mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55762 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1844 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1844 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the VirtRegMap class.
 | |
| //
 | |
| // It also contains implementations of the the Spiller interface, which, given a
 | |
| // virtual register map and a machine function, eliminates all virtual
 | |
| // references by replacing them with physical register references - adding spill
 | |
| // code as necessary.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "spiller"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumSpills  , "Number of register spills");
 | |
| STATISTIC(NumPSpills , "Number of physical register spills");
 | |
| STATISTIC(NumReMats  , "Number of re-materialization");
 | |
| STATISTIC(NumDRM     , "Number of re-materializable defs elided");
 | |
| STATISTIC(NumStores  , "Number of stores added");
 | |
| STATISTIC(NumLoads   , "Number of loads added");
 | |
| STATISTIC(NumReused  , "Number of values reused");
 | |
| STATISTIC(NumDSE     , "Number of dead stores elided");
 | |
| STATISTIC(NumDCE     , "Number of copies elided");
 | |
| STATISTIC(NumDSS     , "Number of dead spill slots removed");
 | |
| STATISTIC(NumCommutes, "Number of instructions commuted");
 | |
| 
 | |
| namespace {
 | |
|   enum SpillerName { simple, local };
 | |
| }
 | |
| 
 | |
| static cl::opt<SpillerName>
 | |
| SpillerOpt("spiller",
 | |
|            cl::desc("Spiller to use: (default: local)"),
 | |
|            cl::Prefix,
 | |
|            cl::values(clEnumVal(simple, "  simple spiller"),
 | |
|                       clEnumVal(local,  "  local spiller"),
 | |
|                       clEnumValEnd),
 | |
|            cl::init(local));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  VirtRegMap implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| VirtRegMap::VirtRegMap(MachineFunction &mf)
 | |
|   : TII(*mf.getTarget().getInstrInfo()), MF(mf), 
 | |
|     Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
 | |
|     Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
 | |
|     Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1),
 | |
|     LowSpillSlot(NO_STACK_SLOT), HighSpillSlot(NO_STACK_SLOT) {
 | |
|   SpillSlotToUsesMap.resize(8);
 | |
|   ImplicitDefed.resize(MF.getRegInfo().getLastVirtReg()+1-
 | |
|                        TargetRegisterInfo::FirstVirtualRegister);
 | |
|   grow();
 | |
| }
 | |
| 
 | |
| void VirtRegMap::grow() {
 | |
|   unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
 | |
|   Virt2PhysMap.grow(LastVirtReg);
 | |
|   Virt2StackSlotMap.grow(LastVirtReg);
 | |
|   Virt2ReMatIdMap.grow(LastVirtReg);
 | |
|   Virt2SplitMap.grow(LastVirtReg);
 | |
|   Virt2SplitKillMap.grow(LastVirtReg);
 | |
|   ReMatMap.grow(LastVirtReg);
 | |
|   ImplicitDefed.resize(LastVirtReg-TargetRegisterInfo::FirstVirtualRegister+1);
 | |
| }
 | |
| 
 | |
| int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | |
|   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
 | |
|          "attempt to assign stack slot to already spilled register");
 | |
|   const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
 | |
|   int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
 | |
|                                                 RC->getAlignment());
 | |
|   if (LowSpillSlot == NO_STACK_SLOT)
 | |
|     LowSpillSlot = SS;
 | |
|   if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
 | |
|     HighSpillSlot = SS;
 | |
|   unsigned Idx = SS-LowSpillSlot;
 | |
|   while (Idx >= SpillSlotToUsesMap.size())
 | |
|     SpillSlotToUsesMap.resize(SpillSlotToUsesMap.size()*2);
 | |
|   Virt2StackSlotMap[virtReg] = SS;
 | |
|   ++NumSpills;
 | |
|   return SS;
 | |
| }
 | |
| 
 | |
| void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | |
|   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
 | |
|          "attempt to assign stack slot to already spilled register");
 | |
|   assert((SS >= 0 ||
 | |
|           (SS >= MF.getFrameInfo()->getObjectIndexBegin())) &&
 | |
|          "illegal fixed frame index");
 | |
|   Virt2StackSlotMap[virtReg] = SS;
 | |
| }
 | |
| 
 | |
| int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | |
|   assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
 | |
|          "attempt to assign re-mat id to already spilled register");
 | |
|   Virt2ReMatIdMap[virtReg] = ReMatId;
 | |
|   return ReMatId++;
 | |
| }
 | |
| 
 | |
| void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
 | |
|   assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
 | |
