignment(), SI);
|
|
}
|
|
|
|
void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
|
|
int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
|
|
addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
|
|
}
|
|
|
|
void addRange(int64_t Start, int64_t Size, Value *Ptr,
|
|
unsigned Alignment, Instruction *Inst);
|
|
|
|
};
|
|
|
|
} // end anon namespace
|
|
|
|
|
|
/// addRange - Add a new store to the MemsetRanges data structure. This adds a
|
|
/// new range for the specified store at the specified offset, merging into
|
|
/// existing ranges as appropriate.
|
|
///
|
|
/// Do a linear search of the ranges to see if this can be joined and/or to
|
|
/// find the insertion point in the list. We keep the ranges sorted for
|
|
/// simplicity here. This is a linear search of a linked list, which is ugly,
|
|
/// however the number of ranges is limited, so this won't get crazy slow.
|
|
void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
|
|
unsigned Alignment, Instruction *Inst) {
|
|
int64_t End = Start+Size;
|
|
range_iterator I = Ranges.begin(), E = Ranges.end();
|
|
|
|
while (I != E && Start > I->End)
|
|
++I;
|
|
|
|
// We now know that I == E, in which case we didn't find anything to merge
|
|
// with, or that Start <= I->End. If End < I->Start or I == E, then we need
|
|
// to insert a new range. Handle this now.
|
|
if (I == E || End < I->Start) {
|
|
MemsetRange &R = *Ranges.insert(I, MemsetRange());
|
|
R.Start = Start;
|
|
R.End = End;
|
|
R.StartPtr = Ptr;
|
|
R.Alignment = Alignment;
|
|
R.TheStores.push_back(Inst);
|
|
return;
|
|
}
|
|
|
|
// This store overlaps with I, add it.
|
|
I->TheStores.push_back(Inst);
|
|
|
|
// At this point, we may have an interval that completely contains our store.
|
|
// If so, just add it to the interval and return.
|
|
if (I->Start <= Start && I->End >= End)
|
|
return;
|
|
|
|
// Now we know that Start <= I->End and End >= I->Start so the range overlaps
|
|
// but is not entirely contained within the range.
|
|
|
|
// See if the range extends the start of the range. In this case, it couldn't
|
|
// possibly cause it to join the prior range, because otherwise we would have
|
|
// stopped on *it*.
|
|
if (Start < I->Start) {
|
|
I->Start = Start;
|
|
I->StartPtr = Ptr;
|
|
I->Alignment = Alignment;
|
|
}
|
|
|
|
// Now we know that Start <= I->End and Start >= I->Start (so the startpoint
|
|
// is in or right at the end of I), and that End >= I->Start. Extend I out to
|
|
// End.
|
|
if (End > I->End) {
|
|
I->End = End;
|
|
range_iterator NextI = I;
|
|
while (++NextI != E && End >= NextI->Start) {
|
|
// Merge the range in.
|
|
I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
|
|
if (NextI->End > I->End)
|
|
I->End = NextI->End;
|
|
Ranges.erase(NextI);
|
|
NextI = I;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MemCpyOpt Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class MemCpyOpt : public FunctionPass {
|
|
MemoryDependenceAnalysis *MD;
|
|
TargetLibraryInfo *TLI;
|
|
const DataLayout *DL;
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
MemCpyOpt() : FunctionPass(ID) {
|
|
initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
|
|
MD = nullptr;
|
|
TLI = nullptr;
|
|
DL = nullptr;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
// This transformation requires dominator postdominator info
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<MemoryDependenceAnalysis>();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<AliasAnalysis>();
|
|
AU.addPreserved<MemoryDependenceAnalysis>();
|
|
}
|
|
|
|
// Helper fuctions
|
|
bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
|
|
bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
|
|
bool processMemCpy(MemCpyInst *M);
|
|
bool processMemMove(MemMoveInst *M);
|
|
bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
|
|
uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
|
|
bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
|
|
uint64_t MSize);
|
|
bool processByValArgument(CallSite CS, unsigned ArgNo);
|
|
Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
|
|
Value *ByteVal);
|
|
|
|
bool iterateOnFunction(Function &F);
|
|
};
|
|
|
|
char MemCpyOpt::ID = 0;
|
|
}
|
|
|
|
// createMemCpyOptPass - The public interface to this file...
