mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	VISIBILITY_HIDDEN removal. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85043 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			450 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			450 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ShadowStackGC.cpp - GC support for uncooperative targets ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements lowering for the llvm.gc* intrinsics for targets that do
 | 
						|
// not natively support them (which includes the C backend). Note that the code
 | 
						|
// generated is not quite as efficient as algorithms which generate stack maps
 | 
						|
// to identify roots.
 | 
						|
//
 | 
						|
// This pass implements the code transformation described in this paper:
 | 
						|
//   "Accurate Garbage Collection in an Uncooperative Environment"
 | 
						|
//   Fergus Henderson, ISMM, 2002
 | 
						|
//
 | 
						|
// In runtime/GC/SemiSpace.cpp is a prototype runtime which is compatible with
 | 
						|
// ShadowStackGC.
 | 
						|
//
 | 
						|
// In order to support this particular transformation, all stack roots are
 | 
						|
// coallocated in the stack. This allows a fully target-independent stack map
 | 
						|
// while introducing only minor runtime overhead.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "shadowstackgc"
 | 
						|
#include "llvm/CodeGen/GCs.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/CodeGen/GCStrategy.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Support/IRBuilder.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class ShadowStackGC : public GCStrategy {
 | 
						|
    /// RootChain - This is the global linked-list that contains the chain of GC
 | 
						|
    /// roots.
 | 
						|
    GlobalVariable *Head;
 | 
						|
 | 
						|
    /// StackEntryTy - Abstract type of a link in the shadow stack.
 | 
						|
    ///
 | 
						|
    const StructType *StackEntryTy;
 | 
						|
 | 
						|
    /// Roots - GC roots in the current function. Each is a pair of the
 | 
						|
    /// intrinsic call and its corresponding alloca.
 | 
						|
    std::vector<std::pair<CallInst*,AllocaInst*> > Roots;
 | 
						|
 | 
						|
  public:
 | 
						|
    ShadowStackGC();
 | 
						|
 | 
						|
    bool initializeCustomLowering(Module &M);
 | 
						|
    bool performCustomLowering(Function &F);
 | 
						|
 | 
						|
  private:
 | 
						|
    bool IsNullValue(Value *V);
 | 
						|
    Constant *GetFrameMap(Function &F);
 | 
						|
    const Type* GetConcreteStackEntryType(Function &F);
 | 
						|
    void CollectRoots(Function &F);
 | 
						|
    static GetElementPtrInst *CreateGEP(LLVMContext &Context, 
 | 
						|
                                        IRBuilder<> &B, Value *BasePtr,
 | 
						|
                                        int Idx1, const char *Name);
 | 
						|
    static GetElementPtrInst *CreateGEP(LLVMContext &Context,
 | 
						|
                                        IRBuilder<> &B, Value *BasePtr,
 | 
						|
                                        int Idx1, int Idx2, const char *Name);
 | 
						|
  };
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static GCRegistry::Add<ShadowStackGC>
 | 
						|
X("shadow-stack", "Very portable GC for uncooperative code generators");
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// EscapeEnumerator - This is a little algorithm to find all escape points
 | 
						|
  /// from a function so that "finally"-style code can be inserted. In addition
 | 
						|
  /// to finding the existing return and unwind instructions, it also (if
 | 
						|
  /// necessary) transforms any call instructions into invokes and sends them to
 | 
						|
  /// a landing pad.
 | 
						|
  ///
 | 
						|
  /// It's wrapped up in a state machine using the same transform C# uses for
 | 
						|
  /// 'yield return' enumerators, This transform allows it to be non-allocating.
 | 
						|
  class EscapeEnumerator {
 | 
						|
    Function &F;
 | 
						|
    const char *CleanupBBName;
 | 
						|
 | 
						|
    // State.
 | 
						|
    int State;
 | 
						|
    Function::iterator StateBB, StateE;
 | 
						|
    IRBuilder<> Builder;
 | 
						|
 | 
						|
  public:
 | 
						|
    EscapeEnumerator(Function &F, const char *N = "cleanup")
 | 
						|
      : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {}
 | 
						|
 | 
						|
    IRBuilder<> *Next() {
 | 
						|
      switch (State) {
 | 
						|
      default:
 | 
						|
        return 0;
 | 
						|
 | 
						|
      case 0:
 | 
						|
        StateBB = F.begin();
 | 
						|
        StateE = F.end();
 | 
						|
        State = 1;
 | 
						|
 | 
						|
      case 1:
 | 
						|
        // Find all 'return' and 'unwind' instructions.