|          "attempt to assign re-mat id to already spilled register");
 | |
|   Virt2ReMatIdMap[virtReg] = id;
 | |
| }
 | |
| 
 | |
| int VirtRegMap::getEmergencySpillSlot(const TargetRegisterClass *RC) {
 | |
|   std::map<const TargetRegisterClass*, int>::iterator I =
 | |
|     EmergencySpillSlots.find(RC);
 | |
|   if (I != EmergencySpillSlots.end())
 | |
|     return I->second;
 | |
|   int SS = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
 | |
|                                                 RC->getAlignment());
 | |
|   if (LowSpillSlot == NO_STACK_SLOT)
 | |
|     LowSpillSlot = SS;
 | |
|   if (HighSpillSlot == NO_STACK_SLOT || SS > HighSpillSlot)
 | |
|     HighSpillSlot = SS;
 | |
|   I->second = SS;
 | |
|   return SS;
 | |
| }
 | |
| 
 | |
| void VirtRegMap::addSpillSlotUse(int FI, MachineInstr *MI) {
 | |
|   if (!MF.getFrameInfo()->isFixedObjectIndex(FI)) {
 | |
|     // If FI < LowSpillSlot, this stack reference was produced by
 | |
|     // instruction selection and is not a spill
 | |
|     if (FI >= LowSpillSlot) {
 | |
|       assert(FI >= 0 && "Spill slot index should not be negative!");
 | |
|       assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
 | |
|              && "Invalid spill slot");
 | |
|       SpillSlotToUsesMap[FI-LowSpillSlot].insert(MI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
 | |
|                             MachineInstr *NewMI, ModRef MRInfo) {
 | |
|   // Move previous memory references folded to new instruction.
 | |
|   MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
 | |
|   for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
 | |
|          E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
 | |
|     MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
 | |
|     MI2VirtMap.erase(I++);
 | |
|   }
 | |
| 
 | |
|   // add new memory reference
 | |
|   MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
 | |
| }
 | |
| 
 | |
| void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
 | |
|   MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
 | |
|   MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
 | |
| }
 | |
| 
 | |
| void VirtRegMap::RemoveMachineInstrFromMaps(MachineInstr *MI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isFrameIndex())
 | |
|       continue;
 | |
|     int FI = MO.getIndex();
 | |
|     if (MF.getFrameInfo()->isFixedObjectIndex(FI))
 | |
|       continue;
 | |
|     // This stack reference was produced by instruction selection and
 | |
|     // is not a spill
 | |
|     if (FI < LowSpillSlot)
 | |
|       continue;
 | |
|     assert((unsigned)FI-LowSpillSlot < SpillSlotToUsesMap.size()
 | |
|            && "Invalid spill slot");
 | |
|     SpillSlotToUsesMap[FI-LowSpillSlot].erase(MI);
 | |
|   }
 | |
|   MI2VirtMap.erase(MI);
 | |
|   SpillPt2VirtMap.erase(MI);
 | |
|   RestorePt2VirtMap.erase(MI);
 | |
|   EmergencySpillMap.erase(MI);
 | |
| }
 | |
| 
 | |
| void VirtRegMap::print(std::ostream &OS) const {
 | |
|   const TargetRegisterInfo* TRI = MF.getTarget().getRegisterInfo();
 | |
| 
 | |
|   OS << "********** REGISTER MAP **********\n";
 | |
|   for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
 | |
|          e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
 | |
|     if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
 | |
|       OS << "[reg" << i << " -> " << TRI->getName(Virt2PhysMap[i])
 | |
|          << "]\n";
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
 | |
|          e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
 | |
|     if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
 | |
|       OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
 | |
|   OS << '\n';
 | |
| }
 | |
| 
 | |
| void VirtRegMap::dump() const {
 | |
|   print(cerr);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Simple Spiller Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Spiller::~Spiller() {}
 | |
| 
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
 | |
|     bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
 | |
|   DOUT << "********** REWRITE MACHINE CODE **********\n";
 | |
|   DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
 | |
|   const TargetMachine &TM = MF.getTarget();
 | |
|   const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
 | |
|   
 | |
| 
 | |
|   // LoadedRegs - Keep track of which vregs are loaded, so that we only load
 | |
|   // each vreg once (in the case where a spilled vreg is used by multiple
 | |
|   // operands).  This is always smaller than the number of operands to the
 | |
|   // current machine instr, so it should be small.