|
|
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
|
|
|
|
INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
|
|
false, false)
|
|
|
|
/// tryMergingIntoMemset - When scanning forward over instructions, we look for
|
|
/// some other patterns to fold away. In particular, this looks for stores to
|
|
/// neighboring locations of memory. If it sees enough consecutive ones, it
|
|
/// attempts to merge them together into a memcpy/memset.
|
|
Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
|
|
Value *StartPtr, Value *ByteVal) {
|
|
if (!DL) return nullptr;
|
|
|
|
// Okay, so we now have a single store that can be splatable. Scan to find
|
|
// all subsequent stores of the same value to offset from the same pointer.
|
|
// Join these together into ranges, so we can decide whether contiguous blocks
|
|
// are stored.
|
|
MemsetRanges Ranges(*DL);
|
|
|
|
BasicBlock::iterator BI = StartInst;
|
|
for (++BI; !isa<TerminatorInst>(BI); ++BI) {
|
|
if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
|
|
// If the instruction is readnone, ignore it, otherwise bail out. We
|
|
// don't even allow readonly here because we don't want something like:
|
|
// A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
|
|
if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
|
|
// If this is a store, see if we can merge it in.
|
|
if (!NextStore->isSimple()) break;
|
|
|
|
// Check to see if this stored value is of the same byte-splattable value.
|
|
if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
|
|
break;
|
|
|
|
// Check to see if this store is to a constant offset from the start ptr.
|
|
int64_t Offset;
|
|
if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
|
|
Offset, *DL))
|
|
break;
|
|
|
|
Ranges.addStore(Offset, NextStore);
|
|
} else {
|
|
MemSetInst *MSI = cast<MemSetInst>(BI);
|
|
|
|
if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
|
|
!isa<ConstantInt>(MSI->getLength()))
|
|
break;
|
|
|
|
// Check to see if this store is to a constant offset from the start ptr.
|
|
int64_t Offset;
|
|
if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *DL))
|
|
break;
|
|
|
|
Ranges.addMemSet(Offset, MSI);
|
|
}
|
|
}
|
|
|
|
// If we have no ranges, then we just had a single store with nothing that
|
|
// could be merged in. This is a very common case of course.
|
|
if (Ranges.empty())
|
|
return nullptr;
|
|
|
|
// If we had at least one store that could be merged in, add the starting
|
|
// store as well. We try to avoid this unless there is at least something
|
|
// interesting as a small compile-time optimization.
|
|
Ranges.addInst(0, StartInst);
|
|
|
|
// If we create any memsets, we put it right before the first instruction that
|
|
// isn't part of the memset block. This ensure that the memset is dominated
|
|
// by any addressing instruction needed by the start of the block.
|
|
IRBuilder<> Builder(BI);
|
|
|
|
// Now that we have full information about ranges, loop over the ranges and
|
|
// emit memset's for anything big enough to be worthwhile.
|
|
Instruction *AMemSet = nullptr;
|
|
for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
|
|
I != E; ++I) {
|
|
const MemsetRange &Range = *I;
|
|
|
|
if (Range.TheStores.size() == 1) continue;
|
|
|
|
// If it is profitable to lower this range to memset, do so now.
|
|
if (!Range.isProfitableToUseMemset(*DL))
|
|
continue;
|
|
|
|
// Otherwise, we do want to transform this! Create a new memset.
|
|
// Get the starting pointer of the block.
|
|
StartPtr = Range.StartPtr;
|
|
|
|
// Determine alignment
|
|
unsigned Alignment = Range.Alignment;
|
|
if (Alignment == 0) {
|
|
Type *EltType =
|
|
cast<PointerType>(StartPtr->getType())->getElementType();
|
|
Alignment = DL->getABITypeAlignment(EltType);
|
|
}
|
|
|
|
AMemSet =
|
|
Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
|
|
|
|
DEBUG(dbgs() << "Replace stores:\n";
|
|
for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
|
|
dbgs() << *Range.TheStores[i] << '\n';
|
|
dbgs() << "With: " << *AMemSet << '\n');
|
|
|
|
if (!Range.TheStores.empty())
|
|
AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
|
|
|
|
// Zap all the stores.
