mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83474 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			841 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			841 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Pass to verify generated machine code. The following is checked:
 | 
						|
//
 | 
						|
// Operand counts: All explicit operands must be present.
 | 
						|
//
 | 
						|
// Register classes: All physical and virtual register operands must be
 | 
						|
// compatible with the register class required by the instruction descriptor.
 | 
						|
//
 | 
						|
// Register live intervals: Registers must be defined only once, and must be
 | 
						|
// defined before use.
 | 
						|
//
 | 
						|
// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
 | 
						|
// command-line option -verify-machineinstrs, or by defining the environment
 | 
						|
// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
 | 
						|
// the verifier errors.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct VISIBILITY_HIDDEN MachineVerifier : public MachineFunctionPass {
 | 
						|
    static char ID; // Pass ID, replacement for typeid
 | 
						|
 | 
						|
    MachineVerifier(bool allowDoubleDefs = false) :
 | 
						|
      MachineFunctionPass(&ID),
 | 
						|
      allowVirtDoubleDefs(allowDoubleDefs),
 | 
						|
      allowPhysDoubleDefs(allowDoubleDefs),
 | 
						|
      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
 | 
						|
        {}
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesAll();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
 | 
						|
    const bool allowVirtDoubleDefs;
 | 
						|
    const bool allowPhysDoubleDefs;
 | 
						|
 | 
						|
    const char *const OutFileName;
 | 
						|
    raw_ostream *OS;
 | 
						|
    const MachineFunction *MF;
 | 
						|
    const TargetMachine *TM;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    const MachineRegisterInfo *MRI;
 | 
						|
 | 
						|
    unsigned foundErrors;
 | 
						|
 | 
						|
    typedef SmallVector<unsigned, 16> RegVector;
 | 
						|
    typedef DenseSet<unsigned> RegSet;
 | 
						|
    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
 | 
						|
 | 
						|
    BitVector regsReserved;
 | 
						|
    RegSet regsLive;
 | 
						|
    RegVector regsDefined, regsDead, regsKilled;
 | 
						|
    RegSet regsLiveInButUnused;
 | 
						|
 | 
						|
    // Add Reg and any sub-registers to RV
 | 
						|
    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
 | 
						|
      RV.push_back(Reg);
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | 
						|
        for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
 | 
						|
          RV.push_back(*R);
 | 
						|
    }
 | 
						|
 | 
						|
    struct BBInfo {
 | 
						|
      // Is this MBB reachable from the MF entry point?
 | 
						|
      bool reachable;
 | 
						|
 | 
						|
      // Vregs that must be live in because they are used without being
 | 
						|
      // defined. Map value is the user.
 | 
						|
      RegMap vregsLiveIn;
 | 
						|
 | 
						|
      // Vregs that must be dead in because they are defined without being
 | 
						|
      // killed first. Map value is the defining instruction.
 | 
						|
      RegMap vregsDeadIn;
 | 
						|
 | 
						|
      // Regs killed in MBB. They may be defined again, and will then be in both
 | 
						|
      // regsKilled and regsLiveOut.
 | 
						|
      RegSet regsKilled;
 | 
						|
 | 
						|
      // Regs defined in MBB and live out. Note that vregs passing through may
 | 
						|
      // be live out without being mentioned here.
 | 
						|
      RegSet regsLiveOut;
 | 
						|
 | 
						|
      // Vregs that pass through MBB untouched. This set is disjoint from
 | 
						|
      // regsKilled and regsLiveOut.
 | 
						|
      RegSet vregsPassed;
 | 
						|
 | 
						|
      BBInfo() : reachable(false) {}
 | 
						|
 | 
						|
      // Add register to vregsPassed if it belongs there. Return true if
 | 
						|
      // anything changed.
 | 
						|
      bool addPassed(unsigned Reg) {
 | 
						|
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
          return false;
 | 
						|
        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
 | 
						|
          return false;
 | 
						|
        return vregsPassed.insert(Reg).second;
 | 
						|
      }
 | 
						|
 | 
						|
      // Same for a full set.
 | 
						|
      bool addPassed(const RegSet &RS) {
 | 
						|
        bool changed = false;
 | 
						|
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
 | 
						|
          if (addPassed(*I))
 | 
						|
            changed = true;
 | 
						|
        return changed;
 | 
						|
      }
 | 
						|
 | 
						|
      // Live-out registers are either in regsLiveOut or vregsPassed.
