llvm-6502/lib/Transforms/Utils/LowerInvoke.cpp
2004-03-01 01:12:13 +00:00

397 lines
16 KiB
C++

//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation is designed for use by code generators which do not yet
// support stack unwinding. This pass supports two models of exception handling
// lowering, the 'cheap' support and the 'expensive' support.
//
// 'Cheap' exception handling support gives the program the ability to execute
// any program which does not "throw an exception", by turning 'invoke'
// instructions into calls and by turning 'unwind' instructions into calls to
// abort(). If the program does dynamically use the unwind instruction, the
// program will print a message then abort.
//
// 'Expensive' exception handling support gives the full exception handling
// support to the program at making the 'invoke' instruction really expensive.
// It basically inserts setjmp/longjmp calls to emulate the exception handling
// as necessary.
//
// Because the 'expensive' support slows down programs a lot, and EH is only
// used for a subset of the programs, it must be specifically enabled by an
// option.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "Support/Statistic.h"
#include "Support/CommandLine.h"
#include <csetjmp>
using namespace llvm;
namespace {
Statistic<> NumLowered("lowerinvoke", "Number of invoke & unwinds replaced");
cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
class LowerInvoke : public FunctionPass {
// Used for both models.
Function *WriteFn;
Function *AbortFn;
Constant *AbortMessageInit;
Value *AbortMessage;
unsigned AbortMessageLength;
// Used for expensive EH support.
const Type *JBLinkTy;
GlobalVariable *JBListHead;
Function *SetJmpFn, *LongJmpFn;
public:
bool doInitialization(Module &M);
bool runOnFunction(Function &F);
private:
void writeAbortMessage(Instruction *IB);
bool insertCheapEHSupport(Function &F);
bool insertExpensiveEHSupport(Function &F);
};
RegisterOpt<LowerInvoke>
X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
}
const PassInfo *llvm::LowerInvokePassID = X.getPassInfo();
// Public Interface To the LowerInvoke pass.
FunctionPass *llvm::createLowerInvokePass() { return new LowerInvoke(); }
// doInitialization - Make sure that there is a prototype for abort in the
// current module.
bool LowerInvoke::doInitialization(Module &M) {
const Type *VoidPtrTy = PointerType::get(Type::SByteTy);
AbortMessage = 0;
if (ExpensiveEHSupport) {
// Insert a type for the linked list of jump buffers. Unfortunately, we
// don't know the size of the target's setjmp buffer, so we make a guess.
// If this guess turns out to be too small, bad stuff could happen.
unsigned JmpBufSize = 200; // PPC has 192 words
assert(sizeof(jmp_buf) <= JmpBufSize*sizeof(void*) &&
"LowerInvoke doesn't know about targets with jmp_buf size > 200 words!");
const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JmpBufSize);
{ // The type is recursive, so use a type holder.
std::vector<const Type*> Elements;
OpaqueType *OT = OpaqueType::get();
Elements.push_back(PointerType::get(OT));
Elements.push_back(JmpBufTy);
PATypeHolder JBLType(StructType::get(Elements));
OT->refineAbstractTypeTo(JBLType.get()); // Complete the cycle.
JBLinkTy = JBLType.get();
}
const Type *PtrJBList = PointerType::get(JBLinkTy);
// Now that we've done that, insert the jmpbuf list head global, unless it
// already exists.
if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList)))
JBListHead = new GlobalVariable(PtrJBList, false,
GlobalValue::LinkOnceLinkage,
Constant::getNullValue(PtrJBList),
"llvm.sjljeh.jblist", &M);
SetJmpFn = M.getOrInsertFunction("llvm.setjmp", Type::IntTy,
PointerType::get(JmpBufTy), 0);
LongJmpFn = M.getOrInsertFunction("llvm.longjmp", Type::VoidTy,
PointerType::get(JmpBufTy),
Type::IntTy, 0);
// The abort message for expensive EH support tells the user that the
// program 'unwound' without an 'invoke' instruction.
Constant *Msg =
ConstantArray::get("ERROR: Exception thrown, but not caught!\n");
AbortMessageLength = Msg->getNumOperands()-1; // don't include \0
AbortMessageInit = Msg;
GlobalVariable *MsgGV = M.getGlobalVariable("abort.msg", Msg->getType());
if (MsgGV && (!MsgGV->hasInitializer() || MsgGV->getInitializer() != Msg))
MsgGV = 0;
if (MsgGV) {
std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::LongTy));
AbortMessage =
ConstantExpr::getGetElementPtr(ConstantPointerRef::get(MsgGV), GEPIdx);
}
} else {
// The abort message for cheap EH support tells the user that EH is not
// enabled.