|
|
for (SmallVectorImpl<Instruction *>::const_iterator
|
|
SI = Range.TheStores.begin(),
|
|
SE = Range.TheStores.end(); SI != SE; ++SI) {
|
|
MD->removeInstruction(*SI);
|
|
(*SI)->eraseFromParent();
|
|
}
|
|
++NumMemSetInfer;
|
|
}
|
|
|
|
return AMemSet;
|
|
}
|
|
|
|
|
|
bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
|
|
if (!SI->isSimple()) return false;
|
|
|
|
if (!DL) return false;
|
|
|
|
// Detect cases where we're performing call slot forwarding, but
|
|
// happen to be using a load-store pair to implement it, rather than
|
|
// a memcpy.
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
|
|
if (LI->isSimple() && LI->hasOneUse() &&
|
|
LI->getParent() == SI->getParent()) {
|
|
MemDepResult ldep = MD->getDependency(LI);
|
|
CallInst *C = nullptr;
|
|
if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
|
|
C = dyn_cast<CallInst>(ldep.getInst());
|
|
|
|
if (C) {
|
|
// Check that nothing touches the dest of the "copy" between
|
|
// the call and the store.
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
|
|
for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
|
|
E = C; I != E; --I) {
|
|
if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
|
|
C = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (C) {
|
|
unsigned storeAlign = SI->getAlignment();
|
|
if (!storeAlign)
|
|
storeAlign = DL->getABITypeAlignment(SI->getOperand(0)->getType());
|
|
unsigned loadAlign = LI->getAlignment();
|
|
if (!loadAlign)
|
|
loadAlign = DL->getABITypeAlignment(LI->getType());
|
|
|
|
bool changed = performCallSlotOptzn(LI,
|
|
SI->getPointerOperand()->stripPointerCasts(),
|
|
LI->getPointerOperand()->stripPointerCasts(),
|
|
DL->getTypeStoreSize(SI->getOperand(0)->getType()),
|
|
std::min(storeAlign, loadAlign), C);
|
|
if (changed) {
|
|
MD->removeInstruction(SI);
|
|
SI->eraseFromParent();
|
|
MD->removeInstruction(LI);
|
|
LI->eraseFromParent();
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// There are two cases that are interesting for this code to handle: memcpy
|
|
// and memset. Right now we only handle memset.
|
|
|
|
// Ensure that the value being stored is something that can be memset'able a
|
|
// byte at a time like "0" or "-1" or any width, as well as things like
|
|
// 0xA0A0A0A0 and 0.0.
|
|
if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
|
|
if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
|
|
ByteVal)) {
|
|
BBI = I; // Don't invalidate iterator.
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
|
|
// See if there is another memset or store neighboring this memset which
|
|
// allows us to widen out the memset to do a single larger store.
|
|
if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
|
|
if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
|
|
MSI->getValue())) {
|
|
BBI = I; // Don't invalidate iterator.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
|
|
/// and checks for the possibility of a call slot optimization by having
|
|
/// the call write its result directly into the destination of the memcpy.
|
|
bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
|
|
Value *cpyDest, Value *cpySrc,
|
|
uint64_t cpyLen, unsigned cpyAlign,
|
|
CallInst *C) {
|
|
// The general transformation to keep in mind is
|
|
//
|
|
// call @func(..., src, ...)
|
|
// memcpy(dest, src, ...)
|
|
//
|
|
// ->
|
|
//
|
|
// memcpy(dest, src, ...)
|
|
// call @func(..., dest, ...)
|
|
//
|
|
// Since moving the memcpy is technically awkward, we additionally check that
|
|
// src only holds uninitialized values at the moment of the call, meaning that
|
|
// the memcpy can be discarded rather than moved.
|
|
|
|
// Deliberately get the source and destination with bitcasts stripped away,
|
|
// because we'll need to do type comparisons based on the underlying type.
|
|
CallSite CS(C);
|
|
|
|
// Require that src be an alloca. This simplifies the reasoning considerably.