 | 
						|
      bool isLiveOut(unsigned Reg) const {
 | 
						|
        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    // Extra register info per MBB.
 | 
						|
    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
 | 
						|
 | 
						|
    bool isReserved(unsigned Reg) {
 | 
						|
      return Reg < regsReserved.size() && regsReserved.test(Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    void visitMachineFunctionBefore();
 | 
						|
    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
 | 
						|
    void visitMachineInstrBefore(const MachineInstr *MI);
 | 
						|
    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
 | 
						|
    void visitMachineInstrAfter(const MachineInstr *MI);
 | 
						|
    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
 | 
						|
    void visitMachineFunctionAfter();
 | 
						|
 | 
						|
    void report(const char *msg, const MachineFunction *MF);
 | 
						|
    void report(const char *msg, const MachineBasicBlock *MBB);
 | 
						|
    void report(const char *msg, const MachineInstr *MI);
 | 
						|
    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
 | 
						|
 | 
						|
    void markReachable(const MachineBasicBlock *MBB);
 | 
						|
    void calcMaxRegsPassed();
 | 
						|
    void calcMinRegsPassed();
 | 
						|
    void checkPHIOps(const MachineBasicBlock *MBB);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char MachineVerifier::ID = 0;
 | 
						|
static RegisterPass<MachineVerifier>
 | 
						|
MachineVer("machineverifier", "Verify generated machine code");
 | 
						|
static const PassInfo *const MachineVerifyID = &MachineVer;
 | 
						|
 | 
						|
FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) {
 | 
						|
  return new MachineVerifier(allowPhysDoubleDefs);
 | 
						|
}
 | 
						|
 | 
						|
bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  raw_ostream *OutFile = 0;
 | 
						|
  if (OutFileName) {
 | 
						|
    std::string ErrorInfo;
 | 
						|
    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
 | 
						|
                                 raw_fd_ostream::F_Append);
 | 
						|
    if (!ErrorInfo.empty()) {
 | 
						|
      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
 | 
						|
      exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    OS = OutFile;
 | 
						|
  } else {
 | 
						|
    OS = &errs();
 | 
						|
  }
 | 
						|
 | 
						|
  foundErrors = 0;
 | 
						|
 | 
						|
  this->MF = &MF;
 | 
						|
  TM = &MF.getTarget();
 | 
						|
  TRI = TM->getRegisterInfo();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
 | 
						|
  visitMachineFunctionBefore();
 | 
						|
  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
 | 
						|
       MFI!=MFE; ++MFI) {
 | 
						|
    visitMachineBasicBlockBefore(MFI);
 | 
						|
    for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
 | 
						|
           MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
 | 
						|
      visitMachineInstrBefore(MBBI);
 | 
						|
      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
 | 
						|
        visitMachineOperand(&MBBI->getOperand(I), I);
 | 
						|
      visitMachineInstrAfter(MBBI);
 | 
						|
    }
 | 
						|
    visitMachineBasicBlockAfter(MFI);
 | 
						|
  }
 | 
						|
  visitMachineFunctionAfter();
 | 
						|
 | 
						|
  if (OutFile)
 | 
						|
    delete OutFile;
 | 
						|
  else if (foundErrors)
 | 
						|
    llvm_report_error("Found "+Twine(foundErrors)+" machine code errors.");
 | 
						|
 | 
						|
  // Clean up.