 | |
|   std::vector<unsigned> LoadedRegs;
 | |
| 
 | |
|   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     DOUT << MBBI->getBasicBlock()->getName() << ":\n";
 | |
|     MachineBasicBlock &MBB = *MBBI;
 | |
|     for (MachineBasicBlock::iterator MII = MBB.begin(),
 | |
|            E = MBB.end(); MII != E; ++MII) {
 | |
|       MachineInstr &MI = *MII;
 | |
|       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|         MachineOperand &MO = MI.getOperand(i);
 | |
|         if (MO.isRegister() && MO.getReg()) {
 | |
|           if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|             unsigned VirtReg = MO.getReg();
 | |
|             unsigned SubIdx = MO.getSubReg();
 | |
|             unsigned PhysReg = VRM.getPhys(VirtReg);
 | |
|             unsigned RReg = SubIdx ? TRI.getSubReg(PhysReg, SubIdx) : PhysReg;
 | |
|             if (!VRM.isAssignedReg(VirtReg)) {
 | |
|               int StackSlot = VRM.getStackSlot(VirtReg);
 | |
|               const TargetRegisterClass* RC =
 | |
|                 MF.getRegInfo().getRegClass(VirtReg);
 | |
| 
 | |
|               if (MO.isUse() &&
 | |
|                   std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
 | |
|                   == LoadedRegs.end()) {
 | |
|                 TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
 | |
|                 MachineInstr *LoadMI = prior(MII);
 | |
|                 VRM.addSpillSlotUse(StackSlot, LoadMI);
 | |
|                 LoadedRegs.push_back(VirtReg);
 | |
|                 ++NumLoads;
 | |
|                 DOUT << '\t' << *LoadMI;
 | |
|               }
 | |
| 
 | |
|               if (MO.isDef()) {
 | |
|                 TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
 | |
|                                         StackSlot, RC);
 | |
|                 MachineInstr *StoreMI = next(MII);
 | |
|                 VRM.addSpillSlotUse(StackSlot, StoreMI);
 | |
|                 ++NumStores;
 | |
|               }
 | |
|             }
 | |
|             MF.getRegInfo().setPhysRegUsed(RReg);
 | |
|             MI.getOperand(i).setReg(RReg);
 | |
|           } else {
 | |
|             MF.getRegInfo().setPhysRegUsed(MO.getReg());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       DOUT << '\t' << MI;
 | |
|       LoadedRegs.clear();
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local Spiller Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   class AvailableSpills;
 | |
| 
 | |
|   /// LocalSpiller - This spiller does a simple pass over the machine basic
 | |
|   /// block to attempt to keep spills in registers as much as possible for
 | |
|   /// blocks that have low register pressure (the vreg may be spilled due to
 | |
|   /// register pressure in other blocks).
 | |
|   class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
 | |
|     MachineRegisterInfo *RegInfo;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     const TargetInstrInfo *TII;
 | |
|     DenseMap<MachineInstr*, unsigned> DistanceMap;
 | |
|   public:
 | |
|     bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
 | |
|       RegInfo = &MF.getRegInfo(); 
 | |
|       TRI = MF.getTarget().getRegisterInfo();
 | |
|       TII = MF.getTarget().getInstrInfo();
 | |
|       DOUT << "\n**** Local spiller rewriting function '"
 | |
|            << MF.getFunction()->getName() << "':\n";
 | |
|       DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
 | |
|               " ****\n";
 | |
|       DEBUG(MF.dump());
 | |
| 
 | |
|       for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
 | |
|            MBB != E; ++MBB)
 | |
|         RewriteMBB(*MBB, VRM);
 | |
| 
 | |
|       // Mark unused spill slots.