 | 
						|
        while (StateBB != StateE) {
 | 
						|
          BasicBlock *CurBB = StateBB++;
 | 
						|
 | 
						|
          // Branches and invokes do not escape, only unwind and return do.
 | 
						|
          TerminatorInst *TI = CurBB->getTerminator();
 | 
						|
          if (!isa<UnwindInst>(TI) && !isa<ReturnInst>(TI))
 | 
						|
            continue;
 | 
						|
 | 
						|
          Builder.SetInsertPoint(TI->getParent(), TI);
 | 
						|
          return &Builder;
 | 
						|
        }
 | 
						|
 | 
						|
        State = 2;
 | 
						|
 | 
						|
        // Find all 'call' instructions.
 | 
						|
        SmallVector<Instruction*,16> Calls;
 | 
						|
        for (Function::iterator BB = F.begin(),
 | 
						|
                                E = F.end(); BB != E; ++BB)
 | 
						|
          for (BasicBlock::iterator II = BB->begin(),
 | 
						|
                                    EE = BB->end(); II != EE; ++II)
 | 
						|
            if (CallInst *CI = dyn_cast<CallInst>(II))
 | 
						|
              if (!CI->getCalledFunction() ||
 | 
						|
                  !CI->getCalledFunction()->getIntrinsicID())
 | 
						|
                Calls.push_back(CI);
 | 
						|
 | 
						|
        if (Calls.empty())
 | 
						|
          return 0;
 | 
						|
 | 
						|
        // Create a cleanup block.
 | 
						|
        BasicBlock *CleanupBB = BasicBlock::Create(F.getContext(),
 | 
						|
                                                   CleanupBBName, &F);
 | 
						|
        UnwindInst *UI = new UnwindInst(F.getContext(), CleanupBB);
 | 
						|
 | 
						|
        // Transform the 'call' instructions into 'invoke's branching to the
 | 
						|
        // cleanup block. Go in reverse order to make prettier BB names.
 | 
						|
        SmallVector<Value*,16> Args;
 | 
						|
        for (unsigned I = Calls.size(); I != 0; ) {
 | 
						|
          CallInst *CI = cast<CallInst>(Calls[--I]);
 | 
						|
 | 
						|
          // Split the basic block containing the function call.
 | 
						|
          BasicBlock *CallBB = CI->getParent();
 | 
						|
          BasicBlock *NewBB =
 | 
						|
            CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont");
 | 
						|
 | 
						|
          // Remove the unconditional branch inserted at the end of CallBB.
 | 
						|
          CallBB->getInstList().pop_back();
 | 
						|
          NewBB->getInstList().remove(CI);
 | 
						|
 | 
						|
          // Create a new invoke instruction.
 | 
						|
          Args.clear();
 | 
						|
          Args.append(CI->op_begin() + 1, CI->op_end());
 | 
						|
 | 
						|
          InvokeInst *II = InvokeInst::Create(CI->getOperand(0),
 | 
						|
                                              NewBB, CleanupBB,
 | 
						|
                                              Args.begin(), Args.end(),
 | 
						|
                                              CI->getName(), CallBB);
 | 
						|
          II->setCallingConv(CI->getCallingConv());
 | 
						|
          II->setAttributes(CI->getAttributes());
 | 
						|
          CI->replaceAllUsesWith(II);
 | 
						|
          delete CI;
 | 
						|
        }
 | 
						|
 | 
						|
        Builder.SetInsertPoint(UI->getParent(), UI);
 | 
						|
        return &Builder;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
// -----------------------------------------------------------------------------
 | 
						|
 | 
						|
void llvm::linkShadowStackGC() { }
 | 
						|
 | 
						|
ShadowStackGC::ShadowStackGC() : Head(0), StackEntryTy(0) {
 | 
						|
  InitRoots = true;
 | 
						|
  CustomRoots = true;
 | 
						|
}
 | 
						|
 | 
						|
Constant *ShadowStackGC::GetFrameMap(Function &F) {
 | 
						|
  // doInitialization creates the abstract type of this value.
 | 
						|
  const Type *VoidPtr = Type::getInt8PtrTy(F.getContext());
 | 
						|
 | 
						|
  // Truncate the ShadowStackDescriptor if some metadata is null.