 | 
						|
  regsLive.clear();
 | 
						|
  regsDefined.clear();
 | 
						|
  regsDead.clear();
 | 
						|
  regsKilled.clear();
 | 
						|
  regsLiveInButUnused.clear();
 | 
						|
  MBBInfoMap.clear();
 | 
						|
 | 
						|
  return false;                 // no changes
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
 | 
						|
  assert(MF);
 | 
						|
  *OS << '\n';
 | 
						|
  if (!foundErrors++)
 | 
						|
    MF->print(*OS);
 | 
						|
  *OS << "*** Bad machine code: " << msg << " ***\n"
 | 
						|
      << "- function:    " << MF->getFunction()->getNameStr() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
 | 
						|
  assert(MBB);
 | 
						|
  report(msg, MBB->getParent());
 | 
						|
  *OS << "- basic block: " << MBB->getBasicBlock()->getNameStr()
 | 
						|
      << " " << (void*)MBB
 | 
						|
      << " (#" << MBB->getNumber() << ")\n";
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
 | 
						|
  assert(MI);
 | 
						|
  report(msg, MI->getParent());
 | 
						|
  *OS << "- instruction: ";
 | 
						|
  MI->print(*OS, TM);
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::report(const char *msg,
 | 
						|
                             const MachineOperand *MO, unsigned MONum) {
 | 
						|
  assert(MO);
 | 
						|
  report(msg, MO->getParent());
 | 
						|
  *OS << "- operand " << MONum << ":   ";
 | 
						|
  MO->print(*OS, TM);
 | 
						|
  *OS << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
 | 
						|
  BBInfo &MInfo = MBBInfoMap[MBB];
 | 
						|
  if (!MInfo.reachable) {
 | 
						|
    MInfo.reachable = true;
 | 
						|
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
 | 
						|
           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
 | 
						|
      markReachable(*SuI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineFunctionBefore() {
 | 
						|
  regsReserved = TRI->getReservedRegs(*MF);
 | 
						|
 | 
						|
  // A sub-register of a reserved register is also reserved
 | 
						|
  for (int Reg = regsReserved.find_first(); Reg>=0;
 | 
						|
       Reg = regsReserved.find_next(Reg)) {
 | 
						|
    for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
 | 
						|
      // FIXME: This should probably be:
 | 
						|
      // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
 | 
						|
      regsReserved.set(*Sub);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  markReachable(&MF->front());
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
 | 
						|
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | 
						|
 | 
						|
  // Start with minimal CFG sanity checks.
 | 
						|
  MachineFunction::const_iterator MBBI = MBB;
 | 
						|
  ++MBBI;
 | 
						|
  if (MBBI != MF->end()) {
 | 
						|
    // Block is not last in function.
 | 
						|
    if (!MBB->isSuccessor(MBBI)) {
 | 
						|
      // Block does not fall through.
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("MBB doesn't fall through but is empty!", MBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (TII->BlockHasNoFallThrough(*MBB)) {
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("TargetInstrInfo says the block has no fall through, but the "
 | 
						|
               "block is empty!", MBB);
 | 
						|
      } else if (!MBB->back().getDesc().isBarrier()) {
 | 
						|
        report("TargetInstrInfo says the block has no fall through, but the "
 | 
						|
               "block does not end in a barrier!", MBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Block is last in function.
 | 
						|
    if (MBB->empty()) {
 | 
						|
      report("MBB is last in function but is empty!", MBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
 | 
						|
  MachineBasicBlock *TBB = 0, *FBB = 0;
 | 
						|
  SmallVector<MachineOperand, 4> Cond;
 | 
						|
  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
 | 
						|
                          TBB, FBB, Cond)) {
 | 
						|
    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
 | 
						|
    // check whether its answers match up with reality.
 | 
						|
    if (!TBB && !FBB) {
 | 
						|
      // Block falls through to its successor.
 | 
						|
      MachineFunction::const_iterator MBBI = MBB;
 | 
						|
      ++MBBI;
 | 
						|
      if (MBBI == MF->end()) {
 | 
						|
        // It's possible that the block legitimately ends with a noreturn
 | 
						|
        // call or an unreachable, in which case it won't actually fall
 | 
						|
        // out the bottom of the function.
 | 
						|
      } else if (MBB->succ_empty()) {
 | 
						|
        // It's possible that the block legitimately ends with a noreturn
 | 
						|
        // call or an unreachable, in which case it won't actuall fall
 | 
						|
        // out of the block.
 | 
						|
      } else if (MBB->succ_size() != 1) {
 | 
						|
        report("MBB exits via unconditional fall-through but doesn't have "
 | 
						|
               "exactly one CFG successor!", MBB);
 | 
						|
      } else if (MBB->succ_begin()[0] != MBBI) {
 | 
						|
        report("MBB exits via unconditional fall-through but its successor "
 | 
						|
               "differs from its CFG successor!", MBB);
 | 
						|
      }
 | 
						|
      if (!MBB->empty() && MBB->back().getDesc().isBarrier()) {
 | 
						|
        report("MBB exits via unconditional fall-through but ends with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      }
 | 
						|
      if (!Cond.empty()) {
 | 
						|
        report("MBB exits via unconditional fall-through but has a condition!",
 | 
						|
               MBB);
 | 
						|
      }
 | 
						|
    } else if (TBB && !FBB && Cond.empty()) {
 | 
						|
      // Block unconditionally branches somewhere.