 | |
|       MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|       int SS = VRM.getLowSpillSlot();
 | |
|       if (SS != VirtRegMap::NO_STACK_SLOT)
 | |
|         for (int e = VRM.getHighSpillSlot(); SS <= e; ++SS)
 | |
|           if (!VRM.isSpillSlotUsed(SS)) {
 | |
|             MFI->RemoveStackObject(SS);
 | |
|             ++NumDSS;
 | |
|           }
 | |
| 
 | |
|       DOUT << "**** Post Machine Instrs ****\n";
 | |
|       DEBUG(MF.dump());
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
|   private:
 | |
|     void TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
 | |
|                           unsigned Reg, BitVector &RegKills,
 | |
|                           std::vector<MachineOperand*> &KillOps);
 | |
|     bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
 | |
|                            MachineBasicBlock::iterator &MII,
 | |
|                            std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                            AvailableSpills &Spills, BitVector &RegKills,
 | |
|                            std::vector<MachineOperand*> &KillOps,
 | |
|                            VirtRegMap &VRM);
 | |
|     bool CommuteToFoldReload(MachineBasicBlock &MBB,
 | |
|                              MachineBasicBlock::iterator &MII,
 | |
|                              unsigned VirtReg, unsigned SrcReg, int SS,
 | |
|                              BitVector &RegKills,
 | |
|                              std::vector<MachineOperand*> &KillOps,
 | |
|                              const TargetRegisterInfo *TRI,
 | |
|                              VirtRegMap &VRM);
 | |
|     void SpillRegToStackSlot(MachineBasicBlock &MBB,
 | |
|                              MachineBasicBlock::iterator &MII,
 | |
|                              int Idx, unsigned PhysReg, int StackSlot,
 | |
|                              const TargetRegisterClass *RC,
 | |
|                              bool isAvailable, MachineInstr *&LastStore,
 | |
|                              AvailableSpills &Spills,
 | |
|                              SmallSet<MachineInstr*, 4> &ReMatDefs,
 | |
|                              BitVector &RegKills,
 | |
|                              std::vector<MachineOperand*> &KillOps,
 | |
|                              VirtRegMap &VRM);
 | |
|     void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
 | |
| /// top down, keep track of which spills slots or remat are available in each
 | |
| /// register.
 | |
| ///
 | |
| /// Note that not all physregs are created equal here.  In particular, some
 | |
| /// physregs are reloads that we are allowed to clobber or ignore at any time.
 | |
| /// Other physregs are values that the register allocated program is using that
 | |
| /// we cannot CHANGE, but we can read if we like.  We keep track of this on a 
 | |
| /// per-stack-slot / remat id basis as the low bit in the value of the
 | |
| /// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
 | |
| /// this bit and addAvailable sets it if.
 | |
| namespace {
 | |
| class VISIBILITY_HIDDEN AvailableSpills {
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   const TargetInstrInfo *TII;
 | |
| 
 | |
|   // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
 | |
|   // or remat'ed virtual register values that are still available, due to being
 | |
|   // loaded or stored to, but not invalidated yet.
 | |
|   std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
 | |
|     
 | |
|   // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
 | |
|   // indicating which stack slot values are currently held by a physreg.  This
 | |
|   // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
 | |
|   // physreg is modified.
 | |
|   std::multimap<unsigned, int> PhysRegsAvailable;
 | |
|   
 | |
|   void disallowClobberPhysRegOnly(unsigned PhysReg);
 | |
| 
 | |
|   void ClobberPhysRegOnly(unsigned PhysReg);
 | |
| public:
 | |
|   AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
 | |
|     : TRI(tri), TII(tii) {
 | |
|   }
 | |
|   
 | |
|   const TargetRegisterInfo *getRegInfo() const { return TRI; }
 | |
| 
 | |
|   /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
 | |
|   /// available in a  physical register, return that PhysReg, otherwise
 | |
|   /// return 0.
 | |
|   unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
 | |
|     std::map<int, unsigned>::const_iterator I =
 | |
|       SpillSlotsOrReMatsAvailable.find(Slot);
 | |
|     if (I != SpillSlotsOrReMatsAvailable.end()) {
 | |
|       return I->second >> 1;  // Remove the CanClobber bit.
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// addAvailable - Mark that the specified stack slot / remat is available in
 | |
|   /// the specified physreg.  If CanClobber is true, the physreg can be modified
 | |
|   /// at any time without changing the semantics of the program.
 | |
|   void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
 | |
|                     bool CanClobber = true) {
 | |
|     // If this stack slot is thought to be available in some other physreg, 
 | |
|     // remove its record.
 | |
|     ModifyStackSlotOrReMat(SlotOrReMat);
 | |
|     
 | |
|     PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
 | |
|     SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
 | |
|   
 | |
|     if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
 | |
|       DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
 | |
|     else
 | |
|       DOUT << "Remembering SS#" << SlotOrReMat;
 | |
|     DOUT << " in physreg " << TRI->getName(Reg) << "\n";
 | |
|   }
 | |
| 
 | |
|   /// canClobberPhysReg - Return true if the spiller is allowed to change the 
 | |
|   /// value of the specified stackslot register if it desires.  The specified
 | |
|   /// stack slot must be available in a physreg for this query to make sense.
