mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	even/odd halves. Thanks to Nate telling me what's what. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27793 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2363 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2363 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Chris Lattner and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the PPCISelLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPCISelLowering.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "PPCPerfectShuffle.h"
 | |
| #include "llvm/ADT/VectorExtras.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
 | |
|   : TargetLowering(TM) {
 | |
|     
 | |
|   // Fold away setcc operations if possible.
 | |
|   setSetCCIsExpensive();
 | |
|   setPow2DivIsCheap();
 | |
|   
 | |
|   // Use _setjmp/_longjmp instead of setjmp/longjmp.
 | |
|   setUseUnderscoreSetJmpLongJmp(true);
 | |
|     
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
 | |
|   addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
 | |
|   addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
 | |
|   
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
 | |
| 
 | |
|   // PowerPC has no intrinsics for these particular operations
 | |
|   setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::MEMSET, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
 | |
|   
 | |
|   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
 | |
|   setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
 | |
|   setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
 | |
|   
 | |
|   // PowerPC has no SREM/UREM instructions
 | |
|   setOperationAction(ISD::SREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UREM, MVT::i32, Expand);
 | |
|   
 | |
|   // We don't support sin/cos/sqrt/fmod
 | |
|   setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FREM , MVT::f32, Expand);
 | |
|   
 | |
|   // If we're enabling GP optimizations, use hardware square root
 | |
|   if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
 | |
|     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | |
|   }
 | |
|   
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | |
|   
 | |
|   // PowerPC does not have BSWAP, CTPOP or CTTZ
 | |
|   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
 | |
|   
 | |
|   // PowerPC does not have ROTR
 | |
|   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
 | |
|   
 | |
|   // PowerPC does not have Select
 | |
|   setOperationAction(ISD::SELECT, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::SELECT, MVT::f64, Expand);
 | |
|   
 | |
|   // PowerPC wants to turn select_cc of FP into fsel when possible.
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | |
| 
 | |
|   // PowerPC wants to optimize integer setcc a bit
 | |
|   setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | |
|   
 | |
|   // PowerPC does not have BRCOND which requires SetCC
 | |
|   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | |
|   
 | |
|   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
| 
 | |
|   // PowerPC does not have [U|S]INT_TO_FP
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
 | |
| 
 | |
|   // PowerPC does not have truncstore for i1.
 | |
|   setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
 | |
| 
 | |
|   // Support label based line numbers.
 | |
|   setOperationAction(ISD::LOCATION, MVT::Other, Expand);
 | |
|   setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
 | |
|   // FIXME - use subtarget debug flags
 | |
|   if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
 | |
|     setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
 | |
|   
 | |
|   // We want to legalize GlobalAddress and ConstantPool nodes into the 
 | |
|   // appropriate instructions to materialize the address.
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
 | |
| 
 | |
|   // RET must be custom lowered, to meet ABI requirements
 | |
|   setOperationAction(ISD::RET               , MVT::Other, Custom);
 | |
|   
 | |
|   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | |
|   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | |
|   
 | |
|   // Use the default implementation.
 | |
|   setOperationAction(ISD::VAARG             , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand); 
 | |
|   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
 | |
|   
 | |
|   // We want to custom lower some of our intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
|   
 | |
|   if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
 | |
|     // They also have instructions for converting between i64 and fp.
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | |
|     
 | |
|     // FIXME: disable this lowered code.  This generates 64-bit register values,
 | |
|     // and we don't model the fact that the top part is clobbered by calls.  We
 | |
|     // need to flag these together so that the value isn't live across a call.
 | |
|     //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|     
 | |
|     // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
 | |
|   } else {
 | |
|     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | |
|   }
 | |
| 
 | |
|   if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
 | |
|     // 64 bit PowerPC implementations can support i64 types directly
 | |
|     addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
 | |
|     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
 | |
|     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | |
|   } else {
 | |
|     // 32 bit PowerPC wants to expand i64 shifts itself.
 | |
|     setOperationAction(ISD::SHL, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SRL, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SRA, MVT::i64, Custom);
 | |
|   }
 | |
| 
 | |
|   if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
 | |
|     // First set operation action for all vector types to expand. Then we
 | |
|     // will selectively turn on ones that can be effectively codegen'd.
 | |
|     for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|          VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
 | |
|       // add/sub are legal for all supported vector VT's.
 | |
|       setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
 | |
|       setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
 | |
|       
 | |
|       // We promote all shuffles to v16i8.
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
 | |
| 
 | |
|       // We promote all non-typed operations to v4i32.
 | |
|       setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
 | |
|       AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
 | |
|       
 | |
|       // No other operations are legal.
 | |
|       setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
 | |
|       setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
 | |
|       setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
 | |
|       setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
 | |
|       setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
 | |
|       setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
 | |
| 
 | |
|       setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
 | |
|     }
 | |
| 
 | |
|     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
 | |
|     // with merges, splats, etc.
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
 | |
|     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
 | |
|     
 | |
|     addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
 | |
|     addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
 | |
|     addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
 | |
|     addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
 | |
|     
 | |
|     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
 | |
|     
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
 | |
|   }
 | |
|   
 | |
|   setSetCCResultContents(ZeroOrOneSetCCResult);
 | |
|   setStackPointerRegisterToSaveRestore(PPC::R1);
 | |
|   
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   setTargetDAGCombine(ISD::SINT_TO_FP);
 | |
|   setTargetDAGCombine(ISD::STORE);
 | |
|   
 | |
|   computeRegisterProperties();
 | |
| }
 | |
| 
 | |
| const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|   default: return 0;
 | |
|   case PPCISD::FSEL:          return "PPCISD::FSEL";
 | |
|   case PPCISD::FCFID:         return "PPCISD::FCFID";
 | |
|   case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
 | |
|   case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
 | |
|   case PPCISD::STFIWX:        return "PPCISD::STFIWX";
 | |
|   case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
 | |
|   case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
 | |
|   case PPCISD::VPERM:         return "PPCISD::VPERM";
 | |
|   case PPCISD::Hi:            return "PPCISD::Hi";
 | |
|   case PPCISD::Lo:            return "PPCISD::Lo";
 | |
|   case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
 | |
|   case PPCISD::SRL:           return "PPCISD::SRL";
 | |
|   case PPCISD::SRA:           return "PPCISD::SRA";
 | |
|   case PPCISD::SHL:           return "PPCISD::SHL";
 | |
|   case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
 | |
|   case PPCISD::STD_32:        return "PPCISD::STD_32";
 | |
|   case PPCISD::CALL:          return "PPCISD::CALL";
 | |
|   case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
 | |
|   case PPCISD::MFCR:          return "PPCISD::MFCR";
 | |
|   case PPCISD::VCMP:          return "PPCISD::VCMP";
 | |
|   case PPCISD::VCMPo:         return "PPCISD::VCMPo";
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Node matching predicates, for use by the tblgen matching code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
 | |
| static bool isFloatingPointZero(SDOperand Op) {
 | |
|   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
 | |
|   else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
 | |
|     // Maybe this has already been legalized into the constant pool?
 | |
|     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
 | |
|       if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
 | |
|         return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
 | |
| /// true if Op is undef or if it matches the specified value.
 | |
| static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
 | |
|   return Op.getOpcode() == ISD::UNDEF || 
 | |
|          cast<ConstantSDNode>(Op)->getValue() == Val;
 | |
| }
 | |
| 
 | |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
 | |
| /// VPKUHUM instruction.
 | |
| bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
 | |
|   if (!isUnary) {
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
 | |
|         return false;
 | |
|   } else {
 | |
|     for (unsigned i = 0; i != 8; ++i)
 | |
|       if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
 | |
|           !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
 | |
| /// VPKUWUM instruction.
 | |
| bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
 | |
|   if (!isUnary) {
 | |
|     for (unsigned i = 0; i != 16; i += 2)
 | |
|       if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
 | |
|         return false;
 | |
|   } else {
 | |
|     for (unsigned i = 0; i != 8; i += 2)
 | |
|       if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
 | |
|           !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVMerge - Common function, used to match vmrg* shuffles.
 | |
| ///
 | |
| static bool isVMerge(SDNode *N, unsigned UnitSize, 
 | |
|                      unsigned LHSStart, unsigned RHSStart) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | |
|          N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
 | |
|   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
 | |
|          "Unsupported merge size!");
 | |
|   
 | |
|   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
 | |
|     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
 | |
|       if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
 | |
|                              LHSStart+j+i*UnitSize) ||
 | |
|           !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
 | |
|                              RHSStart+j+i*UnitSize))
 | |
|         return false;
 | |
|     }
 | |
|       return true;
 | |
| }
 | |
| 
 | |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
 | |
| /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
 | |
| bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
 | |
|   if (!isUnary)
 | |
|     return isVMerge(N, UnitSize, 8, 24);
 | |
|   return isVMerge(N, UnitSize, 8, 8);
 | |
| }
 | |
| 
 | |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
 | |
| /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
 | |
| bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
 | |
|   if (!isUnary)
 | |
|     return isVMerge(N, UnitSize, 0, 16);
 | |
|   return isVMerge(N, UnitSize, 0, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
 | |
| /// amount, otherwise return -1.
 | |
| int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | |
|          N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
 | |
|   // Find the first non-undef value in the shuffle mask.
 | |
|   unsigned i;
 | |
|   for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
 | |
|     /*search*/;
 | |
|   
 | |
|   if (i == 16) return -1;  // all undef.
 | |
|   
 | |
|   // Otherwise, check to see if the rest of the elements are consequtively
 | |
|   // numbered from this value.