 | 
						|
      if (MBB->succ_size() != 1) {
 | 
						|
        report("MBB exits via unconditional branch but doesn't have "
 | 
						|
               "exactly one CFG successor!", MBB);
 | 
						|
      } else if (MBB->succ_begin()[0] != TBB) {
 | 
						|
        report("MBB exits via unconditional branch but the CFG "
 | 
						|
               "successor doesn't match the actual successor!", MBB);
 | 
						|
      }
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("MBB exits via unconditional branch but doesn't contain "
 | 
						|
               "any instructions!", MBB);
 | 
						|
      } else if (!MBB->back().getDesc().isBarrier()) {
 | 
						|
        report("MBB exits via unconditional branch but doesn't end with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      } else if (!MBB->back().getDesc().isTerminator()) {
 | 
						|
        report("MBB exits via unconditional branch but the branch isn't a "
 | 
						|
               "terminator instruction!", MBB);
 | 
						|
      }
 | 
						|
    } else if (TBB && !FBB && !Cond.empty()) {
 | 
						|
      // Block conditionally branches somewhere, otherwise falls through.
 | 
						|
      MachineFunction::const_iterator MBBI = MBB;
 | 
						|
      ++MBBI;
 | 
						|
      if (MBBI == MF->end()) {
 | 
						|
        report("MBB conditionally falls through out of function!", MBB);
 | 
						|
      } if (MBB->succ_size() != 2) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but doesn't have "
 | 
						|
               "exactly two CFG successors!", MBB);
 | 
						|
      } else if ((MBB->succ_begin()[0] == TBB && MBB->succ_end()[1] == MBBI) ||
 | 
						|
                 (MBB->succ_begin()[1] == TBB && MBB->succ_end()[0] == MBBI)) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but the CFG "
 | 
						|
               "successors don't match the actual successors!", MBB);
 | 
						|
      }
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but doesn't "
 | 
						|
               "contain any instructions!", MBB);
 | 
						|
      } else if (MBB->back().getDesc().isBarrier()) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but ends with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      } else if (!MBB->back().getDesc().isTerminator()) {
 | 
						|
        report("MBB exits via conditional branch/fall-through but the branch "
 | 
						|
               "isn't a terminator instruction!", MBB);
 | 
						|
      }
 | 
						|
    } else if (TBB && FBB) {
 | 
						|
      // Block conditionally branches somewhere, otherwise branches
 | 
						|
      // somewhere else.
 | 
						|
      if (MBB->succ_size() != 2) {
 | 
						|
        report("MBB exits via conditional branch/branch but doesn't have "
 | 
						|
               "exactly two CFG successors!", MBB);
 | 
						|
      } else if ((MBB->succ_begin()[0] == TBB && MBB->succ_end()[1] == FBB) ||
 | 
						|
                 (MBB->succ_begin()[1] == TBB && MBB->succ_end()[0] == FBB)) {
 | 
						|
        report("MBB exits via conditional branch/branch but the CFG "
 | 
						|
               "successors don't match the actual successors!", MBB);
 | 
						|
      }
 | 
						|
      if (MBB->empty()) {
 | 
						|
        report("MBB exits via conditional branch/branch but doesn't "
 | 
						|
               "contain any instructions!", MBB);
 | 
						|
      } else if (!MBB->back().getDesc().isBarrier()) {
 | 
						|
        report("MBB exits via conditional branch/branch but doesn't end with a "
 | 
						|
               "barrier instruction!", MBB);
 | 
						|
      } else if (!MBB->back().getDesc().isTerminator()) {
 | 
						|
        report("MBB exits via conditional branch/branch but the branch "
 | 
						|
               "isn't a terminator instruction!", MBB);
 | 
						|
      }
 | 
						|
      if (Cond.empty()) {
 | 
						|
        report("MBB exits via conditinal branch/branch but there's no "
 | 
						|
               "condition!", MBB);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      report("AnalyzeBranch returned invalid data!", MBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  regsLive.clear();
 | 
						|
  for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
 | 
						|
         E = MBB->livein_end(); I != E; ++I) {
 | 
						|
    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
 | 
						|
      report("MBB live-in list contains non-physical register", MBB);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    regsLive.insert(*I);
 | 
						|
    for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
 | 
						|
      regsLive.insert(*R);
 | 
						|
  }
 | 
						|
  regsLiveInButUnused = regsLive;
 | 
						|
 | 
						|
  const MachineFrameInfo *MFI = MF->getFrameInfo();
 | 
						|
  assert(MFI && "Function has no frame info");
 | 
						|
  BitVector PR = MFI->getPristineRegs(MBB);
 | 
						|
  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
 | 
						|
    regsLive.insert(I);
 | 
						|
    for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
 | 
						|
      regsLive.insert(*R);
 | 
						|
  }
 | 
						|
 | 
						|
  regsKilled.clear();
 | 
						|
  regsDefined.clear();
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
 | 
						|
  const TargetInstrDesc &TI = MI->getDesc();
 | 
						|
  if (MI->getNumOperands() < TI.getNumOperands()) {
 | 
						|
    report("Too few operands", MI);
 | 
						|
    *OS << TI.getNumOperands() << " operands expected, but "
 | 
						|
        << MI->getNumExplicitOperands() << " given.\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // Check the MachineMemOperands for basic consistency.