|
|
AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
|
|
if (!srcAlloca)
|
|
return false;
|
|
|
|
// Check that all of src is copied to dest.
|
|
if (!DL) return false;
|
|
|
|
ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
|
|
if (!srcArraySize)
|
|
return false;
|
|
|
|
uint64_t srcSize = DL->getTypeAllocSize(srcAlloca->getAllocatedType()) *
|
|
srcArraySize->getZExtValue();
|
|
|
|
if (cpyLen < srcSize)
|
|
return false;
|
|
|
|
// Check that accessing the first srcSize bytes of dest will not cause a
|
|
// trap. Otherwise the transform is invalid since it might cause a trap
|
|
// to occur earlier than it otherwise would.
|
|
if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
|
|
// The destination is an alloca. Check it is larger than srcSize.
|
|
ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
|
|
if (!destArraySize)
|
|
return false;
|
|
|
|
uint64_t destSize = DL->getTypeAllocSize(A->getAllocatedType()) *
|
|
destArraySize->getZExtValue();
|
|
|
|
if (destSize < srcSize)
|
|
return false;
|
|
} else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
|
|
if (A->getDereferenceableBytes() < srcSize) {
|
|
// If the destination is an sret parameter then only accesses that are
|
|
// outside of the returned struct type can trap.
|
|
if (!A->hasStructRetAttr())
|
|
return false;
|
|
|
|
Type *StructTy = cast<PointerType>(A->getType())->getElementType();
|
|
if (!StructTy->isSized()) {
|
|
// The call may never return and hence the copy-instruction may never
|
|
// be executed, and therefore it's not safe to say "the destination
|
|
// has at least <cpyLen> bytes, as implied by the copy-instruction",
|
|
return false;
|
|
}
|
|
|
|
uint64_t destSize = DL->getTypeAllocSize(StructTy);
|
|
if (destSize < srcSize)
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Check that dest points to memory that is at least as aligned as src.
|
|
unsigned srcAlign = srcAlloca->getAlignment();
|
|
if (!srcAlign)
|
|
srcAlign = DL->getABITypeAlignment(srcAlloca->getAllocatedType());
|
|
bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
|
|
// If dest is not aligned enough and we can't increase its alignment then
|
|
// bail out.
|
|
if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
|
|
return false;
|
|
|
|
// Check that src is not accessed except via the call and the memcpy. This
|
|
// guarantees that it holds only undefined values when passed in (so the final
|
|
// memcpy can be dropped), that it is not read or written between the call and
|
|
// the memcpy, and that writing beyond the end of it is undefined.
|
|
SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
|
|
srcAlloca->user_end());
|
|
while (!srcUseList.empty()) {
|
|
User *U = srcUseList.pop_back_val();
|
|
|
|
if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
|
|
for (User *UU : U->users())
|
|
srcUseList.push_back(UU);
|
|
continue;
|
|
}
|
|
if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
|
|
if (!G->hasAllZeroIndices())
|
|
return false;
|
|
|
|
for (User *UU : U->users())
|
|
srcUseList.push_back(UU);
|
|
continue;
|
|
}
|
|
if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
|
|
if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
|
|
IT->getIntrinsicID() == Intrinsic::lifetime_end)
|
|
continue;
|
|
|
|
if (U != C && U != cpy)
|
|
return false;
|
|
}
|
|
|
|
// Check that src isn't captured by the called function since the
|
|
// transformation can cause aliasing issues in that case.
|
|
for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
|
|
if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
|
|
return false;
|
|
|
|
// Since we're changing the parameter to the callsite, we need to make sure
|
|
// that what would be the new parameter dominates the callsite.
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
|
|
if (!DT.dominates(cpyDestInst, C))
|
|
return false;
|
|
|
|
// In addition to knowing that the call does not access src in some
|
|
// unexpected manner, for example via a global, which we deduce from
|
|
// the use analysis, we also need to know that it does not sneakily
|
|
// access dest. We rely on AA to figure this out for us.