 | 
						|
  unsigned NumMeta = 0;
 | 
						|
  SmallVector<Constant*,16> Metadata;
 | 
						|
  for (unsigned I = 0; I != Roots.size(); ++I) {
 | 
						|
    Constant *C = cast<Constant>(Roots[I].first->getOperand(2));
 | 
						|
    if (!C->isNullValue())
 | 
						|
      NumMeta = I + 1;
 | 
						|
    Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr));
 | 
						|
  }
 | 
						|
 | 
						|
  Constant *BaseElts[] = {
 | 
						|
    ConstantInt::get(Type::getInt32Ty(F.getContext()), Roots.size(), false),
 | 
						|
    ConstantInt::get(Type::getInt32Ty(F.getContext()), NumMeta, false),
 | 
						|
  };
 | 
						|
 | 
						|
  Constant *DescriptorElts[] = {
 | 
						|
    ConstantStruct::get(F.getContext(), BaseElts, 2, false),
 | 
						|
    ConstantArray::get(ArrayType::get(VoidPtr, NumMeta),
 | 
						|
                       Metadata.begin(), NumMeta)
 | 
						|
  };
 | 
						|
 | 
						|
  Constant *FrameMap = ConstantStruct::get(F.getContext(), DescriptorElts, 2,
 | 
						|
                                           false);
 | 
						|
 | 
						|
  std::string TypeName("gc_map.");
 | 
						|
  TypeName += utostr(NumMeta);
 | 
						|
  F.getParent()->addTypeName(TypeName, FrameMap->getType());
 | 
						|
 | 
						|
  // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems
 | 
						|
  //        that, short of multithreaded LLVM, it should be safe; all that is
 | 
						|
  //        necessary is that a simple Module::iterator loop not be invalidated.
 | 
						|
  //        Appending to the GlobalVariable list is safe in that sense.
 | 
						|
  //
 | 
						|
  //        All of the output passes emit globals last. The ExecutionEngine
 | 
						|
  //        explicitly supports adding globals to the module after
 | 
						|
  //        initialization.
 | 
						|
  //
 | 
						|
  //        Still, if it isn't deemed acceptable, then this transformation needs
 | 
						|
  //        to be a ModulePass (which means it cannot be in the 'llc' pipeline
 | 
						|
  //        (which uses a FunctionPassManager (which segfaults (not asserts) if
 | 
						|
  //        provided a ModulePass))).
 | 
						|
  Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true,
 | 
						|
                                    GlobalVariable::InternalLinkage,
 | 
						|
                                    FrameMap, "__gc_" + F.getName());
 | 
						|
 | 
						|
  Constant *GEPIndices[2] = {
 | 
						|
                          ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
 | 
						|
                          ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)
 | 
						|
                          };
 | 
						|
  return ConstantExpr::getGetElementPtr(GV, GEPIndices, 2);
 | 
						|
}
 | 
						|
 | 
						|
const Type* ShadowStackGC::GetConcreteStackEntryType(Function &F) {
 | 
						|
  // doInitialization creates the generic version of this type.
 | 
						|
  std::vector<const Type*> EltTys;
 | 
						|
  EltTys.push_back(StackEntryTy);
 | 
						|
  for (size_t I = 0; I != Roots.size(); I++)
 | 
						|
    EltTys.push_back(Roots[I].second->getAllocatedType());
 | 
						|
  Type *Ty = StructType::get(F.getContext(), EltTys);
 | 
						|
 | 
						|
  std::string TypeName("gc_stackentry.");
 | 
						|
  TypeName += F.getName();
 | 
						|
  F.getParent()->addTypeName(TypeName, Ty);
 | 
						|
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
/// doInitialization - If this module uses the GC intrinsics, find them now. If
 | 
						|
/// not, exit fast.
 | 
						|
bool ShadowStackGC::initializeCustomLowering(Module &M) {
 | 
						|
  // struct FrameMap {
 | 
						|
  //   int32_t NumRoots; // Number of roots in stack frame.
 | 
						|
  //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots.
 | 
						|
  //   void *Meta[];     // May be absent for roots without metadata.
 | 
						|
  // };
 | 
						|
  std::vector<const Type*> EltTys;
 | 
						|
  // 32 bits is ok up to a 32GB stack frame. :)
 | 
						|
  EltTys.push_back(Type::getInt32Ty(M.getContext()));
 | 
						|
  // Specifies length of variable length array. 
 | 
						|
  EltTys.push_back(Type::getInt32Ty(M.getContext()));
 | 
						|
  StructType *FrameMapTy = StructType::get(M.getContext(), EltTys);
 | 
						|
  M.addTypeName("gc_map", FrameMapTy);
 | 
						|
  PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy);
 | 
						|
 | 
						|
  // struct StackEntry {
 | 
						|
  //   ShadowStackEntry *Next; // Caller's stack entry.
 | 
						|
  //   FrameMap *Map;          // Pointer to constant FrameMap.
 | 
						|
  //   void *Roots[];          // Stack roots (in-place array, so we pretend).