 | 
						|
  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
 | 
						|
       E = MI->memoperands_end(); I != E; ++I) {
 | 
						|
    if ((*I)->isLoad() && !TI.mayLoad())
 | 
						|
      report("Missing mayLoad flag", MI);
 | 
						|
    if ((*I)->isStore() && !TI.mayStore())
 | 
						|
      report("Missing mayStore flag", MI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
 | 
						|
  const MachineInstr *MI = MO->getParent();
 | 
						|
  const TargetInstrDesc &TI = MI->getDesc();
 | 
						|
 | 
						|
  // The first TI.NumDefs operands must be explicit register defines
 | 
						|
  if (MONum < TI.getNumDefs()) {
 | 
						|
    if (!MO->isReg())
 | 
						|
      report("Explicit definition must be a register", MO, MONum);
 | 
						|
    else if (!MO->isDef())
 | 
						|
      report("Explicit definition marked as use", MO, MONum);
 | 
						|
    else if (MO->isImplicit())
 | 
						|
      report("Explicit definition marked as implicit", MO, MONum);
 | 
						|
  } else if (MONum < TI.getNumOperands()) {
 | 
						|
    if (MO->isReg()) {
 | 
						|
      if (MO->isDef())
 | 
						|
        report("Explicit operand marked as def", MO, MONum);
 | 
						|
      if (MO->isImplicit())
 | 
						|
        report("Explicit operand marked as implicit", MO, MONum);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic())
 | 
						|
      report("Extra explicit operand on non-variadic instruction", MO, MONum);
 | 
						|
  }
 | 
						|
 | 
						|
  switch (MO->getType()) {
 | 
						|
  case MachineOperand::MO_Register: {
 | 
						|
    const unsigned Reg = MO->getReg();
 | 
						|
    if (!Reg)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Check Live Variables.
 | 
						|
    if (MO->isUndef()) {
 | 
						|
      // An <undef> doesn't refer to any register, so just skip it.
 | 
						|
    } else if (MO->isUse()) {
 | 
						|
      regsLiveInButUnused.erase(Reg);
 | 
						|
 | 
						|
      if (MO->isKill()) {
 | 
						|
        addRegWithSubRegs(regsKilled, Reg);
 | 
						|
        // Tied operands on two-address instuctions MUST NOT have a <kill> flag.
 | 
						|
        if (MI->isRegTiedToDefOperand(MONum))
 | 
						|
            report("Illegal kill flag on two-address instruction operand",
 | 
						|
                   MO, MONum);
 | 
						|
      } else {
 | 
						|
        // TwoAddress instr modifying a reg is treated as kill+def.
 | 
						|
        unsigned defIdx;
 | 
						|
        if (MI->isRegTiedToDefOperand(MONum, &defIdx) &&
 | 
						|
            MI->getOperand(defIdx).getReg() == Reg)
 | 
						|
          addRegWithSubRegs(regsKilled, Reg);
 | 
						|
      }
 | 
						|
      // Use of a dead register.
 | 
						|
      if (!regsLive.count(Reg)) {
 | 
						|
        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
          // Reserved registers may be used even when 'dead'.