 | |
|   unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
 | |
|   if (ShiftAmt < i) return -1;
 | |
|   ShiftAmt -= i;
 | |
| 
 | |
|   if (!isUnary) {
 | |
|     // Check the rest of the elements to see if they are consequtive.
 | |
|     for (++i; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
 | |
|         return -1;
 | |
|   } else {
 | |
|     // Check the rest of the elements to see if they are consequtive.
 | |
|     for (++i; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
 | |
|         return -1;
 | |
|   }
 | |
|   
 | |
|   return ShiftAmt;
 | |
| }
 | |
| 
 | |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a splat of a single element that is suitable for input to
 | |
| /// VSPLTB/VSPLTH/VSPLTW.
 | |
| bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
 | |
|   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
 | |
|          N->getNumOperands() == 16 &&
 | |
|          (EltSize == 1 || EltSize == 2 || EltSize == 4));
 | |
|   
 | |
|   // This is a splat operation if each element of the permute is the same, and
 | |
|   // if the value doesn't reference the second vector.
 | |
|   unsigned ElementBase = 0;
 | |
|   SDOperand Elt = N->getOperand(0);
 | |
|   if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
 | |
|     ElementBase = EltV->getValue();
 | |
|   else
 | |
|     return false;   // FIXME: Handle UNDEF elements too!
 | |
| 
 | |
|   if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
 | |
|     return false;
 | |
|   
 | |
|   // Check that they are consequtive.
 | |
|   for (unsigned i = 1; i != EltSize; ++i) {
 | |
|     if (!isa<ConstantSDNode>(N->getOperand(i)) ||
 | |
|         cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
 | |
|   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
 | |
|     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
|     assert(isa<ConstantSDNode>(N->getOperand(i)) &&
 | |
|            "Invalid VECTOR_SHUFFLE mask!");
 | |
|     for (unsigned j = 0; j != EltSize; ++j)
 | |
|       if (N->getOperand(i+j) != N->getOperand(j))
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
 | |
| /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
 | |
| unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
 | |
|   assert(isSplatShuffleMask(N, EltSize));
 | |
|   return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
 | |
| }
 | |
| 
 | |
| /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
 | |
| /// by using a vspltis[bhw] instruction of the specified element size, return
 | |
| /// the constant being splatted.  The ByteSize field indicates the number of
 | |
| /// bytes of each element [124] -> [bhw].
 | |
| SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
 | |
|   SDOperand OpVal(0, 0);
 | |
| 
 | |
|   // If ByteSize of the splat is bigger than the element size of the
 | |
|   // build_vector, then we have a case where we are checking for a splat where
 | |
|   // multiple elements of the buildvector are folded together into a single
 | |
|   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
 | |
|   unsigned EltSize = 16/N->getNumOperands();
 | |
|   if (EltSize < ByteSize) {
 | |
|     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
 | |
|     SDOperand UniquedVals[4];
 | |
|     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
 | |
|     
 | |
|     // See if all of the elements in the buildvector agree across.
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
|       // If the element isn't a constant, bail fully out.
 | |
|       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
 | |
| 
 | |
|           
 | |
|       if (UniquedVals[i&(Multiple-1)].Val == 0)
 | |
|         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
 | |
|       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
 | |
|         return SDOperand();  // no match.
 | |
|     }
 | |
|     
 | |
|     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
 | |
|     // either constant or undef values that are identical for each chunk.  See
 | |
|     // if these chunks can form into a larger vspltis*.
 | |
|     
 | |
|     // Check to see if all of the leading entries are either 0 or -1.  If
 | |
|     // neither, then this won't fit into the immediate field.
 | |
|     bool LeadingZero = true;
 | |
|     bool LeadingOnes = true;
 | |
|     for (unsigned i = 0; i != Multiple-1; ++i) {
 | |
|       if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
 | |
|       
 | |
|       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
 | |
|       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
 | |
|     }
 | |
|     // Finally, check the least significant entry.
 | |
|     if (LeadingZero) {
 | |
|       if (UniquedVals[Multiple-1].Val == 0)
 | |
|         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
 | |
|       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
 | |
|       if (Val < 16)
 | |
|         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
 | |
|     }
 | |
|     if (LeadingOnes) {
 | |
|       if (UniquedVals[Multiple-1].Val == 0)
 | |
|         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
 | |
|       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
 | |
|       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
 | |
|         return DAG.getTargetConstant(Val, MVT::i32);
 | |
|     }
 | |
|     
 | |
|     return SDOperand();
 | |
|   }
 | |
|   
 | |
|   // Check to see if this buildvec has a single non-undef value in its elements.
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
|     if (OpVal.Val == 0)
 | |
|       OpVal = N->getOperand(i);
 | |
|     else if (OpVal != N->getOperand(i))
 | |
|       return SDOperand();
 | |
|   }
 | |
|   
 | |
|   if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
 | |
|   
 | |
|   unsigned ValSizeInBytes = 0;
 | |
|   uint64_t Value = 0;
 | |
|   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | |
|     Value = CN->getValue();
 | |
|     ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
 | |
|   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | |
|     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
 | |
|     Value = FloatToBits(CN->getValue());
 | |
|     ValSizeInBytes = 4;
 | |
|   }
 | |
| 
 | |
|   // If the splat value is larger than the element value, then we can never do
 | |
|   // this splat.  The only case that we could fit the replicated bits into our
 | |
|   // immediate field for would be zero, and we prefer to use vxor for it.
 | |
|   if (ValSizeInBytes < ByteSize) return SDOperand();
 | |
|   
 | |
|   // If the element value is larger than the splat value, cut it in half and
 | |
|   // check to see if the two halves are equal.  Continue doing this until we
 | |
|   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
 | |
|   while (ValSizeInBytes > ByteSize) {
 | |
|     ValSizeInBytes >>= 1;
 | |
|     
 | |
|     // If the top half equals the bottom half, we're still ok.
 | |
|     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
 | |
|          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
 | |
|       return SDOperand();
 | |
|   }
 | |
| 
 | |
|   // Properly sign extend the value.
 | |
|   int ShAmt = (4-ByteSize)*8;
 | |
|   int MaskVal = ((int)Value << ShAmt) >> ShAmt;
 | |
|   
 | |
|   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
 | |
|   if (MaskVal == 0) return SDOperand();
 | |
| 
 | |
|   // Finally, if this value fits in a 5 bit sext field, return it
 | |
|   if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
 | |
|     return DAG.getTargetConstant(MaskVal, MVT::i32);
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  LowerOperation implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   Constant *C = CP->get();
 | |
|   SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
 | |
|   SDOperand Zero = DAG.getConstant(0, MVT::i32);
 | |
| 
 | |
|   const TargetMachine &TM = DAG.getTarget();
 | |
|   
 | |
|   // If this is a non-darwin platform, we don't support non-static relo models
 | |
|   // yet.
 | |
|   if (TM.getRelocationModel() == Reloc::Static ||
 | |
|       !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | |
|     // Generate non-pic code that has direct accesses to the constant pool.
 | |
|     // The address of the global is just (hi(&g)+lo(&g)).
 | |
|     SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
 | |
|     SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
 | |
|     return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
 | |
|   }
 | |
|   
 | |
|   SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
 | |
|   if (TM.getRelocationModel() == Reloc::PIC) {
 | |
|     // With PIC, the first instruction is actually "GR+hi(&G)".
 | |
|     Hi = DAG.getNode(ISD::ADD, MVT::i32,
 | |
|                      DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
 | |
|   }
 | |
|   
 | |
|   SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
 | |
|   Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
 | |
|   return Lo;
 | |
| }
 | |
| 
 | |
| static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
 | |
|   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
 | |
|   GlobalValue *GV = GSDN->getGlobal();
 | |
|   SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
 | |
|   SDOperand Zero = DAG.getConstant(0, MVT::i32);
 | |
|   
 | |
|   const TargetMachine &TM = DAG.getTarget();
 | |
| 
 | |
|   // If this is a non-darwin platform, we don't support non-static relo models
 | |
|   // yet.
 | |
|   if (TM.getRelocationModel() == Reloc::Static ||
 | |
|       !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | |
|     // Generate non-pic code that has direct accesses to globals.
 | |
|     // The address of the global is just (hi(&g)+lo(&g)).
 | |
|     SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
 | |
|     SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
 | |
|     return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
 | |
|   }
 | |
|   
 | |
|   SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
 | |
|   if (TM.getRelocationModel() == Reloc::PIC) {
 | |
|     // With PIC, the first instruction is actually "GR+hi(&G)".
 | |
|     Hi = DAG.getNode(ISD::ADD, MVT::i32,
 | |
|                      DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
 | |
|   }
 | |
|   
 | |
|   SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
 | |
|   Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
 | |
|   
 | |
|   if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
 | |
|       (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
 | |
|     return Lo;
 | |
|   
 | |
|   // If the global is weak or external, we have to go through the lazy
 | |
|   // resolution stub.
 | |
|   return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
 | |
| }
 | |
| 
 | |
| static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|   
 | |
|   // If we're comparing for equality to zero, expose the fact that this is
 | |
|   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
 | |
|   // fold the new nodes.