 | |
|   bool canClobberPhysReg(int SlotOrReMat) const {
 | |
|     assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
 | |
|            "Value not available!");
 | |
|     return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
 | |
|   }
 | |
| 
 | |
|   /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
 | |
|   /// stackslot register. The register is still available but is no longer
 | |
|   /// allowed to be modifed.
 | |
|   void disallowClobberPhysReg(unsigned PhysReg);
 | |
|   
 | |
|   /// ClobberPhysReg - This is called when the specified physreg changes
 | |
|   /// value.  We use this to invalidate any info about stuff that lives in
 | |
|   /// it and any of its aliases.
 | |
|   void ClobberPhysReg(unsigned PhysReg);
 | |
| 
 | |
|   /// ModifyStackSlotOrReMat - This method is called when the value in a stack
 | |
|   /// slot changes.  This removes information about which register the previous
 | |
|   /// value for this slot lives in (as the previous value is dead now).
 | |
|   void ModifyStackSlotOrReMat(int SlotOrReMat);
 | |
| };
 | |
| }
 | |
| 
 | |
| /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
 | |
| /// stackslot register. The register is still available but is no longer
 | |
| /// allowed to be modifed.
 | |
| void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
 | |
|   std::multimap<unsigned, int>::iterator I =
 | |
|     PhysRegsAvailable.lower_bound(PhysReg);
 | |
|   while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
 | |
|     int SlotOrReMat = I->second;
 | |
|     I++;
 | |
|     assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
 | |
|            "Bidirectional map mismatch!");
 | |
|     SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
 | |
|     DOUT << "PhysReg " << TRI->getName(PhysReg)
 | |
|          << " copied, it is available for use but can no longer be modified\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
 | |
| /// stackslot register and its aliases. The register and its aliases may
 | |
| /// still available but is no longer allowed to be modifed.
 | |
| void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
 | |
|   for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
 | |
|     disallowClobberPhysRegOnly(*AS);
 | |
|   disallowClobberPhysRegOnly(PhysReg);
 | |
| }
 | |
| 
 | |
| /// ClobberPhysRegOnly - This is called when the specified physreg changes
 | |
| /// value.  We use this to invalidate any info about stuff we thing lives in it.
 | |
| void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
 | |
|   std::multimap<unsigned, int>::iterator I =
 | |
|     PhysRegsAvailable.lower_bound(PhysReg);
 | |
|   while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
 | |
|     int SlotOrReMat = I->second;
 | |
|     PhysRegsAvailable.erase(I++);
 | |
|     assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
 | |
|            "Bidirectional map mismatch!");
 | |
|     SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
 | |
|     DOUT << "PhysReg " << TRI->getName(PhysReg)
 | |
|          << " clobbered, invalidating ";
 | |
|     if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
 | |
|       DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
 | |
|     else
 | |
|       DOUT << "SS#" << SlotOrReMat << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ClobberPhysReg - This is called when the specified physreg changes
 | |
| /// value.  We use this to invalidate any info about stuff we thing lives in
 | |
| /// it and any of its aliases.
 | |
| void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
 | |
|   for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
 | |
|     ClobberPhysRegOnly(*AS);
 | |
|   ClobberPhysRegOnly(PhysReg);
 | |
| }
 | |
| 
 | |
| /// ModifyStackSlotOrReMat - This method is called when the value in a stack
 | |
| /// slot changes.  This removes information about which register the previous
 | |
| /// value for this slot lives in (as the previous value is dead now).
 | |
| void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
 | |
|   std::map<int, unsigned>::iterator It =
 | |
|     SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
 | |
|   if (It == SpillSlotsOrReMatsAvailable.end()) return;
 | |
|   unsigned Reg = It->second >> 1;
 | |
|   SpillSlotsOrReMatsAvailable.erase(It);
 | |
|   
 | |
|   // This register may hold the value of multiple stack slots, only remove this
 | |
|   // stack slot from the set of values the register contains.
 | |
|   std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
 | |
|   for (; ; ++I) {
 | |
|     assert(I != PhysRegsAvailable.end() && I->first == Reg &&
 | |
|            "Map inverse broken!");
 | |
|     if (I->second == SlotOrReMat) break;
 | |
|   }
 | |
|   PhysRegsAvailable.erase(I);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// InvalidateKills - MI is going to be deleted. If any of its operands are
 | |
| /// marked kill, then invalidate the information.