 | 
						|
          if (!isReserved(Reg))
 | 
						|
            report("Using an undefined physical register", MO, MONum);
 | 
						|
        } else {
 | 
						|
          BBInfo &MInfo = MBBInfoMap[MI->getParent()];
 | 
						|
          // We don't know which virtual registers are live in, so only complain
 | 
						|
          // if vreg was killed in this MBB. Otherwise keep track of vregs that
 | 
						|
          // must be live in. PHI instructions are handled separately.
 | 
						|
          if (MInfo.regsKilled.count(Reg))
 | 
						|
            report("Using a killed virtual register", MO, MONum);
 | 
						|
          else if (MI->getOpcode() != TargetInstrInfo::PHI)
 | 
						|
            MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      assert(MO->isDef());
 | 
						|
      // Register defined.
 | 
						|
      // TODO: verify that earlyclobber ops are not used.
 | 
						|
      if (MO->isDead())
 | 
						|
        addRegWithSubRegs(regsDead, Reg);
 | 
						|
      else
 | 
						|
        addRegWithSubRegs(regsDefined, Reg);
 | 
						|
    }
 | 
						|
 | 
						|
    // Check register classes.
 | 
						|
    if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
 | 
						|
      const TargetOperandInfo &TOI = TI.OpInfo[MONum];
 | 
						|
      unsigned SubIdx = MO->getSubReg();
 | 
						|
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
        unsigned sr = Reg;
 | 
						|
        if (SubIdx) {
 | 
						|
          unsigned s = TRI->getSubReg(Reg, SubIdx);
 | 
						|
          if (!s) {
 | 
						|
            report("Invalid subregister index for physical register",
 | 
						|
                   MO, MONum);
 | 
						|
            return;
 | 
						|
          }
 | 
						|
          sr = s;
 | 
						|
        }
 | 
						|
        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
 | 
						|
          if (!DRC->contains(sr)) {
 | 
						|
            report("Illegal physical register for instruction", MO, MONum);
 | 
						|
            *OS << TRI->getName(sr) << " is not a "
 | 
						|
                << DRC->getName() << " register.\n";
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // Virtual register.
 | 
						|
        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
 | 
						|
        if (SubIdx) {
 | 
						|
          if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) {
 | 
						|
            report("Invalid subregister index for virtual register", MO, MONum);
 | 
						|
            return;
 | 
						|
          }
 | 
						|
          RC = *(RC->subregclasses_begin()+SubIdx);
 | 
						|
        }
 | 
						|
        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
 | 
						|
          if (RC != DRC && !RC->hasSuperClass(DRC)) {
 | 
						|
            report("Illegal virtual register for instruction", MO, MONum);
 | 
						|
            *OS << "Expected a " << DRC->getName() << " register, but got a "
 | 
						|
                << RC->getName() << " register\n";
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case MachineOperand::MO_MachineBasicBlock:
 | 
						|
    if (MI->getOpcode() == TargetInstrInfo::PHI) {
 | 
						|
      if (!MO->getMBB()->isSuccessor(MI->getParent()))
 | 
						|
        report("PHI operand is not in the CFG", MO, MONum);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
 | 
						|
  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
 | 
						|
  set_union(MInfo.regsKilled, regsKilled);
 | 
						|
  set_subtract(regsLive, regsKilled);
 | 
						|
  regsKilled.clear();
 | 
						|
 | 
						|
  // Verify that both <def> and <def,dead> operands refer to dead registers.
 | 
						|
  RegVector defs(regsDefined);
 | 
						|
  defs.append(regsDead.begin(), regsDead.end());
 | 
						|
 | 
						|
  for (RegVector::const_iterator I = defs.begin(), E = defs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (regsLive.count(*I)) {
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(*I)) {
 | 
						|
        if (!allowPhysDoubleDefs && !isReserved(*I) &&
 | 
						|
            !regsLiveInButUnused.count(*I)) {
 | 
						|
          report("Redefining a live physical register", MI);
 | 
						|
          *OS << "Register " << TRI->getName(*I)
 | 
						|
              << " was defined but already live.\n";
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        if (!allowVirtDoubleDefs) {
 | 
						|
          report("Redefining a live virtual register", MI);
 | 
						|
          *OS << "Virtual register %reg" << *I
 | 
						|
              << " was defined but already live.\n";
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (TargetRegisterInfo::isVirtualRegister(*I) &&
 | 
						|
               !MInfo.regsKilled.count(*I)) {
 | 
						|
      // Virtual register defined without being killed first must be dead on
 | 
						|
      // entry.