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|     if (C->isNullValue() && CC == ISD::SETEQ) {
 | |
|       MVT::ValueType VT = Op.getOperand(0).getValueType();
 | |
|       SDOperand Zext = Op.getOperand(0);
 | |
|       if (VT < MVT::i32) {
 | |
|         VT = MVT::i32;
 | |
|         Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
 | |
|       } 
 | |
|       unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
 | |
|       SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
 | |
|       SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
 | |
|                                   DAG.getConstant(Log2b, MVT::i32));
 | |
|       return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
 | |
|     }
 | |
|     // Leave comparisons against 0 and -1 alone for now, since they're usually 
 | |
|     // optimized.  FIXME: revisit this when we can custom lower all setcc
 | |
|     // optimizations.
 | |
|     if (C->isAllOnesValue() || C->isNullValue())
 | |
|       return SDOperand();
 | |
|   }
 | |
|   
 | |
|   // If we have an integer seteq/setne, turn it into a compare against zero
 | |
|   // by subtracting the rhs from the lhs, which is faster than setting a
 | |
|   // condition register, reading it back out, and masking the correct bit.
 | |
|   MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
 | |
|   if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | |
|     MVT::ValueType VT = Op.getValueType();
 | |
|     SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0), 
 | |
|                                 Op.getOperand(1));
 | |
|     return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
 | |
|                               unsigned VarArgsFrameIndex) {
 | |
|   // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|   // memory location argument.
 | |
|   SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
 | |
|   return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, 
 | |
|                      Op.getOperand(1), Op.getOperand(2));
 | |
| }
 | |
| 
 | |
| static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
 | |
|   SDOperand Copy;
 | |
|   switch(Op.getNumOperands()) {
 | |
|   default:
 | |
|     assert(0 && "Do not know how to return this many arguments!");
 | |
|     abort();
 | |
|   case 1: 
 | |
|     return SDOperand(); // ret void is legal
 | |
|   case 2: {
 | |
|     MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
 | |
|     unsigned ArgReg;
 | |
|     if (MVT::isVector(ArgVT))
 | |
|       ArgReg = PPC::V2;
 | |
|     else if (MVT::isInteger(ArgVT))
 | |
|       ArgReg = PPC::R3;
 | |
|     else {
 | |
|       assert(MVT::isFloatingPoint(ArgVT));
 | |
|       ArgReg = PPC::F1;
 | |
|     }
 | |
|     
 | |
|     Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
 | |
|                             SDOperand());
 | |
|     
 | |
|     // If we haven't noted the R3/F1 are live out, do so now.
 | |
|     if (DAG.getMachineFunction().liveout_empty())
 | |
|       DAG.getMachineFunction().addLiveOut(ArgReg);
 | |
|     break;
 | |
|   }
 | |
|   case 3:
 | |
|     Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2), 
 | |
|                             SDOperand());
 | |
|     Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
 | |
|     // If we haven't noted the R3+R4 are live out, do so now.
 | |
|     if (DAG.getMachineFunction().liveout_empty()) {
 | |
|       DAG.getMachineFunction().addLiveOut(PPC::R3);
 | |
|       DAG.getMachineFunction().addLiveOut(PPC::R4);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
 | |
| }
 | |
| 
 | |
| /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
 | |
| /// possible.
 | |
| static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
 | |
|   // Not FP? Not a fsel.
 | |
|   if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
 | |
|       !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
 | |
|     return SDOperand();
 | |
|   
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
|   
 | |
|   // Cannot handle SETEQ/SETNE.
 | |
|   if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
 | |
|   
 | |
|   MVT::ValueType ResVT = Op.getValueType();
 | |
|   MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
 | |
|   SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
|   SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
 | |
|   
 | |
|   // If the RHS of the comparison is a 0.0, we don't need to do the
 | |
|   // subtraction at all.
 | |
|   if (isFloatingPointZero(RHS))
 | |
|     switch (CC) {
 | |
|     default: break;       // SETUO etc aren't handled by fsel.
 | |
|     case ISD::SETULT:
 | |
|     case ISD::SETLT:
 | |
|       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | |
|     case ISD::SETUGE:
 | |
|     case ISD::SETGE:
 | |
|       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
 | |
|       return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
 | |
|     case ISD::SETUGT:
 | |
|     case ISD::SETGT:
 | |
|       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | |
|     case ISD::SETULE:
 | |
|     case ISD::SETLE:
 | |
|       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
 | |
|       return DAG.getNode(PPCISD::FSEL, ResVT,
 | |
|                          DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
 | |
|     }
 | |
|       
 | |
|       SDOperand Cmp;
 | |
|   switch (CC) {
 | |
|   default: break;       // SETUO etc aren't handled by fsel.
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | |
|       return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | |
|       return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETGT:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | |
|       return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
 | |
|       return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
 | |
|   assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
 | |
|   SDOperand Src = Op.getOperand(0);
 | |
|   if (Src.getValueType() == MVT::f32)
 | |
|     Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
 | |
|   
 | |
|   SDOperand Tmp;
 | |
|   switch (Op.getValueType()) {
 | |
|   default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
 | |
|   case MVT::i32:
 | |
|     Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Convert the FP value to an int value through memory.
 | |
|   SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
 | |
|   if (Op.getValueType() == MVT::i32)
 | |
|     Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
 | |
|   return Bits;
 | |
| }
 | |
| 
 | |
| static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
 | |
|   if (Op.getOperand(0).getValueType() == MVT::i64) {
 | |
|     SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
 | |
|     SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
 | |
|     if (Op.getValueType() == MVT::f32)
 | |
|       FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
 | |
|     return FP;
 | |
|   }
 | |
|   
 | |
|   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
 | |
|          "Unhandled SINT_TO_FP type in custom expander!");
 | |
|   // Since we only generate this in 64-bit mode, we can take advantage of
 | |
|   // 64-bit registers.  In particular, sign extend the input value into the
 | |
|   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
 | |
|   // then lfd it and fcfid it.
 | |
|   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
 | |
|   int FrameIdx = FrameInfo->CreateStackObject(8, 8);
 | |
|   SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
 | |
|   
 | |
|   SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
 | |
|                                 Op.getOperand(0));
 | |
|   
 | |
|   // STD the extended value into the stack slot.
 | |
|   SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
 | |
|                                 DAG.getEntryNode(), Ext64, FIdx,
 | |
|                                 DAG.getSrcValue(NULL));
 | |
|   // Load the value as a double.
 | |
|   SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
 | |
|   
 | |
|   // FCFID it and return it.
 | |
|   SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
 | |
|   if (Op.getValueType() == MVT::f32)
 | |
|     FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
 | |
|   return FP;
 | |
| }
 | |
| 
 | |
| static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
 | |
|   assert(Op.getValueType() == MVT::i64 &&
 | |
|          Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
 | |
|   // The generic code does a fine job expanding shift by a constant.
 | |
|   if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
 | |
|   
 | |
|   // Otherwise, expand into a bunch of logical ops.  Note that these ops
 | |
|   // depend on the PPC behavior for oversized shift amounts.
 | |
|   SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | |
|                              DAG.getConstant(0, MVT::i32));
 | |
|   SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | |
|                              DAG.getConstant(1, MVT::i32));
 | |
|   SDOperand Amt = Op.getOperand(1);
 | |
|   
 | |
|   SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
 | |
|                                DAG.getConstant(32, MVT::i32), Amt);
 | |
|   SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
 | |
|   SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
 | |
|   SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
 | |
|   SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
 | |
|                                DAG.getConstant(-32U, MVT::i32));
 | |
|   SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
 | |
|   SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
 | |
|   SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
 | |
|   return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
 | |
| }
 | |
| 
 | |
| static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
 | |
|   assert(Op.getValueType() == MVT::i64 &&
 | |
|          Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
 | |
|   // The generic code does a fine job expanding shift by a constant.
 | |
|   if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
 | |
|   
 | |
|   // Otherwise, expand into a bunch of logical ops.  Note that these ops
 | |
|   // depend on the PPC behavior for oversized shift amounts.
 | |
|   SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | |
|                              DAG.getConstant(0, MVT::i32));
 | |
|   SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | |
|                              DAG.getConstant(1, MVT::i32));
 | |
|   SDOperand Amt = Op.getOperand(1);
 | |
|   
 | |
|   SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
 | |
|                                DAG.getConstant(32, MVT::i32), Amt);
 | |
|   SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
 | |
|   SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
 | |
|   SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
 | |
|   SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
 | |
|                                DAG.getConstant(-32U, MVT::i32));
 | |
|   SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
 | |
|   SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
 | |
|   SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
 | |
|   return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
 | |
| }
 | |
| 
 | |
| static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
 | |
|   assert(Op.getValueType() == MVT::i64 &&
 | |
|          Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
 | |
|   // The generic code does a fine job expanding shift by a constant.
 | |
|   if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
 | |
|   
 | |
|   // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
 | |
|   SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | |
|                              DAG.getConstant(0, MVT::i32));
 | |
|   SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
 | |
|                              DAG.getConstant(1, MVT::i32));
 | |
|   SDOperand Amt = Op.getOperand(1);
 | |
|   
 | |
|   SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
 | |
|                                DAG.getConstant(32, MVT::i32), Amt);
 | |
|   SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
 | |
|   SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
 | |
|   SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
 | |
|   SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
 | |
|                                DAG.getConstant(-32U, MVT::i32));
 | |
|   SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
 | |
|   SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
 | |
|   SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
 | |
|                                     Tmp4, Tmp6, ISD::SETLE);
 | |
|   return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Vector related lowering.
 | |
| //
 | |
| 
 | |
| // If this is a vector of constants or undefs, get the bits.  A bit in
 | |
| // UndefBits is set if the corresponding element of the vector is an 
 | |
| // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
 | |
| // zero.   Return true if this is not an array of constants, false if it is.
 | |
| //
 | |
| static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
 | |
|                                        uint64_t UndefBits[2]) {
 | |
|   // Start with zero'd results.
 | |
|   VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
 | |
|   
 | |
|   unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
 | |
|   for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
 | |
|     SDOperand OpVal = BV->getOperand(i);
 | |
|     
 | |
|     unsigned PartNo = i >= e/2;     // In the upper 128 bits?
 | |
|     unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
 | |
| 
 | |
|     uint64_t EltBits = 0;
 | |
|     if (OpVal.getOpcode() == ISD::UNDEF) {
 | |
|       uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
 | |
|       UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
 | |
|       continue;
 | |
|     } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | |
|       EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
 | |
|     } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | |
|       assert(CN->getValueType(0) == MVT::f32 &&
 | |
|              "Only one legal FP vector type!");
 | |
|       EltBits = FloatToBits(CN->getValue());
 | |
|     } else {
 | |
|       // Nonconstant element.