Constant *Msg =
ConstantArray::get("Exception handler needed, but not enabled. Recompile"
" program with -enable-correct-eh-support.\n");
AbortMessageLength = Msg->getNumOperands()-1; // don't include \0
AbortMessageInit = Msg;
GlobalVariable *MsgGV = M.getGlobalVariable("abort.msg", Msg->getType());
if (MsgGV && (!MsgGV->hasInitializer() || MsgGV->getInitializer() != Msg))
MsgGV = 0;
if (MsgGV) {
std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::LongTy));
AbortMessage =
ConstantExpr::getGetElementPtr(ConstantPointerRef::get(MsgGV), GEPIdx);
}
}
// We need the 'write' and 'abort' functions for both models.
AbortFn = M.getOrInsertFunction("abort", Type::VoidTy, 0);
// Unfortunately, 'write' can end up being prototyped in several different
// ways. If the user defines a three (or more) operand function named 'write'
// we will use their prototype. We _do not_ want to insert another instance
// of a write prototype, because we don't know that the funcresolve pass will
// run after us. If there is a definition of a write function, but it's not
// suitable for our uses, we just don't emit write calls. If there is no
// write prototype at all, we just add one.
if (Function *WF = M.getNamedFunction("write")) {
if (WF->getFunctionType()->getNumParams() > 3 ||
WF->getFunctionType()->isVarArg())
WriteFn = WF;
else
WriteFn = 0;
} else {
WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::IntTy,
VoidPtrTy, Type::IntTy, 0);
}
return true;
}
void LowerInvoke::writeAbortMessage(Instruction *IB) {
if (WriteFn) {
if (!AbortMessage) {
GlobalVariable *MsgGV = new GlobalVariable(AbortMessageInit->getType(),
true,
GlobalValue::InternalLinkage,
AbortMessageInit, "abort.msg",
WriteFn->getParent());
std::vector<Constant*> GEPIdx(2, Constant::getNullValue(Type::LongTy));
AbortMessage =
ConstantExpr::getGetElementPtr(ConstantPointerRef::get(MsgGV), GEPIdx);
}
// These are the arguments we WANT...
std::vector<Value*> Args;
Args.push_back(ConstantInt::get(Type::IntTy, 2));
Args.push_back(AbortMessage);
Args.push_back(ConstantInt::get(Type::IntTy, AbortMessageLength));
// If the actual declaration of write disagrees, insert casts as
// appropriate.
const FunctionType *FT = WriteFn->getFunctionType();
unsigned NumArgs = FT->getNumParams();
for (unsigned i = 0; i != 3; ++i)
if (i < NumArgs && FT->getParamType(i) != Args[i]->getType())
Args[i] = ConstantExpr::getCast(cast<Constant>(Args[i]),
FT->getParamType(i));
new CallInst(WriteFn, Args, "", IB);
}
}
bool LowerInvoke::insertCheapEHSupport(Function &F) {
bool Changed = false;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
// Insert a normal call instruction...
std::string Name = II->getName(); II->setName("");
Value *NewCall = new CallInst(II->getCalledValue(),
std::vector<Value*>(II->op_begin()+3,
II->op_end()), Name,II);
II->replaceAllUsesWith(NewCall);
// Insert an unconditional branch to the normal destination.
new BranchInst(II->getNormalDest(), II);
// Remove any PHI node entries from the exception destination.
II->getUnwindDest()->removePredecessor(BB);
// Remove the invoke instruction now.
BB->getInstList().erase(II);
++NumLowered; Changed = true;
} else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
// Insert a new call to write(2, AbortMessage, AbortMessageLength);
writeAbortMessage(UI);
// Insert a call to abort()
new CallInst(AbortFn, std::vector<Value*>(), "", UI);
// Insert a return instruction. This really should be a "barrier", as it
// is unreachable.
new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 :
Constant::getNullValue(F.getReturnType()), UI);
// Remove the unwind instruction now.
BB->getInstList().erase(UI);
++NumLowered; Changed = true;
}
return Changed;
}
bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
bool Changed = false;
// If a function uses invoke, we have an alloca for the jump buffer.
AllocaInst *JmpBuf = 0;
// If this function contains an unwind instruction, two blocks get added: one
// to actually perform the longjmp, and one to terminate the program if there
// is no handler.
BasicBlock *UnwindBlock = 0, *TermBlock = 0;
std::vector<LoadInst*> JBPtrs;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
if (JmpBuf == 0)
JmpBuf = new AllocaInst(JBLinkTy, 0, "jblink", F.begin()->begin());
// On the entry to the invoke, we must install our JmpBuf as the top of
// the stack.
LoadInst *OldEntry = new LoadInst(JBListHead, "oldehlist", II);
// Store this old value as our 'next' field, and store our alloca as the
// current jblist.
std::vector<Value*> Idx;
Idx.push_back(Constant::getNullValue(Type::LongTy));
Idx.push_back(ConstantUInt::get(Type::UByteTy, 0));
Value *NextFieldPtr = new GetElementPtrInst(JmpBuf, Idx, "NextField", II);
new StoreInst(OldEntry, NextFieldPtr, II);
new StoreInst(JmpBuf, JBListHead, II);
// Call setjmp, passing in the address of the jmpbuffer.
Idx[1] = ConstantUInt::get(Type::UByteTy, 1);
Value *JmpBufPtr = new GetElementPtrInst(JmpBuf, Idx, "TheJmpBuf", II);
Value *SJRet = new CallInst(SetJmpFn, JmpBufPtr, "sjret", II);
// Compare the return value to zero.
Value *IsNormal = BinaryOperator::create(Instruction::SetEQ, SJRet,
Constant::getNullValue(SJRet->getType()),
"notunwind", II);
// Create the receiver block if there is a critical edge to the normal
// destination.
SplitCriticalEdge(II, 0, this);
Instruction *InsertLoc = II->getNormalDest()->begin();
// Insert a normal call instruction on the normal execution path.
std::string Name = II->getName(); II->setName("");
Value *NewCall = new CallInst(II->getCalledValue(),
std::vector<Value*>(II->op_begin()+3,
II->op_end()), Name,
InsertLoc);
II->replaceAllUsesWith(NewCall);
// If we got this far, then no exception was thrown and we can pop our
// jmpbuf entry off.
new StoreInst(OldEntry, JBListHead, InsertLoc);
// Now we change the invoke into a branch instruction.
new BranchInst(II->getNormalDest(), II->getUnwindDest(), IsNormal, II);
// Remove the InvokeInst now.
BB->getInstList().erase(II);
++NumLowered; Changed = true;
} else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
if (UnwindBlock == 0) {
// Create two new blocks, the unwind block and the terminate block. Add
// them at the end of the function because they are not hot.
UnwindBlock = new BasicBlock("unwind", &F);
TermBlock = new BasicBlock("unwinderror", &F);
// Insert return instructions. These really should be "barrier"s, as
// they are unreachable.
new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 :
Constant::getNullValue(F.getReturnType()), UnwindBlock);
new ReturnInst(F.getReturnType() == Type::VoidTy ? 0 :
Constant::getNullValue(F.getReturnType()), TermBlock);
}
// Load the JBList, if it's null, then there was no catch!
LoadInst *Ptr = new LoadInst(JBListHead, "ehlist", UI);
Value *NotNull = BinaryOperator::create(Instruction::SetNE, Ptr,
Constant::getNullValue(Ptr->getType()),
"notnull", UI);
new BranchInst(UnwindBlock, TermBlock, NotNull, UI);
// Remember the loaded value so we can insert the PHI node as needed.
JBPtrs.push_back(Ptr);
// Remove the UnwindInst now.
BB->getInstList().erase(UI);
++NumLowered; Changed = true;
}
// If an unwind instruction was inserted, we need to set up the Unwind and
// term blocks.
if (UnwindBlock) {
// In the unwind block, we know that the pointer coming in on the JBPtrs
// list are non-null.
Instruction *RI = UnwindBlock->getTerminator();
Value *RecPtr;
if (JBPtrs.size() == 1)
RecPtr = JBPtrs[0];
else {
// If there is more than one unwind in this function, make a PHI node to
// merge in all of the loaded values.
PHINode *PN = new PHINode(JBPtrs[0]->getType(), "jbptrs", RI);
for (unsigned i = 0, e = JBPtrs.size(); i != e; ++i)
PN->addIncoming(JBPtrs[i], JBPtrs[i]->getParent());
RecPtr = PN;
}
// Now that we have a pointer to the whole record, remove the entry from the
// JBList.
std::vector<Value*> Idx;
Idx.push_back(Constant::getNullValue(Type::LongTy));
Idx.push_back(ConstantUInt::get(Type::UByteTy, 0));
Value *NextFieldPtr = new GetElementPtrInst(RecPtr, Idx, "NextField", RI);
Value *NextRec = new LoadInst(NextFieldPtr, "NextRecord", RI);
new StoreInst(NextRec, JBListHead, RI);
// Now that we popped the top of the JBList, get a pointer to the jmpbuf and
// longjmp.
Idx[1] = ConstantUInt::get(Type::UByteTy, 1);
Idx[0] = new GetElementPtrInst(RecPtr, Idx, "JmpBuf", RI);
Idx[1] = ConstantInt::get(Type::IntTy, 1);
new CallInst(LongJmpFn, Idx, "", RI);
// Now we set up the terminate block.
RI = TermBlock->getTerminator();
// Insert a new call to write(2, AbortMessage, AbortMessageLength);
writeAbortMessage(RI);
// Insert a call to abort()
new CallInst(AbortFn, std::vector<Value*>(), "", RI);
}
return Changed;
}
bool LowerInvoke::runOnFunction(Function &F) {
if (ExpensiveEHSupport)
return insertExpensiveEHSupport(F);
else
return insertCheapEHSupport(F);
}