 | 
						|
      MInfo.vregsDeadIn.insert(std::make_pair(*I, MI));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  set_subtract(regsLive, regsDead); regsDead.clear();
 | 
						|
  set_union(regsLive, regsDefined); regsDefined.clear();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
 | 
						|
  MBBInfoMap[MBB].regsLiveOut = regsLive;
 | 
						|
  regsLive.clear();
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the largest possible vregsPassed sets. These are the registers that
 | 
						|
// can pass through an MBB live, but may not be live every time. It is assumed
 | 
						|
// that all vregsPassed sets are empty before the call.
 | 
						|
void MachineVerifier::calcMaxRegsPassed() {
 | 
						|
  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
 | 
						|
  // have any vregsPassed.
 | 
						|
  DenseSet<const MachineBasicBlock*> todo;
 | 
						|
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | 
						|
       MFI != MFE; ++MFI) {
 | 
						|
    const MachineBasicBlock &MBB(*MFI);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[&MBB];
 | 
						|
    if (!MInfo.reachable)
 | 
						|
      continue;
 | 
						|
    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
 | 
						|
           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
 | 
						|
      BBInfo &SInfo = MBBInfoMap[*SuI];
 | 
						|
      if (SInfo.addPassed(MInfo.regsLiveOut))
 | 
						|
        todo.insert(*SuI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Iteratively push vregsPassed to successors. This will converge to the same
 | 
						|
  // final state regardless of DenseSet iteration order.
 | 
						|
  while (!todo.empty()) {
 | 
						|
    const MachineBasicBlock *MBB = *todo.begin();
 | 
						|
    todo.erase(MBB);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[MBB];
 | 
						|
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
 | 
						|
           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
 | 
						|
      if (*SuI == MBB)
 | 
						|
        continue;
 | 
						|
      BBInfo &SInfo = MBBInfoMap[*SuI];
 | 
						|
      if (SInfo.addPassed(MInfo.vregsPassed))
 | 
						|
        todo.insert(*SuI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the minimum vregsPassed set. These are the registers that always
 | 
						|
// pass live through an MBB. The calculation assumes that calcMaxRegsPassed has
 | 
						|
// been called earlier.
 | 
						|
void MachineVerifier::calcMinRegsPassed() {
 | 
						|
  DenseSet<const MachineBasicBlock*> todo;
 | 
						|
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | 
						|
       MFI != MFE; ++MFI)
 | 
						|
    todo.insert(MFI);
 | 
						|
 | 
						|
  while (!todo.empty()) {
 | 
						|
    const MachineBasicBlock *MBB = *todo.begin();
 | 
						|
    todo.erase(MBB);
 | 
						|
    BBInfo &MInfo = MBBInfoMap[MBB];
 | 
						|
 | 
						|
    // Remove entries from vRegsPassed that are not live out from all
 | 
						|
    // reachable predecessors.
 | 
						|
    RegSet dead;
 | 
						|
    for (RegSet::iterator I = MInfo.vregsPassed.begin(),
 | 
						|
           E = MInfo.vregsPassed.end(); I != E; ++I) {
 | 
						|
      for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
 | 
						|
             PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
 | 
						|
        BBInfo &PrInfo = MBBInfoMap[*PrI];
 | 
						|
        if (PrInfo.reachable && !PrInfo.isLiveOut(*I)) {
 | 
						|
          dead.insert(*I);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // If any regs removed, we need to recheck successors.
 | 
						|
    if (!dead.empty()) {
 | 
						|
      set_subtract(MInfo.vregsPassed, dead);
 | 
						|
      todo.insert(MBB->succ_begin(), MBB->succ_end());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Check PHI instructions at the beginning of MBB. It is assumed that
 | 
						|
// calcMinRegsPassed has been run so BBInfo::isLiveOut is valid.
 | 
						|
void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
 | 
						|
  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
 | 
						|
       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
 | 
						|
    DenseSet<const MachineBasicBlock*> seen;
 | 
						|
 | 
						|
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
 | 
						|
      unsigned Reg = BBI->getOperand(i).getReg();
 | 
						|
      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
 | 
						|
      if (!Pre->isSuccessor(MBB))
 | 
						|
        continue;
 | 
						|
      seen.insert(Pre);
 | 
						|
      BBInfo &PrInfo = MBBInfoMap[Pre];
 | 
						|
      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
 | 
						|
        report("PHI operand is not live-out from predecessor",
 | 
						|
               &BBI->getOperand(i), i);
 | 
						|
    }
 | 
						|
 | 
						|
    // Did we see all predecessors?