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
 | |
|   }
 | |
|   
 | |
|   //printf("%llx %llx  %llx %llx\n", 
 | |
|   //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // If this is a splat (repetition) of a value across the whole vector, return
 | |
| // the smallest size that splats it.  For example, "0x01010101010101..." is a
 | |
| // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and 
 | |
| // SplatSize = 1 byte.
 | |
| static bool isConstantSplat(const uint64_t Bits128[2], 
 | |
|                             const uint64_t Undef128[2],
 | |
|                             unsigned &SplatBits, unsigned &SplatUndef,
 | |
|                             unsigned &SplatSize) {
 | |
|   
 | |
|   // Don't let undefs prevent splats from matching.  See if the top 64-bits are
 | |
|   // the same as the lower 64-bits, ignoring undefs.
 | |
|   if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
 | |
|     return false;  // Can't be a splat if two pieces don't match.
 | |
|   
 | |
|   uint64_t Bits64  = Bits128[0] | Bits128[1];
 | |
|   uint64_t Undef64 = Undef128[0] & Undef128[1];
 | |
|   
 | |
|   // Check that the top 32-bits are the same as the lower 32-bits, ignoring
 | |
|   // undefs.
 | |
|   if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
 | |
|     return false;  // Can't be a splat if two pieces don't match.
 | |
| 
 | |
|   uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
 | |
|   uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
 | |
| 
 | |
|   // If the top 16-bits are different than the lower 16-bits, ignoring
 | |
|   // undefs, we have an i32 splat.
 | |
|   if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
 | |
|     SplatBits = Bits32;
 | |
|     SplatUndef = Undef32;
 | |
|     SplatSize = 4;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
 | |
|   uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
 | |
| 
 | |
|   // If the top 8-bits are different than the lower 8-bits, ignoring
 | |
|   // undefs, we have an i16 splat.
 | |
|   if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
 | |
|     SplatBits = Bits16;
 | |
|     SplatUndef = Undef16;
 | |
|     SplatSize = 2;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we have an 8-bit splat.
 | |
|   SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
 | |
|   SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
 | |
|   SplatSize = 1;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// BuildSplatI - Build a canonical splati of Val with an element size of
 | |
| /// SplatSize.  Cast the result to VT.
 | |
| static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
 | |
|                              SelectionDAG &DAG) {
 | |
|   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
 | |
|   
 | |
|   // Force vspltis[hw] -1 to vspltisb -1.
 | |
|   if (Val == -1) SplatSize = 1;
 | |
|   
 | |
|   static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
 | |
|     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
 | |
|   };
 | |
|   MVT::ValueType CanonicalVT = VTys[SplatSize-1];
 | |
|   
 | |
|   // Build a canonical splat for this value.
 | |
|   SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
 | |
|   std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
 | |
|   SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
 | |
| }
 | |
| 
 | |
| /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
 | |
| /// specified intrinsic ID.
 | |
| static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
 | |
|                                   SelectionDAG &DAG, 
 | |
|                                   MVT::ValueType DestVT = MVT::Other) {
 | |
|   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
 | |
|                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
 | |
| /// specified intrinsic ID.
 | |
| static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
 | |
|                                   SDOperand Op2, SelectionDAG &DAG, 
 | |
|                                   MVT::ValueType DestVT = MVT::Other) {
 | |
|   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
 | |
|                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
 | |
| /// amount.  The result has the specified value type.
 | |
| static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
 | |
|                              MVT::ValueType VT, SelectionDAG &DAG) {
 | |
|   // Force LHS/RHS to be the right type.
 | |
|   LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
 | |
|   RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
 | |
|   
 | |
|   std::vector<SDOperand> Ops;
 | |
|   for (unsigned i = 0; i != 16; ++i)
 | |
|     Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
 | |
|   SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
 | |
|                             DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, VT, T);
 | |
| }
 | |
| 
 | |
| // If this is a case we can't handle, return null and let the default
 | |
| // expansion code take care of it.  If we CAN select this case, and if it
 | |
| // selects to a single instruction, return Op.  Otherwise, if we can codegen
 | |
| // this case more efficiently than a constant pool load, lower it to the
 | |
| // sequence of ops that should be used.
 | |
| static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
 | |
|   // If this is a vector of constants or undefs, get the bits.  A bit in
 | |
|   // UndefBits is set if the corresponding element of the vector is an 
 | |
|   // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
 | |
|   // zero. 
 | |
|   uint64_t VectorBits[2];
 | |
|   uint64_t UndefBits[2];
 | |
|   if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
 | |
|     return SDOperand();   // Not a constant vector.
 | |
|   
 | |
|   // If this is a splat (repetition) of a value across the whole vector, return
 | |
|   // the smallest size that splats it.  For example, "0x01010101010101..." is a
 | |
|   // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and 
 | |
|   // SplatSize = 1 byte.
 | |
|   unsigned SplatBits, SplatUndef, SplatSize;
 | |
|   if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
 | |
|     bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
 | |
|     
 | |
|     // First, handle single instruction cases.
 | |
|     
 | |
|     // All zeros?
 | |
|     if (SplatBits == 0) {
 | |
|       // Canonicalize all zero vectors to be v4i32.
 | |
|       if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
 | |
|         SDOperand Z = DAG.getConstant(0, MVT::i32);
 | |
|         Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
 | |
|         Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
 | |
|       }
 | |
|       return Op;
 | |
|     }
 | |
| 
 | |
|     // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
 | |
|     int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
 | |
|     if (SextVal >= -16 && SextVal <= 15)
 | |
|       return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
 | |
|     
 | |
|     
 | |
|     // Two instruction sequences.
 | |
|     
 | |
|     // If this value is in the range [-32,30] and is even, use:
 | |
|     //    tmp = VSPLTI[bhw], result = add tmp, tmp
 | |
|     if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
 | |
|       Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
 | |
|       return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
 | |
|     }
 | |
|     
 | |
|     // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is 
 | |
|     // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
 | |
|     // for fneg/fabs.
 | |
|     if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
 | |
|       // Make -1 and vspltisw -1:
 | |
|       SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
 | |
|       
 | |
|       // Make the VSLW intrinsic, computing 0x8000_0000.
 | |
|       SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, 
 | |
|                                        OnesV, DAG);
 | |
|       
 | |
|       // xor by OnesV to invert it.
 | |
|       Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // Check to see if this is a wide variety of vsplti*, binop self cases.
 | |
|     unsigned SplatBitSize = SplatSize*8;
 | |
|     static const char SplatCsts[] = {
 | |
|       -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
 | |
|       -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
 | |
|     };
 | |
|     for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
 | |
|       // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
 | |
|       // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
 | |
|       int i = SplatCsts[idx];
 | |
|       
 | |
|       // Figure out what shift amount will be used by altivec if shifted by i in
 | |
|       // this splat size.
 | |
|       unsigned TypeShiftAmt = i & (SplatBitSize-1);
 | |
|       
 | |
|       // vsplti + shl self.
 | |
|       if (SextVal == (i << (int)TypeShiftAmt)) {
 | |
|         Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
 | |
|         static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|           Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
 | |
|           Intrinsic::ppc_altivec_vslw
 | |
|         };
 | |
|         return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
 | |
|       }
 | |
|       
 | |
|       // vsplti + srl self.
 | |
|       if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | |
|         Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
 | |
|         static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|           Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
 | |
|           Intrinsic::ppc_altivec_vsrw
 | |
|         };
 | |
|         return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
 | |
|       }
 | |
|       
 | |
|       // vsplti + sra self.
 | |
|       if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | |
|         Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
 | |
|         static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|           Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
 | |
|           Intrinsic::ppc_altivec_vsraw
 | |
|         };
 | |
|         return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
 | |
|       }
 | |
|       
 | |
|       // vsplti + rol self.
 | |
|       if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
 | |
|                            ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
 | |
|         Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
 | |
|         static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|           Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
 | |
|           Intrinsic::ppc_altivec_vrlw
 | |
|         };
 | |
|         return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
 | |
|       }
 | |
| 
 | |
|       // t = vsplti c, result = vsldoi t, t, 1
 | |
|       if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
 | |
|         SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
 | |
|         return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
 | |
|       }
 | |
|       // t = vsplti c, result = vsldoi t, t, 2
 | |
|       if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
 | |
|         SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
 | |
|         return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
 | |
|       }
 | |
|       // t = vsplti c, result = vsldoi t, t, 3
 | |
|       if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
 | |
|         SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
 | |
|         return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Three instruction sequences.
 | |
|     
 | |
|     // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
 | |
|     if (SextVal >= 0 && SextVal <= 31) {
 | |
|       SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
 | |
|       SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
 | |
|       return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
 | |
|     }
 | |
|     // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
 | |
|     if (SextVal >= -31 && SextVal <= 0) {
 | |
|       SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
 | |
|       SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
 | |
|       return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | |
| /// the specified operations to build the shuffle.
 | |
| static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
 | |
|                                         SDOperand RHS, SelectionDAG &DAG) {
 | |
|   unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | |
|   unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
 | |
|   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | |
|   
 | |
|   enum {
 | |
|     OP_COPY = 0,   // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | |
|     OP_VMRGHW,
 | |
|     OP_VMRGLW,
 | |
|     OP_VSPLTISW0,
 | |
|     OP_VSPLTISW1,
 | |
|     OP_VSPLTISW2,
 | |
|     OP_VSPLTISW3,
 | |
|     OP_VSLDOI4,
 | |
|     OP_VSLDOI8,
 | |
|     OP_VSLDOI12,
 | |
|   };
 | |
|   
 | |
|   if (OpNum == OP_COPY) {
 | |
|     if (LHSID == (1*9+2)*9+3) return LHS;
 | |
|     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | |
|     return RHS;
 | |
|   }
 | |
|   
 | |
|   SDOperand OpLHS, OpRHS;
 | |
|   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
 | |
|   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
 | |
|   
 | |
|   unsigned ShufIdxs[16];
 | |
|   switch (OpNum) {
 | |
|   default: assert(0 && "Unknown i32 permute!");
 | |
|   case OP_VMRGHW:
 | |
|     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
 | |
|     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
 | |
|     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
 | |
|     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
 | |
|     break;
 | |
|   case OP_VMRGLW:
 | |
|     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
 | |
|     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
 | |
|     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
 | |
|     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
 | |
|     break;
 | |
|   case OP_VSPLTISW0:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+0;
 | |
|     break;
 | |
|   case OP_VSPLTISW1:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+4;
 | |
|     break;
 | |
|   case OP_VSPLTISW2:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+8;
 | |
|     break;
 | |
|   case OP_VSPLTISW3:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+12;
 | |
|     break;
 | |
|   case OP_VSLDOI4:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
 | |
|   case OP_VSLDOI8:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
 | |
|   case OP_VSLDOI12:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
 | |
|   }
 | |
|   std::vector<SDOperand> Ops;
 | |
|   for (unsigned i = 0; i != 16; ++i)
 | |
|     Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
 | |
|   
 | |
|   return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
 | |
|                      DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
 | |
| }
 | |
| 
 | |
| /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
 | |
| /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
 | |
| /// return the code it can be lowered into.  Worst case, it can always be
 | |
| /// lowered into a vperm.
 | |
| static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
 | |
|   SDOperand V1 = Op.getOperand(0);
 | |
|   SDOperand V2 = Op.getOperand(1);
 | |
|   SDOperand PermMask = Op.getOperand(2);
 | |
|   
 | |
|   // Cases that are handled by instructions that take permute immediates
 | |
|   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
 | |
|   // selected by the instruction selector.
 | |
|   if (V2.getOpcode() == ISD::UNDEF) {
 | |
|     if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
 | |
|         PPC::isSplatShuffleMask(PermMask.Val, 2) ||
 | |
|         PPC::isSplatShuffleMask(PermMask.Val, 4) ||
 | |
|         PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
 | |
|         PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
 | |
|         PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
 | |
|         PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
 | |
|         PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
 | |
|         PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
 | |
|         PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
 | |
|         PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
 | |
|         PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
 | |
|       return Op;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Altivec has a variety of "shuffle immediates" that take two vector inputs
 | |
|   // and produce a fixed permutation.  If any of these match, do not lower to
 | |
|   // VPERM.
 | |
|   if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
 | |
|       PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
 | |
|       PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
 | |
|       PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
 | |
|       PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
 | |
|       PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
 | |
|       PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
 | |
|       PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
 | |
|       PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
 | |
|     return Op;
 | |
|   
 | |
|   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
 | |
|   // perfect shuffle table to emit an optimal matching sequence.
 | |
|   unsigned PFIndexes[4];
 | |
|   bool isFourElementShuffle = true;
 | |
|   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
 | |
|     unsigned EltNo = 8;   // Start out undef.
 | |
|     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
 | |
|       if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
 | |
|         continue;   // Undef, ignore it.
 | |
|       
 | |
|       unsigned ByteSource = 
 | |
|         cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
 | |
|       if ((ByteSource & 3) != j) {
 | |
|         isFourElementShuffle = false;
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       if (EltNo == 8) {
 | |
|         EltNo = ByteSource/4;
 | |
|       } else if (EltNo != ByteSource/4) {
 | |
|         isFourElementShuffle = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     PFIndexes[i] = EltNo;
 | |
|   }
 | |
|     
 | |
|   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the 
 | |
|   // perfect shuffle vector to determine if it is cost effective to do this as
 | |
|   // discrete instructions, or whether we should use a vperm.
 | |
|   if (isFourElementShuffle) {
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex = 
 | |
|       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | |
|     
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost  = (PFEntry >> 30);
 | |
|     
 | |
|     // Determining when to avoid vperm is tricky.  Many things affect the cost
 | |
|     // of vperm, particularly how many times the perm mask needs to be computed.
 | |
|     // For example, if the perm mask can be hoisted out of a loop or is already
 | |
|     // used (perhaps because there are multiple permutes with the same shuffle
 | |
|     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
 | |
|     // the loop requires an extra register.
 | |
|     //
 | |
|     // As a compromise, we only emit discrete instructions if the shuffle can be
 | |
|     // generated in 3 or fewer operations.  When we have loop information 
 | |
|     // available, if this block is within a loop, we should avoid using vperm
 | |
|     // for 3-operation perms and use a constant pool load instead.
 | |
|     if (Cost < 3) 
 | |
|       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
 | |
|   }
 | |
|   
 | |
|   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
 | |
|   // vector that will get spilled to the constant pool.
 | |
|   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
 | |
|   
 | |
|   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
 | |
|   // that it is in input element units, not in bytes.  Convert now.
 | |
|   MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
 | |
|   unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
 | |
|   
 | |
|   std::vector<SDOperand> ResultMask;
 | |
|   for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
 | |
|     unsigned SrcElt;
 | |
|     if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
 | |
|       SrcElt = 0;
 | |
|     else 
 | |
|       SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
 | |
|     
 | |
|     for (unsigned j = 0; j != BytesPerElement; ++j)
 | |
|       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
 | |
|                                            MVT::i8));
 | |
|   }
 | |
|   
 | |
|   SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
 | |
|   return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
 | |
| }
 | |
| 
 | |
| /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
 | |
| /// lower, do it, otherwise return null.
 | |
| static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
 | |
|   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
 | |
|   
 | |
|   // If this is a lowered altivec predicate compare, CompareOpc is set to the
 | |
|   // opcode number of the comparison.
 | |
|   int CompareOpc = -1;
 | |
|   bool isDot = false;
 | |
|   switch (IntNo) {
 | |
|   default: return SDOperand();    // Don't custom lower most intrinsics.
 | |
|   // Comparison predicates.
 | |
|   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
 | |
|     
 | |
|     // Normal Comparisons.
 | |
|   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
 | |
|   }
 | |
|   
 | |
|   assert(CompareOpc>0 && "We only lower altivec predicate compares so far!");
 | |
|   
 | |
|   // If this is a non-dot comparison, make the VCMP node.
 | |
|   if (!isDot) {
 | |
|     SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
 | |
|                                 Op.getOperand(1), Op.getOperand(2),
 | |
|                                 DAG.getConstant(CompareOpc, MVT::i32));
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
 | |
|   }
 | |
|   
 | |
|   // Create the PPCISD altivec 'dot' comparison node.
 | |
|   std::vector<SDOperand> Ops;
 | |
|   std::vector<MVT::ValueType> VTs;
 | |
|   Ops.push_back(Op.getOperand(2));  // LHS
 | |
|   Ops.push_back(Op.getOperand(3));  // RHS
 | |
|   Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
 | |
|   VTs.push_back(Op.getOperand(2).getValueType());
 | |
|   VTs.push_back(MVT::Flag);
 | |
|   SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
 | |
|   
 | |
|   // Now that we have the comparison, emit a copy from the CR to a GPR.
 | |
|   // This is flagged to the above dot comparison.
 | |
|   SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
 | |
|                                 DAG.getRegister(PPC::CR6, MVT::i32),
 | |
|                                 CompNode.getValue(1)); 
 | |
|   
 | |
|   // Unpack the result based on how the target uses it.
 | |
|   unsigned BitNo;   // Bit # of CR6.
 | |
|   bool InvertBit;   // Invert result?
 | |
|   switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
 | |
|   default:  // Can't happen, don't crash on invalid number though.
 | |
|   case 0:   // Return the value of the EQ bit of CR6.
 | |
|     BitNo = 0; InvertBit = false;
 | |
|     break;
 | |
|   case 1:   // Return the inverted value of the EQ bit of CR6.
 | |
|     BitNo = 0; InvertBit = true;
 | |
|     break;
 | |
|   case 2:   // Return the value of the LT bit of CR6.
 | |
|     BitNo = 2; InvertBit = false;
 | |
|     break;
 | |
|   case 3:   // Return the inverted value of the LT bit of CR6.
 | |
|     BitNo = 2; InvertBit = true;
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Shift the bit into the low position.
 | |
|   Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
 | |
|                       DAG.getConstant(8-(3-BitNo), MVT::i32));
 | |
|   // Isolate the bit.
 | |
|   Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
 | |
|                       DAG.getConstant(1, MVT::i32));
 | |
|   
 | |
|   // If we are supposed to, toggle the bit.
 | |
|   if (InvertBit)
 | |
|     Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
 | |
|                         DAG.getConstant(1, MVT::i32));
 | |
|   return Flags;
 | |
| }
 | |
| 
 | |
| static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
 | |
|   // Create a stack slot that is 16-byte aligned.
 | |
|   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
 | |
|   int FrameIdx = FrameInfo->CreateStackObject(16, 16);
 | |
|   SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
 | |
|   
 | |
|   // Store the input value into Value#0 of the stack slot.
 | |
|   SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
 | |
|                                 Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
 | |
|   // Load it out.
 | |
|   return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
 | |
| }
 | |
| 
 | |
| static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
 | |
|   if (Op.getValueType() == MVT::v4i32) {
 | |
|     SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
|     
 | |
|     SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
 | |
|     SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
 | |
|     
 | |
|     SDOperand RHSSwap =   // = vrlw RHS, 16
 | |
|       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
 | |
|     
 | |
|     // Shrinkify inputs to v8i16.
 | |
|     LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
 | |
|     RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
 | |
|     RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
 | |
|     
 | |
|     // Low parts multiplied together, generating 32-bit results (we ignore the
 | |
|     // top parts).
 | |
|     SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
 | |
|                                         LHS, RHS, DAG, MVT::v4i32);
 | |
|     
 | |
|     SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
 | |
|                                         LHS, RHSSwap, Zero, DAG, MVT::v4i32);
 | |
|     // Shift the high parts up 16 bits.
 | |
|     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
 | |
|     return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
 | |
|   } else if (Op.getValueType() == MVT::v8i16) {
 | |
|     SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
|     
 | |
|     SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
 | |
| 
 | |
|     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
 | |
|                             LHS, RHS, Zero, DAG);
 | |
|   } else if (Op.getValueType() == MVT::v16i8) {
 | |
|     SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
|     
 | |
|     // Multiply the even 8-bit parts, producing 16-bit sums.
 | |
|     SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
 | |
|                                            LHS, RHS, DAG, MVT::v8i16);
 | |
|     EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
 | |
|     
 | |
|     // Multiply the odd 8-bit parts, producing 16-bit sums.
 | |
|     SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
 | |
|                                           LHS, RHS, DAG, MVT::v8i16);
 | |
|     OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
 | |
|     
 | |
|     // Merge the results together.
 | |
|     std::vector<SDOperand> Ops;
 | |
|     for (unsigned i = 0; i != 8; ++i) {
 | |
|       Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
 | |
|       Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
 | |
|     }
 | |
|     
 | |
|     return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
 | |
|                        DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
 | |
|   } else {
 | |
|     assert(0 && "Unknown mul to lower!");
 | |
|     abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerOperation - Provide custom lowering hooks for some operations.
 | |
| ///
 | |
| SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: assert(0 && "Wasn't expecting to be able to lower this!"); 
 | |
|   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | |
|   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | |
|   case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
 | |
|   case ISD::RET:                return LowerRET(Op, DAG);
 | |
|     
 | |
|   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
 | |
|   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
 | |
|   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
 | |
| 
 | |
|   // Lower 64-bit shifts.
 | |
|   case ISD::SHL:                return LowerSHL(Op, DAG);
 | |
|   case ISD::SRL:                return LowerSRL(Op, DAG);
 | |
|   case ISD::SRA:                return LowerSRA(Op, DAG);
 | |
| 
 | |
|   // Vector-related lowering.
 | |
|   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | |
|   case ISD::MUL:                return LowerMUL(Op, DAG);
 | |
|   }
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Other Lowering Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| std::vector<SDOperand>
 | |
| PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
 | |
|   //
 | |
|   // add beautiful description of PPC stack frame format, or at least some docs
 | |
|   //
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   MachineBasicBlock& BB = MF.front();
 | |
|   SSARegMap *RegMap = MF.getSSARegMap();
 | |
|   std::vector<SDOperand> ArgValues;
 | |
|   
 | |
|   unsigned ArgOffset = 24;
 | |
|   unsigned GPR_remaining = 8;
 | |
|   unsigned FPR_remaining = 13;
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0;
 | |
|   static const unsigned GPR[] = {
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const unsigned FPR[] = {
 | |
|     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | |
|   };
 | |
|   
 | |
|   // Add DAG nodes to load the arguments...  On entry to a function on PPC,
 | |
|   // the arguments start at offset 24, although they are likely to be passed
 | |
|   // in registers.
 | |
|   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
 | |
|     SDOperand newroot, argt;
 | |
|     unsigned ObjSize;
 | |
|     bool needsLoad = false;
 | |
|     bool ArgLive = !I->use_empty();
 | |
|     MVT::ValueType ObjectVT = getValueType(I->getType());
 | |
|     
 | |
|     switch (ObjectVT) {
 | |
|     default: assert(0 && "Unhandled argument type!");
 | |
|     case MVT::i1:
 | |
|     case MVT::i8:
 | |
|     case MVT::i16:
 | |
|     case MVT::i32:
 | |
|       ObjSize = 4;
 | |
|       if (!ArgLive) break;
 | |
|       if (GPR_remaining > 0) {
 | |
|         unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|         MF.addLiveIn(GPR[GPR_idx], VReg);
 | |
|         argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
 | |
|         if (ObjectVT != MVT::i32) {
 | |
|           unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext 
 | |
|                                                        : ISD::AssertZext;
 | |
|           argt = DAG.getNode(AssertOp, MVT::i32, argt, 
 | |
|                              DAG.getValueType(ObjectVT));
 | |
|           argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt);
 | |
|         }
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       break;
 | |
|     case MVT::i64:
 | |
|       ObjSize = 8;
 | |
|       if (!ArgLive) break;
 | |
|       if (GPR_remaining > 0) {
 | |
|         SDOperand argHi, argLo;
 | |
|         unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|         MF.addLiveIn(GPR[GPR_idx], VReg);
 | |
|         argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
 | |
|         // If we have two or more remaining argument registers, then both halves
 | |
|         // of the i64 can be sourced from there.  Otherwise, the lower half will
 | |
|         // have to come off the stack.  This can happen when an i64 is preceded
 | |
|         // by 28 bytes of arguments.
 | |
|         if (GPR_remaining > 1) {
 | |
|           unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|           MF.addLiveIn(GPR[GPR_idx+1], VReg);
 | |
|           argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32);
 | |
|         } else {
 | |
|           int FI = MFI->CreateFixedObject(4, ArgOffset+4);
 | |
|           SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
 | |
|           argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
 | |
|                               DAG.getSrcValue(NULL));
 | |
|         }
 | |
|         // Build the outgoing arg thingy
 | |
|         argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
 | |
|         newroot = argLo;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
 | |
|       if (!ArgLive) {
 | |
|         if (FPR_remaining > 0) {
 | |
|           --FPR_remaining;
 | |
|           ++FPR_idx;
 | |
|         }        
 | |
|         break;
 | |
|       }
 | |
|       if (FPR_remaining > 0) {
 | |
|         unsigned VReg;
 | |
|         if (ObjectVT == MVT::f32)
 | |
|           VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
 | |
|         else
 | |
|           VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
 | |
|         MF.addLiveIn(FPR[FPR_idx], VReg);
 | |
|         argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT);
 | |
|         --FPR_remaining;
 | |
|         ++FPR_idx;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // We need to load the argument to a virtual register if we determined above
 | |
|     // that we ran out of physical registers of the appropriate type
 | |
|     if (needsLoad) {
 | |
|       unsigned SubregOffset = 0;
 | |
|       if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
 | |
|       if (ObjectVT == MVT::i16) SubregOffset = 2;
 | |
|       int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
 | |
|       SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
 | |
|       FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
 | |
|                         DAG.getConstant(SubregOffset, MVT::i32));
 | |
|       argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
 | |
|                                    DAG.getSrcValue(NULL));
 | |
|     }
 | |
|     
 | |
|     // Every 4 bytes of argument space consumes one of the GPRs available for
 | |
|     // argument passing.
 | |
|     if (GPR_remaining > 0) {
 | |
|       unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
 | |
|       GPR_remaining -= delta;
 | |
|       GPR_idx += delta;
 | |
|     }
 | |
|     ArgOffset += ObjSize;
 | |
|     if (newroot.Val)
 | |
|       DAG.setRoot(newroot.getValue(1));
 | |
|     
 | |
|     ArgValues.push_back(argt);
 | |
|   }
 | |
|   
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (F.isVarArg()) {
 | |
|     VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
 | |
|     SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
 | |
|     // If this function is vararg, store any remaining integer argument regs
 | |
|     // to their spots on the stack so that they may be loaded by deferencing the
 | |
|     // result of va_next.
 | |
|     std::vector<SDOperand> MemOps;
 | |
|     for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
 | |
|       unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|       MF.addLiveIn(GPR[GPR_idx], VReg);
 | |
|       SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
 | |
|       SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
 | |
|                                     Val, FIN, DAG.getSrcValue(NULL));
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
 | |
|       FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
 | |
|     }
 | |
|     if (!MemOps.empty()) {
 | |
|       MemOps.push_back(DAG.getRoot());
 | |
|       DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return ArgValues;
 | |
| }
 | |
| 
 | |
| std::pair<SDOperand, SDOperand>
 | |
| PPCTargetLowering::LowerCallTo(SDOperand Chain,
 | |
|                                const Type *RetTy, bool isVarArg,
 | |
|                                unsigned CallingConv, bool isTailCall,
 | |
|                                SDOperand Callee, ArgListTy &Args,
 | |
|                                SelectionDAG &DAG) {
 | |
|   // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
 | |
|   // SelectExpr to use to put the arguments in the appropriate registers.
 | |
|   std::vector<SDOperand> args_to_use;
 | |
|   
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.
 | |
|   unsigned NumBytes = 24;
 | |
|   
 | |
|   if (Args.empty()) {
 | |
|     Chain = DAG.getCALLSEQ_START(Chain,
 | |
|                                  DAG.getConstant(NumBytes, getPointerTy()));
 | |
|   } else {
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|       switch (getValueType(Args[i].second)) {
 | |
|       default: assert(0 && "Unknown value type!");
 | |
|       case MVT::i1:
 | |
|       case MVT::i8:
 | |
|       case MVT::i16:
 | |
|       case MVT::i32:
 | |
|       case MVT::f32:
 | |
|         NumBytes += 4;
 | |
|         break;
 | |
|       case MVT::i64:
 | |
|       case MVT::f64:
 | |
|         NumBytes += 8;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|         
 | |
|     // Just to be safe, we'll always reserve the full 24 bytes of linkage area
 | |
|     // plus 32 bytes of argument space in case any called code gets funky on us.
 | |
|     // (Required by ABI to support var arg)
 | |
|     if (NumBytes < 56) NumBytes = 56;
 | |
|     
 | |
|     // Adjust the stack pointer for the new arguments...
 | |
|     // These operations are automatically eliminated by the prolog/epilog pass
 | |
|     Chain = DAG.getCALLSEQ_START(Chain,
 | |
|                                  DAG.getConstant(NumBytes, getPointerTy()));
 | |
|     
 | |
|     // Set up a copy of the stack pointer for use loading and storing any
 | |
|     // arguments that may not fit in the registers available for argument
 | |
|     // passing.
 | |
|     SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | |
|     
 | |
|     // Figure out which arguments are going to go in registers, and which in
 | |
|     // memory.  Also, if this is a vararg function, floating point operations
 | |
|     // must be stored to our stack, and loaded into integer regs as well, if
 | |
|     // any integer regs are available for argument passing.
 | |
|     unsigned ArgOffset = 24;
 | |
|     unsigned GPR_remaining = 8;
 | |
|     unsigned FPR_remaining = 13;
 | |
|     
 | |
|     std::vector<SDOperand> MemOps;
 | |
|     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|       // PtrOff will be used to store the current argument to the stack if a
 | |
|       // register cannot be found for it.
 | |
|       SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
 | |
|       PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
 | |
|       MVT::ValueType ArgVT = getValueType(Args[i].second);
 | |
|       
 | |
|       switch (ArgVT) {
 | |
|       default: assert(0 && "Unexpected ValueType for argument!");
 | |
|       case MVT::i1:
 | |
|       case MVT::i8:
 | |
|       case MVT::i16:
 | |
|         // Promote the integer to 32 bits.  If the input type is signed use a
 | |
|         // sign extend, otherwise use a zero extend.
 | |
|         if (Args[i].second->isSigned())
 | |
|           Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
 | |
|         else
 | |
|           Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
 | |
|         // FALL THROUGH
 | |
|       case MVT::i32:
 | |
|         if (GPR_remaining > 0) {
 | |
|           args_to_use.push_back(Args[i].first);
 | |
|           --GPR_remaining;
 | |
|         } else {
 | |
|           MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                                        Args[i].first, PtrOff,
 | |
|                                        DAG.getSrcValue(NULL)));
 | |
|         }
 | |
|         ArgOffset += 4;
 | |
|         break;
 | |
|       case MVT::i64:
 | |
|         // If we have one free GPR left, we can place the upper half of the i64
 | |
|         // in it, and store the other half to the stack.  If we have two or more
 | |
|         // free GPRs, then we can pass both halves of the i64 in registers.
 | |
|         if (GPR_remaining > 0) {
 | |
|           SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
 | |
|                                      Args[i].first, DAG.getConstant(1, MVT::i32));
 | |
|           SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
 | |
|                                      Args[i].first, DAG.getConstant(0, MVT::i32));
 | |
|           args_to_use.push_back(Hi);
 | |
|           --GPR_remaining;
 | |
|           if (GPR_remaining > 0) {
 | |
|             args_to_use.push_back(Lo);
 | |
|             --GPR_remaining;
 | |
|           } else {
 | |
|             SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
 | |
|             PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
 | |
|             MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                                          Lo, PtrOff, DAG.getSrcValue(NULL)));
 | |
|           }
 | |
|         } else {
 | |
|           MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                                        Args[i].first, PtrOff,
 | |
|                                        DAG.getSrcValue(NULL)));
 | |
|         }
 | |
|         ArgOffset += 8;
 | |
|         break;
 | |
|       case MVT::f32:
 | |
|       case MVT::f64:
 | |
|         if (FPR_remaining > 0) {
 | |
|           args_to_use.push_back(Args[i].first);
 | |
|           --FPR_remaining;
 | |
|           if (isVarArg) {
 | |
|             SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                                           Args[i].first, PtrOff,
 | |
|                                           DAG.getSrcValue(NULL));
 | |
|             MemOps.push_back(Store);
 | |
|             // Float varargs are always shadowed in available integer registers
 | |
|             if (GPR_remaining > 0) {
 | |
|               SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
 | |
|                                            DAG.getSrcValue(NULL));
 | |
|               MemOps.push_back(Load.getValue(1));
 | |
|               args_to_use.push_back(Load);
 | |
|               --GPR_remaining;
 | |
|             }
 | |
|             if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
 | |
|               SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
 | |
|               PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
 | |
|               SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
 | |
|                                            DAG.getSrcValue(NULL));
 | |
|               MemOps.push_back(Load.getValue(1));
 | |
|               args_to_use.push_back(Load);
 | |
|               --GPR_remaining;
 | |
|             }
 | |
|           } else {
 | |
|             // If we have any FPRs remaining, we may also have GPRs remaining.
 | |
|             // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
 | |
|             // GPRs.
 | |
|             if (GPR_remaining > 0) {
 | |
|               args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
 | |
|               --GPR_remaining;
 | |
|             }
 | |
|             if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
 | |
|               args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
 | |
|               --GPR_remaining;
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
 | |
|                                        Args[i].first, PtrOff,
 | |
|                                        DAG.getSrcValue(NULL)));
 | |
|         }
 | |
|         ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (!MemOps.empty())
 | |
|       Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
 | |
|   }
 | |
|   
 | |
|   std::vector<MVT::ValueType> RetVals;
 | |
|   MVT::ValueType RetTyVT = getValueType(RetTy);
 | |
|   MVT::ValueType ActualRetTyVT = RetTyVT;
 | |
|   if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
 | |
|     ActualRetTyVT = MVT::i32;   // Promote result to i32.
 | |
|     
 | |
|   if (RetTyVT == MVT::i64) {
 | |
|     RetVals.push_back(MVT::i32);
 | |
|     RetVals.push_back(MVT::i32);
 | |
|   } else if (RetTyVT != MVT::isVoid) {
 | |
|     RetVals.push_back(ActualRetTyVT);
 | |
|   }
 | |
|   RetVals.push_back(MVT::Other);
 | |
|   
 | |
|   // If the callee is a GlobalAddress node (quite common, every direct call is)
 | |
|   // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
 | |
|   
 | |
|   std::vector<SDOperand> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
|   Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
 | |
|   SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
 | |
|   Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
 | |
|   Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
 | |
|                       DAG.getConstant(NumBytes, getPointerTy()));
 | |
|   SDOperand RetVal = TheCall;
 | |
|   
 | |
|   // If the result is a small value, add a note so that we keep track of the
 | |
|   // information about whether it is sign or zero extended.
 | |
|   if (RetTyVT != ActualRetTyVT) {
 | |
|     RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
 | |
|                          MVT::i32, RetVal, DAG.getValueType(RetTyVT));
 | |
|     RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
 | |
|   } else if (RetTyVT == MVT::i64) {
 | |
|     RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
 | |
|   }
 | |
|   
 | |
|   return std::make_pair(RetVal, Chain);
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
 | |
|                                            MachineBasicBlock *BB) {
 | |
|   assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
 | |
|           MI->getOpcode() == PPC::SELECT_CC_F4 ||
 | |
|           MI->getOpcode() == PPC::SELECT_CC_F8 ||
 | |
|           MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
 | |
|          "Unexpected instr type to insert");
 | |
|   
 | |
|   // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
 | |
|   // control-flow pattern.  The incoming instruction knows the destination vreg
 | |
|   // to set, the condition code register to branch on, the true/false values to
 | |
|   // select between, and a branch opcode to use.
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   ilist<MachineBasicBlock>::iterator It = BB;
 | |
|   ++It;
 | |
|   
 | |
|   //  thisMBB:
 | |
|   //  ...
 | |
|   //   TrueVal = ...
 | |
|   //   cmpTY ccX, r1, r2
 | |
|   //   bCC copy1MBB
 | |
|   //   fallthrough --> copy0MBB
 | |
|   MachineBasicBlock *thisMBB = BB;
 | |
|   MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
 | |
|   BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
 | |
|     .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   F->getBasicBlockList().insert(It, copy0MBB);
 | |
|   F->getBasicBlockList().insert(It, sinkMBB);
 | |
|   // Update machine-CFG edges by first adding all successors of the current
 | |
|   // block to the new block which will contain the Phi node for the select.
 | |
|   for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), 
 | |
|       e = BB->succ_end(); i != e; ++i)
 | |
|     sinkMBB->addSuccessor(*i);
 | |
|   // Next, remove all successors of the current block, and add the true
 | |
|   // and fallthrough blocks as its successors.
 | |
|   while(!BB->succ_empty())
 | |
|     BB->removeSuccessor(BB->succ_begin());
 | |
|   BB->addSuccessor(copy0MBB);
 | |
|   BB->addSuccessor(sinkMBB);
 | |
|   
 | |
|   //  copy0MBB:
 | |
|   //   %FalseValue = ...
 | |
|   //   # fallthrough to sinkMBB
 | |
|   BB = copy0MBB;
 | |
|   
 | |
|   // Update machine-CFG edges
 | |
|   BB->addSuccessor(sinkMBB);
 | |
|   
 | |
|   //  sinkMBB:
 | |
|   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|   //  ...
 | |
|   BB = sinkMBB;
 | |
|   BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
 | |
|     .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
 | |
|     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | |
| 
 | |
|   delete MI;   // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Target Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N, 
 | |
|                                                DAGCombinerInfo &DCI) const {
 | |
|   TargetMachine &TM = getTargetMachine();
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::SINT_TO_FP:
 | |
|     if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
 | |
|       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
 | |
|         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
 | |
|         // We allow the src/dst to be either f32/f64, but the intermediate
 | |
|         // type must be i64.
 | |
|         if (N->getOperand(0).getValueType() == MVT::i64) {
 | |
|           SDOperand Val = N->getOperand(0).getOperand(0);
 | |
|           if (Val.getValueType() == MVT::f32) {
 | |
|             Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
 | |
|             DCI.AddToWorklist(Val.Val);
 | |
|           }
 | |
|             
 | |
|           Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
 | |
|           DCI.AddToWorklist(Val.Val);
 | |
|           Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
 | |
|           DCI.AddToWorklist(Val.Val);
 | |
|           if (N->getValueType(0) == MVT::f32) {
 | |
|             Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
 | |
|             DCI.AddToWorklist(Val.Val);
 | |
|           }
 | |
|           return Val;
 | |
|         } else if (N->getOperand(0).getValueType() == MVT::i32) {
 | |
|           // If the intermediate type is i32, we can avoid the load/store here
 | |
|           // too.
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::STORE:
 | |
|     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
 | |
|     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
 | |
|         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
 | |
|         N->getOperand(1).getValueType() == MVT::i32) {
 | |
|       SDOperand Val = N->getOperand(1).getOperand(0);
 | |
|       if (Val.getValueType() == MVT::f32) {
 | |
|         Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
 | |
|         DCI.AddToWorklist(Val.Val);
 | |
|       }
 | |
|       Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
 | |
|       DCI.AddToWorklist(Val.Val);
 | |
| 
 | |
|       Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
 | |
|                         N->getOperand(2), N->getOperand(3));
 | |
|       DCI.AddToWorklist(Val.Val);
 | |
|       return Val;
 | |
|     }
 | |
|     break;
 | |
|   case PPCISD::VCMP: {
 | |
|     // If a VCMPo node already exists with exactly the same operands as this
 | |
|     // node, use its result instead of this node (VCMPo computes both a CR6 and
 | |
|     // a normal output).
 | |
|     //
 | |
|     if (!N->getOperand(0).hasOneUse() &&
 | |
|         !N->getOperand(1).hasOneUse() &&
 | |
|         !N->getOperand(2).hasOneUse()) {
 | |
|       
 | |
|       // Scan all of the users of the LHS, looking for VCMPo's that match.
 | |
|       SDNode *VCMPoNode = 0;
 | |
|       
 | |
|       SDNode *LHSN = N->getOperand(0).Val;
 | |
|       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
 | |
|            UI != E; ++UI)
 | |
|         if ((*UI)->getOpcode() == PPCISD::VCMPo &&
 | |
|             (*UI)->getOperand(1) == N->getOperand(1) &&
 | |
|             (*UI)->getOperand(2) == N->getOperand(2) &&
 | |
|             (*UI)->getOperand(0) == N->getOperand(0)) {
 | |
|           VCMPoNode = *UI;
 | |
|           break;
 | |
|         }
 | |
|       
 | |
|       // If there are non-zero uses of the flag value, use the VCMPo node!
 | |
|       if (VCMPoNode && !VCMPoNode->hasNUsesOfValue(0, 1))
 | |
|         return SDOperand(VCMPoNode, 0);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
 | |
|                                                        uint64_t Mask,
 | |
|                                                        uint64_t &KnownZero, 
 | |
|                                                        uint64_t &KnownOne,
 | |
|                                                        unsigned Depth) const {
 | |
|   KnownZero = 0;
 | |
|   KnownOne = 0;
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
 | |
|     default: break;
 | |
|     case Intrinsic::ppc_altivec_vcmpbfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequb_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequw_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgefp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtub_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | |
|       KnownZero = ~1U;  // All bits but the low one are known to be zero.
 | |
|       break;
 | |
|     }        
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getConstraintType - Given a constraint letter, return the type of
 | |
| /// constraint it is for this target.
 | |
| PPCTargetLowering::ConstraintType 
 | |
| PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
 | |
|   switch (ConstraintLetter) {
 | |
|   default: break;
 | |
|   case 'b':
 | |
|   case 'r':
 | |
|   case 'f':
 | |
|   case 'v':
 | |
|   case 'y':
 | |
|     return C_RegisterClass;
 | |
|   }  
 | |
|   return TargetLowering::getConstraintType(ConstraintLetter);
 | |
| }
 | |
| 
 | |
| 
 | |
| std::vector<unsigned> PPCTargetLowering::
 | |
| getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                   MVT::ValueType VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {      // GCC RS6000 Constraint Letters
 | |
|     default: break;  // Unknown constriant letter
 | |
|     case 'b': 
 | |
|       return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
 | |
|                                    PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
 | |
|                                    PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, 
 | |
|                                    PPC::R12, PPC::R13, PPC::R14, PPC::R15, 
 | |
|                                    PPC::R16, PPC::R17, PPC::R18, PPC::R19, 
 | |
|                                    PPC::R20, PPC::R21, PPC::R22, PPC::R23, 
 | |
|                                    PPC::R24, PPC::R25, PPC::R26, PPC::R27, 
 | |
|                                    PPC::R28, PPC::R29, PPC::R30, PPC::R31, 
 | |
|                                    0);
 | |
|     case 'r': 
 | |
|       return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
 | |
|                                    PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
 | |
|                                    PPC::R8 , PPC::R9 , PPC::R10, PPC::R11, 
 | |
|                                    PPC::R12, PPC::R13, PPC::R14, PPC::R15, 
 | |
|                                    PPC::R16, PPC::R17, PPC::R18, PPC::R19, 
 | |
|                                    PPC::R20, PPC::R21, PPC::R22, PPC::R23, 
 | |
|                                    PPC::R24, PPC::R25, PPC::R26, PPC::R27, 
 | |
|                                    PPC::R28, PPC::R29, PPC::R30, PPC::R31, 
 | |
|                                    0);
 | |
|     case 'f': 
 | |
|       return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
 | |
|                                    PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
 | |
|                                    PPC::F8 , PPC::F9 , PPC::F10, PPC::F11, 
 | |
|                                    PPC::F12, PPC::F13, PPC::F14, PPC::F15, 
 | |
|                                    PPC::F16, PPC::F17, PPC::F18, PPC::F19, 
 | |
|                                    PPC::F20, PPC::F21, PPC::F22, PPC::F23, 
 | |
|                                    PPC::F24, PPC::F25, PPC::F26, PPC::F27, 
 | |
|                                    PPC::F28, PPC::F29, PPC::F30, PPC::F31, 
 | |
|                                    0);
 | |
|     case 'v': 
 | |
|       return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
 | |
|                                    PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
 | |
|                                    PPC::V8 , PPC::V9 , PPC::V10, PPC::V11, 
 | |
|                                    PPC::V12, PPC::V13, PPC::V14, PPC::V15, 
 | |
|                                    PPC::V16, PPC::V17, PPC::V18, PPC::V19, 
 | |
|                                    PPC::V20, PPC::V21, PPC::V22, PPC::V23, 
 | |
|                                    PPC::V24, PPC::V25, PPC::V26, PPC::V27, 
 | |
|                                    PPC::V28, PPC::V29, PPC::V30, PPC::V31, 
 | |
|                                    0);
 | |
|     case 'y': 
 | |
|       return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
 | |
|                                    PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
 | |
|                                    0);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return std::vector<unsigned>();
 | |
| }
 | |
| 
 | |
| // isOperandValidForConstraint
 | |
| bool PPCTargetLowering::
 | |
| isOperandValidForConstraint(SDOperand Op, char Letter) {
 | |
|   switch (Letter) {
 | |
|   default: break;
 | |
|   case 'I':
 | |
|   case 'J':
 | |
|   case 'K':
 | |
|   case 'L':
 | |
|   case 'M':
 | |
|   case 'N':
 | |
|   case 'O':
 | |
|   case 'P': {
 | |
|     if (!isa<ConstantSDNode>(Op)) return false;  // Must be an immediate.
 | |
|     unsigned Value = cast<ConstantSDNode>(Op)->getValue();
 | |
|     switch (Letter) {
 | |
|     default: assert(0 && "Unknown constraint letter!");
 | |
|     case 'I':  // "I" is a signed 16-bit constant.
 | |
|       return (short)Value == (int)Value;
 | |
|     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
 | |
|     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
 | |
|       return (short)Value == 0;
 | |
|     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
 | |
|       return (Value >> 16) == 0;
 | |
|     case 'M':  // "M" is a constant that is greater than 31.
 | |
|       return Value > 31;
 | |
|     case 'N':  // "N" is a positive constant that is an exact power of two.
 | |
|       return (int)Value > 0 && isPowerOf2_32(Value);
 | |
|     case 'O':  // "O" is the constant zero. 
 | |
|       return Value == 0;
 | |
|     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
 | |
|       return (short)-Value == (int)-Value;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   
 | |
|   // Handle standard constraint letters.
 | |
|   return TargetLowering::isOperandValidForConstraint(Op, Letter);
 | |
| }
 | |
| 
 | |
| /// isLegalAddressImmediate - Return true if the integer value can be used
 | |
| /// as the offset of the target addressing mode.
 | |
| bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
 | |
|   // PPC allows a sign-extended 16-bit immediate field.
 | |
|   return (V > -(1 << 16) && V < (1 << 16)-1);
 | |
| }
 |