 | 
						|
  // };
 | 
						|
  OpaqueType *RecursiveTy = OpaqueType::get(M.getContext());
 | 
						|
 | 
						|
  EltTys.clear();
 | 
						|
  EltTys.push_back(PointerType::getUnqual(RecursiveTy));
 | 
						|
  EltTys.push_back(FrameMapPtrTy);
 | 
						|
  PATypeHolder LinkTyH = StructType::get(M.getContext(), EltTys);
 | 
						|
 | 
						|
  RecursiveTy->refineAbstractTypeTo(LinkTyH.get());
 | 
						|
  StackEntryTy = cast<StructType>(LinkTyH.get());
 | 
						|
  const PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy);
 | 
						|
  M.addTypeName("gc_stackentry", LinkTyH.get());  // FIXME: Is this safe from
 | 
						|
                                                  //        a FunctionPass?
 | 
						|
 | 
						|
  // Get the root chain if it already exists.
 | 
						|
  Head = M.getGlobalVariable("llvm_gc_root_chain");
 | 
						|
  if (!Head) {
 | 
						|
    // If the root chain does not exist, insert a new one with linkonce
 | 
						|
    // linkage!
 | 
						|
    Head = new GlobalVariable(M, StackEntryPtrTy, false,
 | 
						|
                              GlobalValue::LinkOnceAnyLinkage,
 | 
						|
                              Constant::getNullValue(StackEntryPtrTy),
 | 
						|
                              "llvm_gc_root_chain");
 | 
						|
  } else if (Head->hasExternalLinkage() && Head->isDeclaration()) {
 | 
						|
    Head->setInitializer(Constant::getNullValue(StackEntryPtrTy));
 | 
						|
    Head->setLinkage(GlobalValue::LinkOnceAnyLinkage);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ShadowStackGC::IsNullValue(Value *V) {
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return C->isNullValue();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void ShadowStackGC::CollectRoots(Function &F) {
 | 
						|
  // FIXME: Account for original alignment. Could fragment the root array.
 | 
						|
  //   Approach 1: Null initialize empty slots at runtime. Yuck.
 | 
						|
  //   Approach 2: Emit a map of the array instead of just a count.
 | 
						|
 | 
						|
  assert(Roots.empty() && "Not cleaned up?");
 | 
						|
 | 
						|
  SmallVector<std::pair<CallInst*,AllocaInst*>,16> MetaRoots;
 | 
						|
 | 
						|
  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;)
 | 
						|
      if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++))
 | 
						|
        if (Function *F = CI->getCalledFunction())
 | 
						|
          if (F->getIntrinsicID() == Intrinsic::gcroot) {
 | 
						|
            std::pair<CallInst*,AllocaInst*> Pair = std::make_pair(
 | 
						|
              CI, cast<AllocaInst>(CI->getOperand(1)->stripPointerCasts()));
 | 
						|
            if (IsNullValue(CI->getOperand(2)))
 | 
						|
              Roots.push_back(Pair);
 | 
						|
            else
 | 
						|
              MetaRoots.push_back(Pair);
 | 
						|
          }
 | 
						|
 | 
						|
  // Number roots with metadata (usually empty) at the beginning, so that the
 | 
						|
  // FrameMap::Meta array can be elided.
 | 
						|
  Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end());
 | 
						|
}
 | 
						|
 | 
						|
GetElementPtrInst *
 | 
						|
ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
 | 
						|
                         int Idx, int Idx2, const char *Name) {
 | 
						|
  Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
 | 
						|
                       ConstantInt::get(Type::getInt32Ty(Context), Idx),
 | 
						|
                       ConstantInt::get(Type::getInt32Ty(Context), Idx2) };
 | 
						|
  Value* Val = B.CreateGEP(BasePtr, Indices, Indices + 3, Name);
 | 
						|
 | 
						|
  assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
 | 
						|
 | 
						|
  return dyn_cast<GetElementPtrInst>(Val);
 | 
						|
}
 | 
						|
 | 
						|
GetElementPtrInst *
 | 
						|
ShadowStackGC::CreateGEP(LLVMContext &Context, IRBuilder<> &B, Value *BasePtr,
 | 
						|
                         int Idx, const char *Name) {
 | 
						|
  Value *Indices[] = { ConstantInt::get(Type::getInt32Ty(Context), 0),
 | 
						|
                       ConstantInt::get(Type::getInt32Ty(Context), Idx) };
 | 
						|
  Value *Val = B.CreateGEP(BasePtr, Indices, Indices + 2, Name);
 | 
						|
 | 
						|
  assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant");
 | 
						|
 | 
						|
  return dyn_cast<GetElementPtrInst>(Val);
 | 
						|
}
 | 
						|
 | 
						|
/// runOnFunction - Insert code to maintain the shadow stack.
 | 
						|
bool ShadowStackGC::performCustomLowering(Function &F) {
 | 
						|
  LLVMContext &Context = F.getContext();
 | 
						|
  
 | 
						|
  // Find calls to llvm.gcroot.
 | 
						|
  CollectRoots(F);
 | 
						|
 | 
						|
  // If there are no roots in this function, then there is no need to add a
 | 
						|
  // stack map entry for it.
 | 
						|
  if (Roots.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Build the constant map and figure the type of the shadow stack entry.
 | 
						|
  Value *FrameMap = GetFrameMap(F);
 | 
						|
  const Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F);
 | 
						|
 | 
						|
  // Build the shadow stack entry at the very start of the function.
 | 
						|
  BasicBlock::iterator IP = F.getEntryBlock().begin();
 | 
						|
  IRBuilder<> AtEntry(IP->getParent(), IP);
 | 
						|
 | 
						|
  Instruction *StackEntry   = AtEntry.CreateAlloca(ConcreteStackEntryTy, 0,
 | 
						|
                                                   "gc_frame");
 | 
						|
 | 
						|
  while (isa<AllocaInst>(IP)) ++IP;
 | 
						|
  AtEntry.SetInsertPoint(IP->getParent(), IP);
 | 
						|
 | 
						|
  // Initialize the map pointer and load the current head of the shadow stack.
 | 
						|
  Instruction *CurrentHead  = AtEntry.CreateLoad(Head, "gc_currhead");
 | 
						|
  Instruction *EntryMapPtr  = CreateGEP(Context, AtEntry, StackEntry,
 | 
						|
                                        0,1,"gc_frame.map");
 | 
						|
                              AtEntry.CreateStore(FrameMap, EntryMapPtr);
 | 
						|
 | 
						|
  // After all the allocas...
 | 
						|
  for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
 | 
						|
    // For each root, find the corresponding slot in the aggregate...
 | 
						|
    Value *SlotPtr = CreateGEP(Context, AtEntry, StackEntry, 1 + I, "gc_root");
 | 
						|
 | 
						|
    // And use it in lieu of the alloca.
 | 
						|
    AllocaInst *OriginalAlloca = Roots[I].second;
 | 
						|
    SlotPtr->takeName(OriginalAlloca);
 | 
						|
    OriginalAlloca->replaceAllUsesWith(SlotPtr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Move past the original stores inserted by GCStrategy::InitRoots. This isn't
 | 
						|
  // really necessary (the collector would never see the intermediate state at
 | 
						|
  // runtime), but it's nicer not to push the half-initialized entry onto the
 | 
						|
  // shadow stack.
 | 
						|
  while (isa<StoreInst>(IP)) ++IP;
 | 
						|
  AtEntry.SetInsertPoint(IP->getParent(), IP);
 | 
						|
 | 
						|
  // Push the entry onto the shadow stack.
 | 
						|
  Instruction *EntryNextPtr = CreateGEP(Context, AtEntry,
 | 
						|
                                        StackEntry,0,0,"gc_frame.next");
 | 
						|
  Instruction *NewHeadVal   = CreateGEP(Context, AtEntry, 
 | 
						|
                                        StackEntry, 0, "gc_newhead");
 | 
						|
  AtEntry.CreateStore(CurrentHead, EntryNextPtr);
 | 
						|
  AtEntry.CreateStore(NewHeadVal, Head);
 | 
						|
 | 
						|
  // For each instruction that escapes...
 | 
						|
  EscapeEnumerator EE(F, "gc_cleanup");
 | 
						|
  while (IRBuilder<> *AtExit = EE.Next()) {
 | 
						|
    // Pop the entry from the shadow stack. Don't reuse CurrentHead from
 | 
						|
    // AtEntry, since that would make the value live for the entire function.
 | 
						|
    Instruction *EntryNextPtr2 = CreateGEP(Context, *AtExit, StackEntry, 0, 0,
 | 
						|
                                           "gc_frame.next");
 | 
						|
    Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead");
 | 
						|
                       AtExit->CreateStore(SavedHead, Head);
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete the original allocas (which are no longer used) and the intrinsic
 | 
						|
  // calls (which are no longer valid). Doing this last avoids invalidating
 | 
						|
  // iterators.
 | 
						|
  for (unsigned I = 0, E = Roots.size(); I != E; ++I) {
 | 
						|
    Roots[I].first->eraseFromParent();
 | 
						|
    Roots[I].second->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  Roots.clear();
 | 
						|
  return true;
 | 
						|
}
 |