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
 | 
						|
           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
 | 
						|
      if (!seen.count(*PrI)) {
 | 
						|
        report("Missing PHI operand", BBI);
 | 
						|
        *OS << "MBB #" << (*PrI)->getNumber()
 | 
						|
            << " is a predecessor according to the CFG.\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MachineVerifier::visitMachineFunctionAfter() {
 | 
						|
  calcMaxRegsPassed();
 | 
						|
 | 
						|
  // With the maximal set of vregsPassed we can verify dead-in registers.
 | 
						|
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | 
						|
       MFI != MFE; ++MFI) {
 | 
						|
    BBInfo &MInfo = MBBInfoMap[MFI];
 | 
						|
 | 
						|
    // Skip unreachable MBBs.
 | 
						|
    if (!MInfo.reachable)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
 | 
						|
           PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
 | 
						|
      BBInfo &PrInfo = MBBInfoMap[*PrI];
 | 
						|
      if (!PrInfo.reachable)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Verify physical live-ins. EH landing pads have magic live-ins so we
 | 
						|
      // ignore them.
 | 
						|
      if (!MFI->isLandingPad()) {
 | 
						|
        for (MachineBasicBlock::const_livein_iterator I = MFI->livein_begin(),
 | 
						|
               E = MFI->livein_end(); I != E; ++I) {
 | 
						|
          if (TargetRegisterInfo::isPhysicalRegister(*I) &&
 | 
						|
              !isReserved (*I) && !PrInfo.isLiveOut(*I)) {
 | 
						|
            report("Live-in physical register is not live-out from predecessor",
 | 
						|
                   MFI);
 | 
						|
            *OS << "Register " << TRI->getName(*I)
 | 
						|
                << " is not live-out from MBB #" << (*PrI)->getNumber()
 | 
						|
                << ".\n";
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
 | 
						|
      // Verify dead-in virtual registers.
 | 
						|
      if (!allowVirtDoubleDefs) {
 | 
						|
        for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
 | 
						|
               E = MInfo.vregsDeadIn.end(); I != E; ++I) {
 | 
						|
          // DeadIn register must be in neither regsLiveOut or vregsPassed of
 | 
						|
          // any predecessor.
 | 
						|
          if (PrInfo.isLiveOut(I->first)) {
 | 
						|
            report("Live-in virtual register redefined", I->second);
 | 
						|
            *OS << "Register %reg" << I->first
 | 
						|
                << " was live-out from predecessor MBB #"
 | 
						|
                << (*PrI)->getNumber() << ".\n";
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  calcMinRegsPassed();
 | 
						|
 | 
						|
  // With the minimal set of vregsPassed we can verify live-in virtual
 | 
						|
  // registers, including PHI instructions.
 | 
						|
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | 
						|
       MFI != MFE; ++MFI) {
 | 
						|
    BBInfo &MInfo = MBBInfoMap[MFI];
 | 
						|
 | 
						|
    // Skip unreachable MBBs.
 | 
						|
    if (!MInfo.reachable)
 | 
						|
      continue;
 | 
						|
 | 
						|
    checkPHIOps(MFI);
 | 
						|
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
 | 
						|
           PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
 | 
						|
      BBInfo &PrInfo = MBBInfoMap[*PrI];
 | 
						|
      if (!PrInfo.reachable)
 | 
						|
        continue;
 | 
						|
 | 
						|
      for (RegMap::iterator I = MInfo.vregsLiveIn.begin(),
 | 
						|
             E = MInfo.vregsLiveIn.end(); I != E; ++I) {
 | 
						|
        if (!PrInfo.isLiveOut(I->first)) {
 | 
						|
          report("Used virtual register is not live-in", I->second);
 | 
						|
          *OS << "Register %reg" << I->first
 | 
						|
              << " is not live-out from predecessor MBB #"
 | 
						|
              << (*PrI)->getNumber()
 | 
						|
              << ".\n";
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |