mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133978 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1114 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1114 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the SplitAnalysis class as well as mutator functions for
 | 
						|
// live range splitting.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
#include "SplitKit.h"
 | 
						|
#include "LiveRangeEdit.h"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumFinished, "Number of splits finished");
 | 
						|
STATISTIC(NumSimple,   "Number of splits that were simple");
 | 
						|
STATISTIC(NumCopies,   "Number of copies inserted for splitting");
 | 
						|
STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
 | 
						|
STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                 Split Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
 | 
						|
                             const LiveIntervals &lis,
 | 
						|
                             const MachineLoopInfo &mli)
 | 
						|
  : MF(vrm.getMachineFunction()),
 | 
						|
    VRM(vrm),
 | 
						|
    LIS(lis),
 | 
						|
    Loops(mli),
 | 
						|
    TII(*MF.getTarget().getInstrInfo()),
 | 
						|
    CurLI(0),
 | 
						|
    LastSplitPoint(MF.getNumBlockIDs()) {}
 | 
						|
 | 
						|
void SplitAnalysis::clear() {
 | 
						|
  UseSlots.clear();
 | 
						|
  UseBlocks.clear();
 | 
						|
  ThroughBlocks.clear();
 | 
						|
  CurLI = 0;
 | 
						|
  DidRepairRange = false;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
 | 
						|
  const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
 | 
						|
  const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
 | 
						|
  std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
 | 
						|
 | 
						|
  // Compute split points on the first call. The pair is independent of the
 | 
						|
  // current live interval.
 | 
						|
  if (!LSP.first.isValid()) {
 | 
						|
    MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
 | 
						|
    if (FirstTerm == MBB->end())
 | 
						|
      LSP.first = LIS.getMBBEndIdx(MBB);
 | 
						|
    else
 | 
						|
      LSP.first = LIS.getInstructionIndex(FirstTerm);
 | 
						|
 | 
						|
    // If there is a landing pad successor, also find the call instruction.
 | 
						|
    if (!LPad)
 | 
						|
      return LSP.first;
 | 
						|
    // There may not be a call instruction (?) in which case we ignore LPad.
 | 
						|
    LSP.second = LSP.first;
 | 
						|
    for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
 | 
						|
         I != E;) {
 | 
						|
      --I;
 | 
						|
      if (I->getDesc().isCall()) {
 | 
						|
        LSP.second = LIS.getInstructionIndex(I);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If CurLI is live into a landing pad successor, move the last split point
 | 
						|
  // back to the call that may throw.
 | 
						|
  if (LPad && LSP.second.isValid() && LIS.isLiveInToMBB(*CurLI, LPad))
 | 
						|
    return LSP.second;
 | 
						|
  else
 | 
						|
    return LSP.first;
 | 
						|
}
 | 
						|
 | 
						|
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
 | 
						|
void SplitAnalysis::analyzeUses() {
 | 
						|
  assert(UseSlots.empty() && "Call clear first");
 | 
						|
 | 
						|
  // First get all the defs from the interval values. This provides the correct
 | 
						|
  // slots for early clobbers.
 | 
						|
  for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
 | 
						|
       E = CurLI->vni_end(); I != E; ++I)
 | 
						|
    if (!(*I)->isPHIDef() && !(*I)->isUnused())
 | 
						|
      UseSlots.push_back((*I)->def);
 | 
						|
 | 
						|
  // Get use slots form the use-def chain.
 | 
						|
  const MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  for (MachineRegisterInfo::use_nodbg_iterator
 | 
						|
       I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
 | 
						|
       ++I)
 | 
						|
    if (!I.getOperand().isUndef())
 | 
						|
      UseSlots.push_back(LIS.getInstructionIndex(&*I).getDefIndex());
 | 
						|
 | 
						|
  array_pod_sort(UseSlots.begin(), UseSlots.end());
 | 
						|
 | 
						|
  // Remove duplicates, keeping the smaller slot for each instruction.
 | 
						|
  // That is what we want for early clobbers.
 | 
						|
  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
 | 
						|
                             SlotIndex::isSameInstr),
 | 
						|
                 UseSlots.end());
 | 
						|
 | 
						|
  // Compute per-live block info.
 | 
						|
  if (!calcLiveBlockInfo()) {
 | 
						|
    // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
 | 
						|
    // I am looking at you, RegisterCoalescer!
 | 
						|
    DidRepairRange = true;
 | 
						|
    ++NumRepairs;
 | 
						|
    DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
 | 
						|
    const_cast<LiveIntervals&>(LIS)
 | 
						|
      .shrinkToUses(const_cast<LiveInterval*>(CurLI));
 | 
						|
    UseBlocks.clear();
 | 
						|
    ThroughBlocks.clear();
 | 
						|
    bool fixed = calcLiveBlockInfo();
 | 
						|
    (void)fixed;
 | 
						|
    assert(fixed && "Couldn't fix broken live interval");
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Analyze counted "
 | 
						|
               << UseSlots.size() << " instrs in "
 | 
						|
               << UseBlocks.size() << " blocks, through "
 | 
						|
               << NumThroughBlocks << " blocks.\n");
 | 
						|
}
 | 
						|
 | 
						|
/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
 | 
						|
/// where CurLI is live.
 | 
						|
bool SplitAnalysis::calcLiveBlockInfo() {
 | 
						|
  ThroughBlocks.resize(MF.getNumBlockIDs());
 | 
						|
  NumThroughBlocks = NumGapBlocks = 0;
 | 
						|
  if (CurLI->empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  LiveInterval::const_iterator LVI = CurLI->begin();
 | 
						|
  LiveInterval::const_iterator LVE = CurLI->end();
 | 
						|
 | 
						|
  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
 | 
						|
  UseI = UseSlots.begin();
 | 
						|
  UseE = UseSlots.end();
 | 
						|
 | 
						|
  // Loop over basic blocks where CurLI is live.
 | 
						|
  MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
 | 
						|
  for (;;) {
 | 
						|
    BlockInfo BI;
 | 
						|
    BI.MBB = MFI;
 | 
						|
    SlotIndex Start, Stop;
 | 
						|
    tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
 | 
						|
 | 
						|
    // If the block contains no uses, the range must be live through. At one
 | 
						|
    // point, RegisterCoalescer could create dangling ranges that ended
 | 
						|
    // mid-block.
 | 
						|
    if (UseI == UseE || *UseI >= Stop) {
 | 
						|
      ++NumThroughBlocks;
 | 
						|
      ThroughBlocks.set(BI.MBB->getNumber());
 | 
						|
      // The range shouldn't end mid-block if there are no uses. This shouldn't
 | 
						|
      // happen.
 | 
						|
      if (LVI->end < Stop)
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      // This block has uses. Find the first and last uses in the block.
 | 
						|
      BI.FirstUse = *UseI;
 | 
						|
      assert(BI.FirstUse >= Start);
 | 
						|
      do ++UseI;
 | 
						|
      while (UseI != UseE && *UseI < Stop);
 | 
						|
      BI.LastUse = UseI[-1];
 | 
						|
      assert(BI.LastUse < Stop);
 | 
						|
 | 
						|
      // LVI is the first live segment overlapping MBB.
 | 
						|
      BI.LiveIn = LVI->start <= Start;
 | 
						|
 | 
						|
      // Look for gaps in the live range.
 | 
						|
      BI.LiveOut = true;
 | 
						|
      while (LVI->end < Stop) {
 | 
						|
        SlotIndex LastStop = LVI->end;
 | 
						|
        if (++LVI == LVE || LVI->start >= Stop) {
 | 
						|
          BI.LiveOut = false;
 | 
						|
          BI.LastUse = LastStop;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (LastStop < LVI->start) {
 | 
						|
          // There is a gap in the live range. Create duplicate entries for the
 | 
						|
          // live-in snippet and the live-out snippet.
 | 
						|
          ++NumGapBlocks;
 | 
						|
 | 
						|
          // Push the Live-in part.
 | 
						|
          BI.LiveThrough = false;
 | 
						|
          BI.LiveOut = false;
 | 
						|
          UseBlocks.push_back(BI);
 | 
						|
          UseBlocks.back().LastUse = LastStop;
 | 
						|
 | 
						|
          // Set up BI for the live-out part.
 | 
						|
          BI.LiveIn = false;
 | 
						|
          BI.LiveOut = true;
 | 
						|
          BI.FirstUse = LVI->start;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Don't set LiveThrough when the block has a gap.
 | 
						|
      BI.LiveThrough = BI.LiveIn && BI.LiveOut;
 | 
						|
      UseBlocks.push_back(BI);
 | 
						|
 | 
						|
      // LVI is now at LVE or LVI->end >= Stop.
 | 
						|
      if (LVI == LVE)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Live segment ends exactly at Stop. Move to the next segment.
 | 
						|
    if (LVI->end == Stop && ++LVI == LVE)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Pick the next basic block.
 | 
						|
    if (LVI->start < Stop)
 | 
						|
      ++MFI;
 | 
						|
    else
 | 
						|
      MFI = LIS.getMBBFromIndex(LVI->start);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
 | 
						|
  if (cli->empty())
 | 
						|
    return 0;
 | 
						|
  LiveInterval *li = const_cast<LiveInterval*>(cli);
 | 
						|
  LiveInterval::iterator LVI = li->begin();
 | 
						|
  LiveInterval::iterator LVE = li->end();
 | 
						|
  unsigned Count = 0;
 | 
						|
 | 
						|
  // Loop over basic blocks where li is live.
 | 
						|
  MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
 | 
						|
  SlotIndex Stop = LIS.getMBBEndIdx(MFI);
 | 
						|
  for (;;) {
 | 
						|
    ++Count;
 | 
						|
    LVI = li->advanceTo(LVI, Stop);
 | 
						|
    if (LVI == LVE)
 | 
						|
      return Count;
 | 
						|
    do {
 | 
						|
      ++MFI;
 | 
						|
      Stop = LIS.getMBBEndIdx(MFI);
 | 
						|
    } while (Stop <= LVI->start);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
 | 
						|
  unsigned OrigReg = VRM.getOriginal(CurLI->reg);
 | 
						|
  const LiveInterval &Orig = LIS.getInterval(OrigReg);
 | 
						|
  assert(!Orig.empty() && "Splitting empty interval?");
 | 
						|
  LiveInterval::const_iterator I = Orig.find(Idx);
 | 
						|
 | 
						|
  // Range containing Idx should begin at Idx.
 | 
						|
  if (I != Orig.end() && I->start <= Idx)
 | 
						|
    return I->start == Idx;
 | 
						|
 | 
						|
  // Range does not contain Idx, previous must end at Idx.
 | 
						|
  return I != Orig.begin() && (--I)->end == Idx;
 | 
						|
}
 | 
						|
 | 
						|
void SplitAnalysis::analyze(const LiveInterval *li) {
 | 
						|
  clear();
 | 
						|
  CurLI = li;
 | 
						|
  analyzeUses();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               Split Editor
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
 | 
						|
SplitEditor::SplitEditor(SplitAnalysis &sa,
 | 
						|
                         LiveIntervals &lis,
 | 
						|
                         VirtRegMap &vrm,
 | 
						|
                         MachineDominatorTree &mdt)
 | 
						|
  : SA(sa), LIS(lis), VRM(vrm),
 | 
						|
    MRI(vrm.getMachineFunction().getRegInfo()),
 | 
						|
    MDT(mdt),
 | 
						|
    TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
 | 
						|
    TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
 | 
						|
    Edit(0),
 | 
						|
    OpenIdx(0),
 | 
						|
    RegAssign(Allocator)
 | 
						|
{}
 | 
						|
 | 
						|
void SplitEditor::reset(LiveRangeEdit &lre) {
 | 
						|
  Edit = &lre;
 | 
						|
  OpenIdx = 0;
 | 
						|
  RegAssign.clear();
 | 
						|
  Values.clear();
 | 
						|
 | 
						|
  // We don't need to clear LiveOutCache, only LiveOutSeen entries are read.
 | 
						|
  LiveOutSeen.clear();
 | 
						|
 | 
						|
  // We don't need an AliasAnalysis since we will only be performing
 | 
						|
  // cheap-as-a-copy remats anyway.
 | 
						|
  Edit->anyRematerializable(LIS, TII, 0);
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::dump() const {
 | 
						|
  if (RegAssign.empty()) {
 | 
						|
    dbgs() << " empty\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
 | 
						|
    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
 | 
						|
  dbgs() << '\n';
 | 
						|
}
 | 
						|
 | 
						|
VNInfo *SplitEditor::defValue(unsigned RegIdx,
 | 
						|
                              const VNInfo *ParentVNI,
 | 
						|
                              SlotIndex Idx) {
 | 
						|
  assert(ParentVNI && "Mapping  NULL value");
 | 
						|
  assert(Idx.isValid() && "Invalid SlotIndex");
 | 
						|
  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
 | 
						|
  LiveInterval *LI = Edit->get(RegIdx);
 | 
						|
 | 
						|
  // Create a new value.
 | 
						|
  VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator());
 | 
						|
 | 
						|
  // Use insert for lookup, so we can add missing values with a second lookup.
 | 
						|
  std::pair<ValueMap::iterator, bool> InsP =
 | 
						|
    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI));
 | 
						|
 | 
						|
  // This was the first time (RegIdx, ParentVNI) was mapped.
 | 
						|
  // Keep it as a simple def without any liveness.
 | 
						|
  if (InsP.second)
 | 
						|
    return VNI;
 | 
						|
 | 
						|
  // If the previous value was a simple mapping, add liveness for it now.
 | 
						|
  if (VNInfo *OldVNI = InsP.first->second) {
 | 
						|
    SlotIndex Def = OldVNI->def;
 | 
						|
    LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI));
 | 
						|
    // No longer a simple mapping.
 | 
						|
    InsP.first->second = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a complex mapping, add liveness for VNI
 | 
						|
  SlotIndex Def = VNI->def;
 | 
						|
  LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
 | 
						|
 | 
						|
  return VNI;
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) {
 | 
						|
  assert(ParentVNI && "Mapping  NULL value");
 | 
						|
  VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)];
 | 
						|
 | 
						|
  // ParentVNI was either unmapped or already complex mapped. Either way.
 | 
						|
  if (!VNI)
 | 
						|
    return;
 | 
						|
 | 
						|
  // This was previously a single mapping. Make sure the old def is represented
 | 
						|
  // by a trivial live range.
 | 
						|
  SlotIndex Def = VNI->def;
 | 
						|
  Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
 | 
						|
  VNI = 0;
 | 
						|
}
 | 
						|
 | 
						|
// extendRange - Extend the live range to reach Idx.
 | 
						|
// Potentially create phi-def values.
 | 
						|
void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) {
 | 
						|
  assert(Idx.isValid() && "Invalid SlotIndex");
 | 
						|
  MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx);
 | 
						|
  assert(IdxMBB && "No MBB at Idx");
 | 
						|
  LiveInterval *LI = Edit->get(RegIdx);
 | 
						|
 | 
						|
  // Is there a def in the same MBB we can extend?
 | 
						|
  if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Now for the fun part. We know that ParentVNI potentially has multiple defs,
 | 
						|
  // and we may need to create even more phi-defs to preserve VNInfo SSA form.
 | 
						|
  // Perform a search for all predecessor blocks where we know the dominating
 | 
						|
  // VNInfo.
 | 
						|
  VNInfo *VNI = findReachingDefs(LI, IdxMBB, Idx.getNextSlot());
 | 
						|
 | 
						|
  // When there were multiple different values, we may need new PHIs.
 | 
						|
  if (!VNI)
 | 
						|
    return updateSSA();
 | 
						|
 | 
						|
  // Poor man's SSA update for the single-value case.
 | 
						|
  LiveOutPair LOP(VNI, MDT[LIS.getMBBFromIndex(VNI->def)]);
 | 
						|
  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
 | 
						|
         E = LiveInBlocks.end(); I != E; ++I) {
 | 
						|
    MachineBasicBlock *MBB = I->DomNode->getBlock();
 | 
						|
    SlotIndex Start = LIS.getMBBStartIdx(MBB);
 | 
						|
    if (I->Kill.isValid())
 | 
						|
      LI->addRange(LiveRange(Start, I->Kill, VNI));
 | 
						|
    else {
 | 
						|
      LiveOutCache[MBB] = LOP;
 | 
						|
      LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// findReachingDefs - Search the CFG for known live-out values.
 | 
						|
/// Add required live-in blocks to LiveInBlocks.
 | 
						|
VNInfo *SplitEditor::findReachingDefs(LiveInterval *LI,
 | 
						|
                                      MachineBasicBlock *KillMBB,
 | 
						|
                                      SlotIndex Kill) {
 | 
						|
  // Initialize the live-out cache the first time it is needed.
 | 
						|
  if (LiveOutSeen.empty()) {
 | 
						|
    unsigned N = VRM.getMachineFunction().getNumBlockIDs();
 | 
						|
    LiveOutSeen.resize(N);
 | 
						|
    LiveOutCache.resize(N);
 | 
						|
  }
 | 
						|
 | 
						|
  // Blocks where LI should be live-in.
 | 
						|
  SmallVector<MachineBasicBlock*, 16> WorkList(1, KillMBB);
 | 
						|
 | 
						|
  // Remember if we have seen more than one value.
 | 
						|
  bool UniqueVNI = true;
 | 
						|
  VNInfo *TheVNI = 0;
 | 
						|
 | 
						|
  // Using LiveOutCache as a visited set, perform a BFS for all reaching defs.
 | 
						|
  for (unsigned i = 0; i != WorkList.size(); ++i) {
 | 
						|
    MachineBasicBlock *MBB = WorkList[i];
 | 
						|
    assert(!MBB->pred_empty() && "Value live-in to entry block?");
 | 
						|
    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | 
						|
           PE = MBB->pred_end(); PI != PE; ++PI) {
 | 
						|
       MachineBasicBlock *Pred = *PI;
 | 
						|
       LiveOutPair &LOP = LiveOutCache[Pred];
 | 
						|
 | 
						|
       // Is this a known live-out block?
 | 
						|
       if (LiveOutSeen.test(Pred->getNumber())) {
 | 
						|
         if (VNInfo *VNI = LOP.first) {
 | 
						|
           if (TheVNI && TheVNI != VNI)
 | 
						|
             UniqueVNI = false;
 | 
						|
           TheVNI = VNI;
 | 
						|
         }
 | 
						|
         continue;
 | 
						|
       }
 | 
						|
 | 
						|
       // First time. LOP is garbage and must be cleared below.
 | 
						|
       LiveOutSeen.set(Pred->getNumber());
 | 
						|
 | 
						|
       // Does Pred provide a live-out value?
 | 
						|
       SlotIndex Start, Last;
 | 
						|
       tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred);
 | 
						|
       Last = Last.getPrevSlot();
 | 
						|
       VNInfo *VNI = LI->extendInBlock(Start, Last);
 | 
						|
       LOP.first = VNI;
 | 
						|
       if (VNI) {
 | 
						|
         LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)];
 | 
						|
         if (TheVNI && TheVNI != VNI)
 | 
						|
           UniqueVNI = false;
 | 
						|
         TheVNI = VNI;
 | 
						|
         continue;
 | 
						|
       }
 | 
						|
       LOP.second = 0;
 | 
						|
 | 
						|
       // No, we need a live-in value for Pred as well
 | 
						|
       if (Pred != KillMBB)
 | 
						|
          WorkList.push_back(Pred);
 | 
						|
       else
 | 
						|
          // Loopback to KillMBB, so value is really live through.
 | 
						|
         Kill = SlotIndex();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transfer WorkList to LiveInBlocks in reverse order.
 | 
						|
  // This ordering works best with updateSSA().
 | 
						|
  LiveInBlocks.clear();
 | 
						|
  LiveInBlocks.reserve(WorkList.size());
 | 
						|
  while(!WorkList.empty())
 | 
						|
    LiveInBlocks.push_back(MDT[WorkList.pop_back_val()]);
 | 
						|
 | 
						|
  // The kill block may not be live-through.
 | 
						|
  assert(LiveInBlocks.back().DomNode->getBlock() == KillMBB);
 | 
						|
  LiveInBlocks.back().Kill = Kill;
 | 
						|
 | 
						|
  return UniqueVNI ? TheVNI : 0;
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::updateSSA() {
 | 
						|
  // This is essentially the same iterative algorithm that SSAUpdater uses,
 | 
						|
  // except we already have a dominator tree, so we don't have to recompute it.
 | 
						|
  unsigned Changes;
 | 
						|
  do {
 | 
						|
    Changes = 0;
 | 
						|
    // Propagate live-out values down the dominator tree, inserting phi-defs
 | 
						|
    // when necessary.
 | 
						|
    for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
 | 
						|
           E = LiveInBlocks.end(); I != E; ++I) {
 | 
						|
      MachineDomTreeNode *Node = I->DomNode;
 | 
						|
      // Skip block if the live-in value has already been determined.
 | 
						|
      if (!Node)
 | 
						|
        continue;
 | 
						|
      MachineBasicBlock *MBB = Node->getBlock();
 | 
						|
      MachineDomTreeNode *IDom = Node->getIDom();
 | 
						|
      LiveOutPair IDomValue;
 | 
						|
 | 
						|
      // We need a live-in value to a block with no immediate dominator?
 | 
						|
      // This is probably an unreachable block that has survived somehow.
 | 
						|
      bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber());
 | 
						|
 | 
						|
      // IDom dominates all of our predecessors, but it may not be their
 | 
						|
      // immediate dominator. Check if any of them have live-out values that are
 | 
						|
      // properly dominated by IDom. If so, we need a phi-def here.
 | 
						|
      if (!needPHI) {
 | 
						|
        IDomValue = LiveOutCache[IDom->getBlock()];
 | 
						|
        for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | 
						|
               PE = MBB->pred_end(); PI != PE; ++PI) {
 | 
						|
          LiveOutPair Value = LiveOutCache[*PI];
 | 
						|
          if (!Value.first || Value.first == IDomValue.first)
 | 
						|
            continue;
 | 
						|
          // This predecessor is carrying something other than IDomValue.
 | 
						|
          // It could be because IDomValue hasn't propagated yet, or it could be
 | 
						|
          // because MBB is in the dominance frontier of that value.
 | 
						|
          if (MDT.dominates(IDom, Value.second)) {
 | 
						|
            needPHI = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // The value may be live-through even if Kill is set, as can happen when
 | 
						|
      // we are called from extendRange. In that case LiveOutSeen is true, and
 | 
						|
      // LiveOutCache indicates a foreign or missing value.
 | 
						|
      LiveOutPair &LOP = LiveOutCache[MBB];
 | 
						|
 | 
						|
      // Create a phi-def if required.
 | 
						|
      if (needPHI) {
 | 
						|
        ++Changes;
 | 
						|
        SlotIndex Start = LIS.getMBBStartIdx(MBB);
 | 
						|
        unsigned RegIdx = RegAssign.lookup(Start);
 | 
						|
        LiveInterval *LI = Edit->get(RegIdx);
 | 
						|
        VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator());
 | 
						|
        VNI->setIsPHIDef(true);
 | 
						|
        I->Value = VNI;
 | 
						|
        // This block is done, we know the final value.
 | 
						|
        I->DomNode = 0;
 | 
						|
        if (I->Kill.isValid())
 | 
						|
          LI->addRange(LiveRange(Start, I->Kill, VNI));
 | 
						|
        else {
 | 
						|
          LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI));
 | 
						|
          LOP = LiveOutPair(VNI, Node);
 | 
						|
        }
 | 
						|
      } else if (IDomValue.first) {
 | 
						|
        // No phi-def here. Remember incoming value.
 | 
						|
        I->Value = IDomValue.first;
 | 
						|
        if (I->Kill.isValid())
 | 
						|
          continue;
 | 
						|
        // Propagate IDomValue if needed:
 | 
						|
        // MBB is live-out and doesn't define its own value.
 | 
						|
        if (LOP.second != Node && LOP.first != IDomValue.first) {
 | 
						|
          ++Changes;
 | 
						|
          LOP = IDomValue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (Changes);
 | 
						|
 | 
						|
  // The values in LiveInBlocks are now accurate. No more phi-defs are needed
 | 
						|
  // for these blocks, so we can color the live ranges.
 | 
						|
  for (SmallVectorImpl<LiveInBlock>::iterator I = LiveInBlocks.begin(),
 | 
						|
         E = LiveInBlocks.end(); I != E; ++I) {
 | 
						|
    if (!I->DomNode)
 | 
						|
      continue;
 | 
						|
    assert(I->Value && "No live-in value found");
 | 
						|
    MachineBasicBlock *MBB = I->DomNode->getBlock();
 | 
						|
    SlotIndex Start = LIS.getMBBStartIdx(MBB);
 | 
						|
    unsigned RegIdx = RegAssign.lookup(Start);
 | 
						|
    LiveInterval *LI = Edit->get(RegIdx);
 | 
						|
    LI->addRange(LiveRange(Start, I->Kill.isValid() ?
 | 
						|
                                  I->Kill : LIS.getMBBEndIdx(MBB), I->Value));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
 | 
						|
                                   VNInfo *ParentVNI,
 | 
						|
                                   SlotIndex UseIdx,
 | 
						|
                                   MachineBasicBlock &MBB,
 | 
						|
                                   MachineBasicBlock::iterator I) {
 | 
						|
  MachineInstr *CopyMI = 0;
 | 
						|
  SlotIndex Def;
 | 
						|
  LiveInterval *LI = Edit->get(RegIdx);
 | 
						|
 | 
						|
  // We may be trying to avoid interference that ends at a deleted instruction,
 | 
						|
  // so always begin RegIdx 0 early and all others late.
 | 
						|
  bool Late = RegIdx != 0;
 | 
						|
 | 
						|
  // Attempt cheap-as-a-copy rematerialization.
 | 
						|
  LiveRangeEdit::Remat RM(ParentVNI);
 | 
						|
  if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) {
 | 
						|
    Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI, Late);
 | 
						|
    ++NumRemats;
 | 
						|
  } else {
 | 
						|
    // Can't remat, just insert a copy from parent.
 | 
						|
    CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
 | 
						|
               .addReg(Edit->getReg());
 | 
						|
    Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
 | 
						|
            .getDefIndex();
 | 
						|
    ++NumCopies;
 | 
						|
  }
 | 
						|
 | 
						|
  // Define the value in Reg.
 | 
						|
  VNInfo *VNI = defValue(RegIdx, ParentVNI, Def);
 | 
						|
  VNI->setCopy(CopyMI);
 | 
						|
  return VNI;
 | 
						|
}
 | 
						|
 | 
						|
/// Create a new virtual register and live interval.
 | 
						|
unsigned SplitEditor::openIntv() {
 | 
						|
  // Create the complement as index 0.
 | 
						|
  if (Edit->empty())
 | 
						|
    Edit->create(LIS, VRM);
 | 
						|
 | 
						|
  // Create the open interval.
 | 
						|
  OpenIdx = Edit->size();
 | 
						|
  Edit->create(LIS, VRM);
 | 
						|
  return OpenIdx;
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::selectIntv(unsigned Idx) {
 | 
						|
  assert(Idx != 0 && "Cannot select the complement interval");
 | 
						|
  assert(Idx < Edit->size() && "Can only select previously opened interval");
 | 
						|
  OpenIdx = Idx;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
 | 
						|
  assert(OpenIdx && "openIntv not called before enterIntvBefore");
 | 
						|
  DEBUG(dbgs() << "    enterIntvBefore " << Idx);
 | 
						|
  Idx = Idx.getBaseIndex();
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    DEBUG(dbgs() << ": not live\n");
 | 
						|
    return Idx;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | 
						|
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | 
						|
  assert(MI && "enterIntvBefore called with invalid index");
 | 
						|
 | 
						|
  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
 | 
						|
  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
 | 
						|
  SlotIndex End = LIS.getMBBEndIdx(&MBB);
 | 
						|
  SlotIndex Last = End.getPrevSlot();
 | 
						|
  DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    DEBUG(dbgs() << ": not live\n");
 | 
						|
    return End;
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << ": valno " << ParentVNI->id);
 | 
						|
  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
 | 
						|
                              LIS.getLastSplitPoint(Edit->getParent(), &MBB));
 | 
						|
  RegAssign.insert(VNI->def, End, OpenIdx);
 | 
						|
  DEBUG(dump());
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
/// useIntv - indicate that all instructions in MBB should use OpenLI.
 | 
						|
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
 | 
						|
  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
 | 
						|
  assert(OpenIdx && "openIntv not called before useIntv");
 | 
						|
  DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
 | 
						|
  RegAssign.insert(Start, End, OpenIdx);
 | 
						|
  DEBUG(dump());
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
 | 
						|
  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
 | 
						|
  DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
 | 
						|
 | 
						|
  // The interval must be live beyond the instruction at Idx.
 | 
						|
  Idx = Idx.getBoundaryIndex();
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    DEBUG(dbgs() << ": not live\n");
 | 
						|
    return Idx.getNextSlot();
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | 
						|
 | 
						|
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | 
						|
  assert(MI && "No instruction at index");
 | 
						|
  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(),
 | 
						|
                              llvm::next(MachineBasicBlock::iterator(MI)));
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
 | 
						|
  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
 | 
						|
  DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
 | 
						|
 | 
						|
  // The interval must be live into the instruction at Idx.
 | 
						|
  Idx = Idx.getBoundaryIndex();
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    DEBUG(dbgs() << ": not live\n");
 | 
						|
    return Idx.getNextSlot();
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | 
						|
 | 
						|
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | 
						|
  assert(MI && "No instruction at index");
 | 
						|
  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
 | 
						|
  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
 | 
						|
  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
 | 
						|
  DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
 | 
						|
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    DEBUG(dbgs() << ": not live\n");
 | 
						|
    return Start;
 | 
						|
  }
 | 
						|
 | 
						|
  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
 | 
						|
                              MBB.SkipPHIsAndLabels(MBB.begin()));
 | 
						|
  RegAssign.insert(Start, VNI->def, OpenIdx);
 | 
						|
  DEBUG(dump());
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
 | 
						|
  assert(OpenIdx && "openIntv not called before overlapIntv");
 | 
						|
  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
 | 
						|
  assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) &&
 | 
						|
         "Parent changes value in extended range");
 | 
						|
  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
 | 
						|
         "Range cannot span basic blocks");
 | 
						|
 | 
						|
  // The complement interval will be extended as needed by extendRange().
 | 
						|
  if (ParentVNI)
 | 
						|
    markComplexMapped(0, ParentVNI);
 | 
						|
  DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
 | 
						|
  RegAssign.insert(Start, End, OpenIdx);
 | 
						|
  DEBUG(dump());
 | 
						|
}
 | 
						|
 | 
						|
/// transferValues - Transfer all possible values to the new live ranges.
 | 
						|
/// Values that were rematerialized are left alone, they need extendRange().
 | 
						|
bool SplitEditor::transferValues() {
 | 
						|
  bool Skipped = false;
 | 
						|
  LiveInBlocks.clear();
 | 
						|
  RegAssignMap::const_iterator AssignI = RegAssign.begin();
 | 
						|
  for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
 | 
						|
         ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
 | 
						|
    DEBUG(dbgs() << "  blit " << *ParentI << ':');
 | 
						|
    VNInfo *ParentVNI = ParentI->valno;
 | 
						|
    // RegAssign has holes where RegIdx 0 should be used.
 | 
						|
    SlotIndex Start = ParentI->start;
 | 
						|
    AssignI.advanceTo(Start);
 | 
						|
    do {
 | 
						|
      unsigned RegIdx;
 | 
						|
      SlotIndex End = ParentI->end;
 | 
						|
      if (!AssignI.valid()) {
 | 
						|
        RegIdx = 0;
 | 
						|
      } else if (AssignI.start() <= Start) {
 | 
						|
        RegIdx = AssignI.value();
 | 
						|
        if (AssignI.stop() < End) {
 | 
						|
          End = AssignI.stop();
 | 
						|
          ++AssignI;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        RegIdx = 0;
 | 
						|
        End = std::min(End, AssignI.start());
 | 
						|
      }
 | 
						|
 | 
						|
      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
 | 
						|
      DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
 | 
						|
      LiveInterval *LI = Edit->get(RegIdx);
 | 
						|
 | 
						|
      // Check for a simply defined value that can be blitted directly.
 | 
						|
      if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) {
 | 
						|
        DEBUG(dbgs() << ':' << VNI->id);
 | 
						|
        LI->addRange(LiveRange(Start, End, VNI));
 | 
						|
        Start = End;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Skip rematerialized values, we need to use extendRange() and
 | 
						|
      // extendPHIKillRanges() to completely recompute the live ranges.
 | 
						|
      if (Edit->didRematerialize(ParentVNI)) {
 | 
						|
        DEBUG(dbgs() << "(remat)");
 | 
						|
        Skipped = true;
 | 
						|
        Start = End;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Initialize the live-out cache the first time it is needed.
 | 
						|
      if (LiveOutSeen.empty()) {
 | 
						|
        unsigned N = VRM.getMachineFunction().getNumBlockIDs();
 | 
						|
        LiveOutSeen.resize(N);
 | 
						|
        LiveOutCache.resize(N);
 | 
						|
      }
 | 
						|
 | 
						|
      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
 | 
						|
      // so the live range is accurate. Add live-in blocks in [Start;End) to the
 | 
						|
      // LiveInBlocks.
 | 
						|
      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
 | 
						|
      SlotIndex BlockStart, BlockEnd;
 | 
						|
      tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
 | 
						|
 | 
						|
      // The first block may be live-in, or it may have its own def.
 | 
						|
      if (Start != BlockStart) {
 | 
						|
        VNInfo *VNI = LI->extendInBlock(BlockStart,
 | 
						|
                                        std::min(BlockEnd, End).getPrevSlot());
 | 
						|
        assert(VNI && "Missing def for complex mapped value");
 | 
						|
        DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
 | 
						|
        // MBB has its own def. Is it also live-out?
 | 
						|
        if (BlockEnd <= End) {
 | 
						|
          LiveOutSeen.set(MBB->getNumber());
 | 
						|
          LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
 | 
						|
        }
 | 
						|
        // Skip to the next block for live-in.
 | 
						|
        ++MBB;
 | 
						|
        BlockStart = BlockEnd;
 | 
						|
      }
 | 
						|
 | 
						|
      // Handle the live-in blocks covered by [Start;End).
 | 
						|
      assert(Start <= BlockStart && "Expected live-in block");
 | 
						|
      while (BlockStart < End) {
 | 
						|
        DEBUG(dbgs() << ">BB#" << MBB->getNumber());
 | 
						|
        BlockEnd = LIS.getMBBEndIdx(MBB);
 | 
						|
        if (BlockStart == ParentVNI->def) {
 | 
						|
          // This block has the def of a parent PHI, so it isn't live-in.
 | 
						|
          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
 | 
						|
          VNInfo *VNI = LI->extendInBlock(BlockStart,
 | 
						|
                                         std::min(BlockEnd, End).getPrevSlot());
 | 
						|
          assert(VNI && "Missing def for complex mapped parent PHI");
 | 
						|
          if (End >= BlockEnd) {
 | 
						|
            // Live-out as well.
 | 
						|
            LiveOutSeen.set(MBB->getNumber());
 | 
						|
            LiveOutCache[MBB] = LiveOutPair(VNI, MDT[MBB]);
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // This block needs a live-in value.
 | 
						|
          LiveInBlocks.push_back(MDT[MBB]);
 | 
						|
          // The last block covered may not be live-out.
 | 
						|
          if (End < BlockEnd)
 | 
						|
            LiveInBlocks.back().Kill = End;
 | 
						|
          else {
 | 
						|
            // Live-out, but we need updateSSA to tell us the value.
 | 
						|
            LiveOutSeen.set(MBB->getNumber());
 | 
						|
            LiveOutCache[MBB] = LiveOutPair((VNInfo*)0,
 | 
						|
                                            (MachineDomTreeNode*)0);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        BlockStart = BlockEnd;
 | 
						|
        ++MBB;
 | 
						|
      }
 | 
						|
      Start = End;
 | 
						|
    } while (Start != ParentI->end);
 | 
						|
    DEBUG(dbgs() << '\n');
 | 
						|
  }
 | 
						|
 | 
						|
  if (!LiveInBlocks.empty())
 | 
						|
    updateSSA();
 | 
						|
 | 
						|
  return Skipped;
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::extendPHIKillRanges() {
 | 
						|
    // Extend live ranges to be live-out for successor PHI values.
 | 
						|
  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
 | 
						|
       E = Edit->getParent().vni_end(); I != E; ++I) {
 | 
						|
    const VNInfo *PHIVNI = *I;
 | 
						|
    if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
 | 
						|
      continue;
 | 
						|
    unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
 | 
						|
    MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
 | 
						|
    for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
 | 
						|
         PE = MBB->pred_end(); PI != PE; ++PI) {
 | 
						|
      SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
 | 
						|
      // The predecessor may not have a live-out value. That is OK, like an
 | 
						|
      // undef PHI operand.
 | 
						|
      if (Edit->getParent().liveAt(End)) {
 | 
						|
        assert(RegAssign.lookup(End) == RegIdx &&
 | 
						|
               "Different register assignment in phi predecessor");
 | 
						|
        extendRange(RegIdx, End);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// rewriteAssigned - Rewrite all uses of Edit->getReg().
 | 
						|
void SplitEditor::rewriteAssigned(bool ExtendRanges) {
 | 
						|
  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
 | 
						|
       RE = MRI.reg_end(); RI != RE;) {
 | 
						|
    MachineOperand &MO = RI.getOperand();
 | 
						|
    MachineInstr *MI = MO.getParent();
 | 
						|
    ++RI;
 | 
						|
    // LiveDebugVariables should have handled all DBG_VALUE instructions.
 | 
						|
    if (MI->isDebugValue()) {
 | 
						|
      DEBUG(dbgs() << "Zapping " << *MI);
 | 
						|
      MO.setReg(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // <undef> operands don't really read the register, so just assign them to
 | 
						|
    // the complement.
 | 
						|
    if (MO.isUse() && MO.isUndef()) {
 | 
						|
      MO.setReg(Edit->get(0)->reg);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SlotIndex Idx = LIS.getInstructionIndex(MI);
 | 
						|
    if (MO.isDef())
 | 
						|
      Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex();
 | 
						|
 | 
						|
    // Rewrite to the mapped register at Idx.
 | 
						|
    unsigned RegIdx = RegAssign.lookup(Idx);
 | 
						|
    MO.setReg(Edit->get(RegIdx)->reg);
 | 
						|
    DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
 | 
						|
                 << Idx << ':' << RegIdx << '\t' << *MI);
 | 
						|
 | 
						|
    // Extend liveness to Idx if the instruction reads reg.
 | 
						|
    if (!ExtendRanges)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip instructions that don't read Reg.
 | 
						|
    if (MO.isDef()) {
 | 
						|
      if (!MO.getSubReg() && !MO.isEarlyClobber())
 | 
						|
        continue;
 | 
						|
      // We may wan't to extend a live range for a partial redef, or for a use
 | 
						|
      // tied to an early clobber.
 | 
						|
      Idx = Idx.getPrevSlot();
 | 
						|
      if (!Edit->getParent().liveAt(Idx))
 | 
						|
        continue;
 | 
						|
    } else
 | 
						|
      Idx = Idx.getUseIndex();
 | 
						|
 | 
						|
    extendRange(RegIdx, Idx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::deleteRematVictims() {
 | 
						|
  SmallVector<MachineInstr*, 8> Dead;
 | 
						|
  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
 | 
						|
    LiveInterval *LI = *I;
 | 
						|
    for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
 | 
						|
           LII != LIE; ++LII) {
 | 
						|
      // Dead defs end at the store slot.
 | 
						|
      if (LII->end != LII->valno->def.getNextSlot())
 | 
						|
        continue;
 | 
						|
      MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
 | 
						|
      assert(MI && "Missing instruction for dead def");
 | 
						|
      MI->addRegisterDead(LI->reg, &TRI);
 | 
						|
 | 
						|
      if (!MI->allDefsAreDead())
 | 
						|
        continue;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "All defs dead: " << *MI);
 | 
						|
      Dead.push_back(MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Dead.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  Edit->eliminateDeadDefs(Dead, LIS, VRM, TII);
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
 | 
						|
  ++NumFinished;
 | 
						|
 | 
						|
  // At this point, the live intervals in Edit contain VNInfos corresponding to
 | 
						|
  // the inserted copies.
 | 
						|
 | 
						|
  // Add the original defs from the parent interval.
 | 
						|
  for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
 | 
						|
         E = Edit->getParent().vni_end(); I != E; ++I) {
 | 
						|
    const VNInfo *ParentVNI = *I;
 | 
						|
    if (ParentVNI->isUnused())
 | 
						|
      continue;
 | 
						|
    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
 | 
						|
    VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def);
 | 
						|
    VNI->setIsPHIDef(ParentVNI->isPHIDef());
 | 
						|
    VNI->setCopy(ParentVNI->getCopy());
 | 
						|
 | 
						|
    // Mark rematted values as complex everywhere to force liveness computation.
 | 
						|
    // The new live ranges may be truncated.
 | 
						|
    if (Edit->didRematerialize(ParentVNI))
 | 
						|
      for (unsigned i = 0, e = Edit->size(); i != e; ++i)
 | 
						|
        markComplexMapped(i, ParentVNI);
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Every new interval must have a def by now, otherwise the split is bogus.
 | 
						|
  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
 | 
						|
    assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
 | 
						|
#endif
 | 
						|
 | 
						|
  // Transfer the simply mapped values, check if any are skipped.
 | 
						|
  bool Skipped = transferValues();
 | 
						|
  if (Skipped)
 | 
						|
    extendPHIKillRanges();
 | 
						|
  else
 | 
						|
    ++NumSimple;
 | 
						|
 | 
						|
  // Rewrite virtual registers, possibly extending ranges.
 | 
						|
  rewriteAssigned(Skipped);
 | 
						|
 | 
						|
  // Delete defs that were rematted everywhere.
 | 
						|
  if (Skipped)
 | 
						|
    deleteRematVictims();
 | 
						|
 | 
						|
  // Get rid of unused values and set phi-kill flags.
 | 
						|
  for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
 | 
						|
    (*I)->RenumberValues(LIS);
 | 
						|
 | 
						|
  // Provide a reverse mapping from original indices to Edit ranges.
 | 
						|
  if (LRMap) {
 | 
						|
    LRMap->clear();
 | 
						|
    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
 | 
						|
      LRMap->push_back(i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now check if any registers were separated into multiple components.
 | 
						|
  ConnectedVNInfoEqClasses ConEQ(LIS);
 | 
						|
  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
 | 
						|
    // Don't use iterators, they are invalidated by create() below.
 | 
						|
    LiveInterval *li = Edit->get(i);
 | 
						|
    unsigned NumComp = ConEQ.Classify(li);
 | 
						|
    if (NumComp <= 1)
 | 
						|
      continue;
 | 
						|
    DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
 | 
						|
    SmallVector<LiveInterval*, 8> dups;
 | 
						|
    dups.push_back(li);
 | 
						|
    for (unsigned j = 1; j != NumComp; ++j)
 | 
						|
      dups.push_back(&Edit->create(LIS, VRM));
 | 
						|
    ConEQ.Distribute(&dups[0], MRI);
 | 
						|
    // The new intervals all map back to i.
 | 
						|
    if (LRMap)
 | 
						|
      LRMap->resize(Edit->size(), i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate spill weight and allocation hints for new intervals.
 | 
						|
  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops);
 | 
						|
 | 
						|
  assert(!LRMap || LRMap->size() == Edit->size());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Single Block Splitting
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// getMultiUseBlocks - if CurLI has more than one use in a basic block, it
 | 
						|
/// may be an advantage to split CurLI for the duration of the block.
 | 
						|
bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) {
 | 
						|
  // If CurLI is local to one block, there is no point to splitting it.
 | 
						|
  if (UseBlocks.size() <= 1)
 | 
						|
    return false;
 | 
						|
  // Add blocks with multiple uses.
 | 
						|
  for (unsigned i = 0, e = UseBlocks.size(); i != e; ++i) {
 | 
						|
    const BlockInfo &BI = UseBlocks[i];
 | 
						|
    if (BI.FirstUse == BI.LastUse)
 | 
						|
      continue;
 | 
						|
    Blocks.insert(BI.MBB);
 | 
						|
  }
 | 
						|
  return !Blocks.empty();
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
 | 
						|
  openIntv();
 | 
						|
  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
 | 
						|
  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse,
 | 
						|
    LastSplitPoint));
 | 
						|
  if (!BI.LiveOut || BI.LastUse < LastSplitPoint) {
 | 
						|
    useIntv(SegStart, leaveIntvAfter(BI.LastUse));
 | 
						|
  } else {
 | 
						|
      // The last use is after the last valid split point.
 | 
						|
    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
 | 
						|
    useIntv(SegStart, SegStop);
 | 
						|
    overlapIntv(SegStop, BI.LastUse);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// splitSingleBlocks - Split CurLI into a separate live interval inside each
 | 
						|
/// basic block in Blocks.
 | 
						|
void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) {
 | 
						|
  DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n");
 | 
						|
  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA.getUseBlocks();
 | 
						|
  for (unsigned i = 0; i != UseBlocks.size(); ++i) {
 | 
						|
    const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
 | 
						|
    if (Blocks.count(BI.MBB))
 | 
						|
      splitSingleBlock(BI);
 | 
						|
  }
 | 
						|
  finish();
 | 
						|
}
 |