mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97765 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			288 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass moves instructions into successor blocks, when possible, so that
 | 
						|
// they aren't executed on paths where their results aren't needed.
 | 
						|
//
 | 
						|
// This pass is not intended to be a replacement or a complete alternative
 | 
						|
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
 | 
						|
// constructs that are not exposed before lowering and instruction selection.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "machine-sink"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumSunk, "Number of machine instructions sunk");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class MachineSinking : public MachineFunctionPass {
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    MachineRegisterInfo  *RegInfo; // Machine register information
 | 
						|
    MachineDominatorTree *DT;   // Machine dominator tree
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    BitVector AllocatableSet;   // Which physregs are allocatable?
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification
 | 
						|
    MachineSinking() : MachineFunctionPass(&ID) {}
 | 
						|
    
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction &MF);
 | 
						|
    
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addPreserved<MachineDominatorTree>();
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    bool ProcessBlock(MachineBasicBlock &MBB);
 | 
						|
    bool SinkInstruction(MachineInstr *MI, bool &SawStore);
 | 
						|
    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB) const;
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
  
 | 
						|
char MachineSinking::ID = 0;
 | 
						|
static RegisterPass<MachineSinking>
 | 
						|
X("machine-sink", "Machine code sinking");
 | 
						|
 | 
						|
FunctionPass *llvm::createMachineSinkingPass() { return new MachineSinking(); }
 | 
						|
 | 
						|
/// AllUsesDominatedByBlock - Return true if all uses of the specified register
 | 
						|
/// occur in blocks dominated by the specified block.
 | 
						|
bool MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 
 | 
						|
                                             MachineBasicBlock *MBB) const {
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
         "Only makes sense for vregs");
 | 
						|
  // Ignoring debug uses is necessary so debug info doesn't affect the code.
 | 
						|
  // This may leave a referencing dbg_value in the original block, before
 | 
						|
  // the definition of the vreg.  Dwarf generator handles this although the
 | 
						|
  // user might not get the right info at runtime.
 | 
						|
  for (MachineRegisterInfo::use_nodbg_iterator I = 
 | 
						|
       RegInfo->use_nodbg_begin(Reg),
 | 
						|
       E = RegInfo->use_nodbg_end(); I != E; ++I) {
 | 
						|
    // Determine the block of the use.
 | 
						|
    MachineInstr *UseInst = &*I;
 | 
						|
    MachineBasicBlock *UseBlock = UseInst->getParent();
 | 
						|
    if (UseInst->isPHI()) {
 | 
						|
      // PHI nodes use the operand in the predecessor block, not the block with
 | 
						|
      // the PHI.
 | 
						|
      UseBlock = UseInst->getOperand(I.getOperandNo()+1).getMBB();
 | 
						|
    }
 | 
						|
    // Check that it dominates.
 | 
						|
    if (!DT->dominates(MBB, UseBlock))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  DEBUG(dbgs() << "******** Machine Sinking ********\n");
 | 
						|
  
 | 
						|
  const TargetMachine &TM = MF.getTarget();
 | 
						|
  TII = TM.getInstrInfo();
 | 
						|
  TRI = TM.getRegisterInfo();
 | 
						|
  RegInfo = &MF.getRegInfo();
 | 
						|
  DT = &getAnalysis<MachineDominatorTree>();
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
  AllocatableSet = TRI->getAllocatableSet(MF);
 | 
						|
 | 
						|
  bool EverMadeChange = false;
 | 
						|
  
 | 
						|
  while (1) {
 | 
						|
    bool MadeChange = false;
 | 
						|
 | 
						|
    // Process all basic blocks.
 | 
						|
    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); 
 | 
						|
         I != E; ++I)
 | 
						|
      MadeChange |= ProcessBlock(*I);
 | 
						|
    
 | 
						|
    // If this iteration over the code changed anything, keep iterating.
 | 
						|
    if (!MadeChange) break;
 | 
						|
    EverMadeChange = true;
 | 
						|
  } 
 | 
						|
  return EverMadeChange;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
 | 
						|
  // Can't sink anything out of a block that has less than two successors.
 | 
						|
  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Walk the basic block bottom-up.  Remember if we saw a store.
 | 
						|
  MachineBasicBlock::iterator I = MBB.end();
 | 
						|
  --I;
 | 
						|
  bool ProcessedBegin, SawStore = false;
 | 
						|
  do {
 | 
						|
    MachineInstr *MI = I;  // The instruction to sink.
 | 
						|
    
 | 
						|
    // Predecrement I (if it's not begin) so that it isn't invalidated by
 | 
						|
    // sinking.
 | 
						|
    ProcessedBegin = I == MBB.begin();
 | 
						|
    if (!ProcessedBegin)
 | 
						|
      --I;
 | 
						|
 | 
						|
    if (MI->isDebugValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (SinkInstruction(MI, SawStore))
 | 
						|
      ++NumSunk, MadeChange = true;
 | 
						|
    
 | 
						|
    // If we just processed the first instruction in the block, we're done.
 | 
						|
  } while (!ProcessedBegin);
 | 
						|
  
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// SinkInstruction - Determine whether it is safe to sink the specified machine
 | 
						|
/// instruction out of its current block into a successor.
 | 
						|
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
 | 
						|
  // Check if it's safe to move the instruction.
 | 
						|
  if (!MI->isSafeToMove(TII, AA, SawStore))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // FIXME: This should include support for sinking instructions within the
 | 
						|
  // block they are currently in to shorten the live ranges.  We often get
 | 
						|
  // instructions sunk into the top of a large block, but it would be better to
 | 
						|
  // also sink them down before their first use in the block.  This xform has to
 | 
						|
  // be careful not to *increase* register pressure though, e.g. sinking
 | 
						|
  // "x = y + z" down if it kills y and z would increase the live ranges of y
 | 
						|
  // and z and only shrink the live range of x.
 | 
						|
  
 | 
						|
  // Loop over all the operands of the specified instruction.  If there is
 | 
						|
  // anything we can't handle, bail out.
 | 
						|
  MachineBasicBlock *ParentBlock = MI->getParent();
 | 
						|
  
 | 
						|
  // SuccToSinkTo - This is the successor to sink this instruction to, once we
 | 
						|
  // decide.
 | 
						|
  MachineBasicBlock *SuccToSinkTo = 0;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg()) continue;  // Ignore non-register operands.
 | 
						|
    
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (Reg == 0) continue;
 | 
						|
    
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | 
						|
      if (MO.isUse()) {
 | 
						|
        // If the physreg has no defs anywhere, it's just an ambient register
 | 
						|
        // and we can freely move its uses. Alternatively, if it's allocatable,
 | 
						|
        // it could get allocated to something with a def during allocation.
 | 
						|
        if (!RegInfo->def_empty(Reg))
 | 
						|
          return false;
 | 
						|
        if (AllocatableSet.test(Reg))
 | 
						|
          return false;
 | 
						|
        // Check for a def among the register's aliases too.
 | 
						|
        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | 
						|
          unsigned AliasReg = *Alias;
 | 
						|
          if (!RegInfo->def_empty(AliasReg))
 | 
						|
            return false;
 | 
						|
          if (AllocatableSet.test(AliasReg))
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
      } else if (!MO.isDead()) {
 | 
						|
        // A def that isn't dead. We can't move it.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Virtual register uses are always safe to sink.
 | 
						|
      if (MO.isUse()) continue;
 | 
						|
 | 
						|
      // If it's not safe to move defs of the register class, then abort.
 | 
						|
      if (!TII->isSafeToMoveRegClassDefs(RegInfo->getRegClass(Reg)))
 | 
						|
        return false;
 | 
						|
      
 | 
						|
      // FIXME: This picks a successor to sink into based on having one
 | 
						|
      // successor that dominates all the uses.  However, there are cases where
 | 
						|
      // sinking can happen but where the sink point isn't a successor.  For
 | 
						|
      // example:
 | 
						|
      //   x = computation
 | 
						|
      //   if () {} else {}
 | 
						|
      //   use x
 | 
						|
      // the instruction could be sunk over the whole diamond for the 
 | 
						|
      // if/then/else (or loop, etc), allowing it to be sunk into other blocks
 | 
						|
      // after that.
 | 
						|
      
 | 
						|
      // Virtual register defs can only be sunk if all their uses are in blocks
 | 
						|
      // dominated by one of the successors.
 | 
						|
      if (SuccToSinkTo) {
 | 
						|
        // If a previous operand picked a block to sink to, then this operand
 | 
						|
        // must be sinkable to the same block.
 | 
						|
        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo)) 
 | 
						|
          return false;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Otherwise, we should look at all the successors and decide which one
 | 
						|
      // we should sink to.
 | 
						|
      for (MachineBasicBlock::succ_iterator SI = ParentBlock->succ_begin(),
 | 
						|
           E = ParentBlock->succ_end(); SI != E; ++SI) {
 | 
						|
        if (AllUsesDominatedByBlock(Reg, *SI)) {
 | 
						|
          SuccToSinkTo = *SI;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If we couldn't find a block to sink to, ignore this instruction.
 | 
						|
      if (SuccToSinkTo == 0)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If there are no outputs, it must have side-effects.
 | 
						|
  if (SuccToSinkTo == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // It's not safe to sink instructions to EH landing pad. Control flow into
 | 
						|
  // landing pad is implicitly defined.
 | 
						|
  if (SuccToSinkTo->isLandingPad())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // It is not possible to sink an instruction into its own block.  This can
 | 
						|
  // happen with loops.
 | 
						|
  if (MI->getParent() == SuccToSinkTo)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "Sink instr " << *MI);
 | 
						|
  DEBUG(dbgs() << "to block " << *SuccToSinkTo);
 | 
						|
  
 | 
						|
  // If the block has multiple predecessors, this would introduce computation on
 | 
						|
  // a path that it doesn't already exist.  We could split the critical edge,
 | 
						|
  // but for now we just punt.
 | 
						|
  // FIXME: Split critical edges if not backedges.
 | 
						|
  if (SuccToSinkTo->pred_size() > 1) {
 | 
						|
    DEBUG(dbgs() << " *** PUNTING: Critical edge found\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Determine where to insert into.  Skip phi nodes.
 | 
						|
  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
 | 
						|
  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
 | 
						|
    ++InsertPos;
 | 
						|
  
 | 
						|
  // Move the instruction.
 | 
						|
  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
 | 
						|
                       ++MachineBasicBlock::iterator(MI));
 | 
						|
  return true;
 | 
						|
}
 |