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
|
|
// If necessary, perform additional analysis.
|
|
if (MR != AliasAnalysis::NoModRef)
|
|
MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
|
|
if (MR != AliasAnalysis::NoModRef)
|
|
return false;
|
|
|
|
// All the checks have passed, so do the transformation.
|
|
bool changedArgument = false;
|
|
for (unsigned i = 0; i < CS.arg_size(); ++i)
|
|
if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
|
|
Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
|
|
: CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
|
|
cpyDest->getName(), C);
|
|
changedArgument = true;
|
|
if (CS.getArgument(i)->getType() == Dest->getType())
|
|
CS.setArgument(i, Dest);
|
|
else
|
|
CS.setArgument(i, CastInst::CreatePointerCast(Dest,
|
|
CS.getArgument(i)->getType(), Dest->getName(), C));
|
|
}
|
|
|
|
if (!changedArgument)
|
|
return false;
|
|
|
|
// If the destination wasn't sufficiently aligned then increase its alignment.
|
|
if (!isDestSufficientlyAligned) {
|
|
assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
|
|
cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
|
|
}
|
|
|
|
// Drop any cached information about the call, because we may have changed
|
|
// its dependence information by changing its parameter.
|
|
MD->removeInstruction(C);
|
|
|
|
// Update AA metadata
|
|
// FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
|
|
// handled here, but combineMetadata doesn't support them yet
|
|
unsigned KnownIDs[] = {
|
|
LLVMContext::MD_tbaa,
|
|
LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_noalias,
|
|
};
|
|
combineMetadata(C, cpy, KnownIDs);
|
|
|
|
// Remove the memcpy.
|
|
MD->removeInstruction(cpy);
|
|
++NumMemCpyInstr;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
|
|
/// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to
|
|
/// copy from MDep's input if we can. MSize is the size of M's copy.
|
|
///
|
|
bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
|
|
uint64_t MSize) {
|
|
// We can only transforms memcpy's where the dest of one is the source of the
|
|
// other.
|
|
if (M->getSource() != MDep->getDest() || MDep->isVolatile())
|
|
return false;
|
|
|
|
// If dep instruction is reading from our current input, then it is a noop
|
|
// transfer and substituting the input won't change this instruction. Just
|
|
// ignore the input and let someone else zap MDep. This handles cases like:
|
|
// memcpy(a <- a)
|
|
// memcpy(b <- a)
|
|
if (M->getSource() == MDep->getSource())
|
|
return false;
|
|
|
|
// Second, the length of the memcpy's must be the same, or the preceding one
|
|
// must be larger than the following one.
|
|
ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
|
|
ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
|
|
if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
|
|
return false;
|
|
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
|
|
// Verify that the copied-from memory doesn't change in between the two
|
|
// transfers. For example, in:
|
|
// memcpy(a <- b)
|
|
// *b = 42;
|
|
// memcpy(c <- a)
|
|
// It would be invalid to transform the second memcpy into memcpy(c <- b).
|
|
//
|
|
// TODO: If the code between M and MDep is transparent to the destination "c",
|
|
// then we could still perform the xform by moving M up to the first memcpy.
|
|
//
|
|
// NOTE: This is conservative, it will stop on any read from the source loc,
|
|
// not just the defining memcpy.
|
|
MemDepResult SourceDep =
|
|
MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
|
|
false, M, M->getParent());
|
|
if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
|
|
return false;
|
|
|
|
// If the dest of the second might alias the source of the first, then the
|
|
// source and dest might overlap. We still want to eliminate the intermediate
|
|
// value, but we have to generate a memmove instead of memcpy.
|
|
bool UseMemMove = false;
|
|
if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
|
|
UseMemMove = true;
|
|
|
|
// If all checks passed, then we can transform M.
|
|
|
|
// Make sure to use the lesser of the alignment of the source and the dest
|
|
// since we're changing where we're reading from, but don't want to increase
|
|
// the alignment past what can be read from or written to.
|
|
// TODO: Is this worth it if we're creating a less aligned memcpy? For
|
|
// example we could be moving from movaps -> movq on x86.
|
|
unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
|
|
|
|
IRBuilder<> Builder(M);
|
|
if (UseMemMove)
|
|
Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
|
|
Align, M->isVolatile());
|
|
else
|
|
Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
|
|
Align, M->isVolatile());
|
|
|
|
// Remove the instruction we're replacing.
|
|
MD->removeInstruction(M);
|
|
M->eraseFromParent();
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
|
|
|
|
/// processMemCpy - perform simplification of memcpy's. If we have memcpy A
|
|
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
|
|
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
|
|
/// circumstances). This allows later passes to remove the first memcpy
|
|
/// altogether.
|
|
bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
|
|
// We can only optimize non-volatile memcpy's.
|
|
if (M->isVolatile()) return false;
|
|
|
|
// If the source and destination of the memcpy are the same, then zap it.
|
|
if (M->getSource() == M->getDest()) {
|
|
MD->removeInstruction(M);
|
|
M->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// If copying from a constant, try to turn the memcpy into a memset.
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
|
|
if (GV->isConstant() && GV->hasDefinitiveInitializer())
|
|
if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
|
|
IRBuilder<> Builder(M);
|
|
Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
|
|
M->getAlignment(), false);
|
|
MD->removeInstruction(M);
|
|
M->eraseFromParent();
|
|
++NumCpyToSet;
|
|
return true;
|
|
}
|
|
|
|
// The optimizations after this point require the memcpy size.
|
|
ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
|
|
if (!CopySize) return false;
|
|
|
|
// The are three possible optimizations we can do for memcpy:
|
|
// a) memcpy-memcpy xform which exposes redundance for DSE.
|
|
// b) call-memcpy xform for return slot optimization.
|
|
// c) memcpy from freshly alloca'd space or space that has just started its
|
|
// lifetime copies undefined data, and we can therefore eliminate the
|
|
// memcpy in favor of the data that was already at the destination.
|
|
MemDepResult DepInfo = MD->getDependency(M);
|
|
if (DepInfo.isClobber()) {
|
|
if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
|
|
if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
|
|
CopySize->getZExtValue(), M->getAlignment(),
|
|
C)) {
|
|
MD->removeInstruction(M);
|
|
M->eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M);
|
|
MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
|
|
M, M->getParent());
|
|
if (SrcDepInfo.isClobber()) {
|
|
if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
|
|
return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
|
|
} else if (SrcDepInfo.isDef()) {
|
|
Instruction *I = SrcDepInfo.getInst();
|
|
bool hasUndefContents = false;
|
|
|
|
if (isa<AllocaInst>(I)) {
|
|
hasUndefContents = true;
|
|
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start)
|
|
if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
|
|
if (LTSize->getZExtValue() >= CopySize->getZExtValue())
|
|
hasUndefContents = true;
|
|
}
|
|
|
|
if (hasUndefContents) {
|
|
MD->removeInstruction(M);
|
|
M->eraseFromParent();
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
|
|
/// are guaranteed not to alias.
|
|
bool MemCpyOpt::processMemMove(MemMoveInst *M) {
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
|
|
if (!TLI->has(LibFunc::memmove))
|
|
return false;
|
|
|
|
// See if the pointers alias.
|
|
if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
|
|
|
|
// If not, then we know we can transform this.
|
|
Module *Mod = M->getParent()->getParent()->getParent();
|
|
Type *ArgTys[3] = { M->getRawDest()->getType(),
|
|
M->getRawSource()->getType(),
|
|
M->getLength()->getType() };
|
|
M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
|
|
ArgTys));
|
|
|
|
// MemDep may have over conservative information about this instruction, just
|
|
// conservatively flush it from the cache.
|
|
MD->removeInstruction(M);
|
|
|
|
++NumMoveToCpy;
|
|
return true;
|
|
}
|
|
|
|
/// processByValArgument - This is called on every byval argument in call sites.
|
|
bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
|
|
if (!DL) return false;
|
|
|
|
// Find out what feeds this byval argument.
|
|
Value *ByValArg = CS.getArgument(ArgNo);
|
|
Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
|
|
uint64_t ByValSize = DL->getTypeAllocSize(ByValTy);
|
|
MemDepResult DepInfo =
|
|
MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
|
|
true, CS.getInstruction(),
|
|
CS.getInstruction()->getParent());
|
|
if (!DepInfo.isClobber())
|
|
return false;
|
|
|
|
// If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
|
|
// a memcpy, see if we can byval from the source of the memcpy instead of the
|
|
// result.
|
|
MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
|
|
if (!MDep || MDep->isVolatile() ||
|
|
ByValArg->stripPointerCasts() != MDep->getDest())
|
|
return false;
|
|
|
|
// The length of the memcpy must be larger or equal to the size of the byval.
|
|
ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
|
|
if (!C1 || C1->getValue().getZExtValue() < ByValSize)
|
|
return false;
|
|
|
|
// Get the alignment of the byval. If the call doesn't specify the alignment,
|
|
// then it is some target specific value that we can't know.
|
|
unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
|
|
if (ByValAlign == 0) return false;
|
|
|
|
// If it is greater than the memcpy, then we check to see if we can force the
|
|
// source of the memcpy to the alignment we need. If we fail, we bail out.
|
|
AssumptionCache &AC =
|
|
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
|
|
*CS->getParent()->getParent());
|
|
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
if (MDep->getAlignment() < ByValAlign &&
|
|
getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &AC,
|
|
CS.getInstruction(), &DT) < ByValAlign)
|
|
return false;
|
|
|
|
// Verify that the copied-from memory doesn't change in between the memcpy and
|
|
// the byval call.
|
|
// memcpy(a <- b)
|
|
// *b = 42;
|
|
// foo(*a)
|
|
// It would be invalid to transform the second memcpy into foo(*b).
|
|
//
|
|
// NOTE: This is conservative, it will stop on any read from the source loc,
|
|
// not just the defining memcpy.
|
|
MemDepResult SourceDep =
|
|
MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
|
|
false, CS.getInstruction(), MDep->getParent());
|
|
if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
|
|
return false;
|
|
|
|
Value *TmpCast = MDep->getSource();
|
|
if (MDep->getSource()->getType() != ByValArg->getType())
|
|
TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
|
|
"tmpcast", CS.getInstruction());
|
|
|
|
DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
|
|
<< " " << *MDep << "\n"
|
|
<< " " << *CS.getInstruction() << "\n");
|
|
|
|
// Otherwise we're good! Update the byval argument.
|
|
CS.setArgument(ArgNo, TmpCast);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
|
|
/// iterateOnFunction - Executes one iteration of MemCpyOpt.
|
|
bool MemCpyOpt::iterateOnFunction(Function &F) {
|
|
bool MadeChange = false;
|
|
|
|
// Walk all instruction in the function.
|
|
for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
|
|
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
|
|
// Avoid invalidating the iterator.
|
|
Instruction *I = BI++;
|
|
|
|
bool RepeatInstruction = false;
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
MadeChange |= processStore(SI, BI);
|
|
else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
|
|
RepeatInstruction = processMemSet(M, BI);
|
|
else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
|
|
RepeatInstruction = processMemCpy(M);
|
|
else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
|
|
RepeatInstruction = processMemMove(M);
|
|
else if (CallSite CS = (Value*)I) {
|
|
for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
|
|
if (CS.isByValArgument(i))
|
|
MadeChange |= processByValArgument(CS, i);
|
|
}
|
|
|
|
// Reprocess the instruction if desired.
|
|
if (RepeatInstruction) {
|
|
if (BI != BB->begin()) --BI;
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
|
|
// function.
|
|
//
|
|
bool MemCpyOpt::runOnFunction(Function &F) {
|
|
if (skipOptnoneFunction(F))
|
|
return false;
|
|
|
|
bool MadeChange = false;
|
|
MD = &getAnalysis<MemoryDependenceAnalysis>();
|
|
DL = &F.getParent()->getDataLayout();
|
|
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
|
|
// If we don't have at least memset and memcpy, there is little point of doing
|
|
// anything here. These are required by a freestanding implementation, so if
|
|
// even they are disabled, there is no point in trying hard.
|
|
if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
|
|
return false;
|
|
|
|
while (1) {
|
|
if (!iterateOnFunction(F))
|
|
break;
|
|
MadeChange = true;
|
|
}
|
|
|
|
MD = nullptr;
|
|
return MadeChange;
|
|
}
|