 | |
| static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
 | |
|                             std::vector<MachineOperand*> &KillOps,
 | |
|                             SmallVector<unsigned, 2> *KillRegs = NULL) {
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     if (KillRegs)
 | |
|       KillRegs->push_back(Reg);
 | |
|     assert(Reg < KillOps.size());
 | |
|     if (KillOps[Reg] == &MO) {
 | |
|       RegKills.reset(Reg);
 | |
|       KillOps[Reg] = NULL;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InvalidateKill - A MI that defines the specified register is being deleted,
 | |
| /// invalidate the register kill information.
 | |
| static void InvalidateKill(unsigned Reg, BitVector &RegKills,
 | |
|                            std::vector<MachineOperand*> &KillOps) {
 | |
|   if (RegKills[Reg]) {
 | |
|     KillOps[Reg]->setIsKill(false);
 | |
|     KillOps[Reg] = NULL;
 | |
|     RegKills.reset(Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InvalidateRegDef - If the def operand of the specified def MI is now dead
 | |
| /// (since it's spill instruction is removed), mark it isDead. Also checks if
 | |
| /// the def MI has other definition operands that are not dead. Returns it by
 | |
| /// reference.
 | |
| static bool InvalidateRegDef(MachineBasicBlock::iterator I,
 | |
|                              MachineInstr &NewDef, unsigned Reg,
 | |
|                              bool &HasLiveDef) {
 | |
|   // Due to remat, it's possible this reg isn't being reused. That is,
 | |
|   // the def of this reg (by prev MI) is now dead.
 | |
|   MachineInstr *DefMI = I;
 | |
|   MachineOperand *DefOp = NULL;
 | |
|   for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = DefMI->getOperand(i);
 | |
|     if (MO.isRegister() && MO.isDef()) {
 | |
|       if (MO.getReg() == Reg)
 | |
|         DefOp = &MO;
 | |
|       else if (!MO.isDead())
 | |
|         HasLiveDef = true;
 | |
|     }
 | |
|   }
 | |
|   if (!DefOp)
 | |
|     return false;
 | |
| 
 | |
|   bool FoundUse = false, Done = false;
 | |
|   MachineBasicBlock::iterator E = &NewDef;
 | |
|   ++I; ++E;
 | |
|   for (; !Done && I != E; ++I) {
 | |
|     MachineInstr *NMI = I;
 | |
|     for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
 | |
|       MachineOperand &MO = NMI->getOperand(j);
 | |
|       if (!MO.isRegister() || MO.getReg() != Reg)
 | |
|         continue;
 | |
|       if (MO.isUse())
 | |
|         FoundUse = true;
 | |
|       Done = true; // Stop after scanning all the operands of this MI.
 | |
|     }
 | |
|   }
 | |
|   if (!FoundUse) {
 | |
|     // Def is dead!
 | |
|     DefOp->setIsDead();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// UpdateKills - Track and update kill info. If a MI reads a register that is
 | |
| /// marked kill, then it must be due to register reuse. Transfer the kill info
 | |
| /// over.
 | |
| static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
 | |
|                         std::vector<MachineOperand*> &KillOps) {
 | |
|   const TargetInstrDesc &TID = MI.getDesc();
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isRegister() || !MO.isUse())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0)
 | |
|       continue;
 | |
|     
 | |
|     if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
 | |
|       // That can't be right. Register is killed but not re-defined and it's
 | |
|       // being reused. Let's fix that.
 | |
|       KillOps[Reg]->setIsKill(false);
 | |
|       KillOps[Reg] = NULL;
 | |
|       RegKills.reset(Reg);
 | |
|       if (i < TID.getNumOperands() &&
 | |
|           TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
 | |
|         // Unless it's a two-address operand, this is the new kill.
 | |
|         MO.setIsKill();
 | |
|     }
 | |
|     if (MO.isKill()) {
 | |
|       RegKills.set(Reg);
 | |
|       KillOps[Reg] = &MO;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isRegister() || !MO.isDef())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     RegKills.reset(Reg);
 | |
|     KillOps[Reg] = NULL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
 | |
| ///
 | |
| static void ReMaterialize(MachineBasicBlock &MBB,
 | |
|                           MachineBasicBlock::iterator &MII,
 | |
|                           unsigned DestReg, unsigned Reg,
 | |
|                           const TargetInstrInfo *TII,
 | |
|                           const TargetRegisterInfo *TRI,
 | |
|                           VirtRegMap &VRM) {
 | |
|   TII->reMaterialize(MBB, MII, DestReg, VRM.getReMaterializedMI(Reg));
 | |
|   MachineInstr *NewMI = prior(MII);
 | |
|   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = NewMI->getOperand(i);
 | |
|     if (!MO.isRegister() || MO.getReg() == 0)
 | |
|       continue;
 | |
|     unsigned VirtReg = MO.getReg();
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
 | |
|       continue;
 | |
|     assert(MO.isUse());
 | |
|     unsigned SubIdx = MO.getSubReg();
 | |
|     unsigned Phys = VRM.getPhys(VirtReg);
 | |
|     assert(Phys);
 | |
|     unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
 | |
|     MO.setReg(RReg);
 | |
|   }
 | |
|   ++NumReMats;
 | |
| }
 | |
| 
 | |
| 
 | |
| // ReusedOp - For each reused operand, we keep track of a bit of information, in
 | |
| // case we need to rollback upon processing a new operand.  See comments below.
 | |
| namespace {
 | |
|   struct ReusedOp {
 | |
|     // The MachineInstr operand that reused an available value.
 | |
|     unsigned Operand;
 | |
| 
 | |
|     // StackSlotOrReMat - The spill slot or remat id of the value being reused.
 | |
|     unsigned StackSlotOrReMat;
 | |
| 
 | |
|     // PhysRegReused - The physical register the value was available in.
 | |
|     unsigned PhysRegReused;
 | |
| 
 | |
|     // AssignedPhysReg - The physreg that was assigned for use by the reload.
 | |
|     unsigned AssignedPhysReg;
 | |
|     
 | |
|     // VirtReg - The virtual register itself.
 | |
|     unsigned VirtReg;
 | |
| 
 | |
|     ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
 | |
|              unsigned vreg)
 | |
|       : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
 | |
|         AssignedPhysReg(apr), VirtReg(vreg) {}
 | |
|   };
 | |
|   
 | |
|   /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
 | |
|   /// is reused instead of reloaded.
 | |
|   class VISIBILITY_HIDDEN ReuseInfo {
 | |
|     MachineInstr &MI;
 | |
|     std::vector<ReusedOp> Reuses;
 | |
|     BitVector PhysRegsClobbered;
 | |
|   public:
 | |
|     ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
 | |
|       PhysRegsClobbered.resize(tri->getNumRegs());
 | |
|     }
 | |
|     
 | |
|     bool hasReuses() const {
 | |
|       return !Reuses.empty();
 | |
|     }
 | |
|     
 | |
|     /// addReuse - If we choose to reuse a virtual register that is already
 | |
|     /// available instead of reloading it, remember that we did so.
 | |
|     void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
 | |
|                   unsigned PhysRegReused, unsigned AssignedPhysReg,
 | |
|                   unsigned VirtReg) {
 | |
|       // If the reload is to the assigned register anyway, no undo will be
 | |
|       // required.
 | |
|       if (PhysRegReused == AssignedPhysReg) return;
 | |
|       
 | |
|       // Otherwise, remember this.
 | |
|       Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, 
 | |
|                                 AssignedPhysReg, VirtReg));
 | |
|     }
 | |
| 
 | |
|     void markClobbered(unsigned PhysReg) {
 | |
|       PhysRegsClobbered.set(PhysReg);
 | |
|     }
 | |
| 
 | |
|     bool isClobbered(unsigned PhysReg) const {
 | |
|       return PhysRegsClobbered.test(PhysReg);
 | |
|     }
 | |
|     
 | |
|     /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
 | |
|     /// is some other operand that is using the specified register, either pick
 | |
|     /// a new register to use, or evict the previous reload and use this reg. 
 | |
|     unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
 | |
|                              AvailableSpills &Spills,
 | |
|                              std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                              SmallSet<unsigned, 8> &Rejected,
 | |
|                              BitVector &RegKills,
 | |
|                              std::vector<MachineOperand*> &KillOps,
 | |
|                              VirtRegMap &VRM) {
 | |
|       const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
 | |
|                                    .getInstrInfo();
 | |
|       
 | |
|       if (Reuses.empty()) return PhysReg;  // This is most often empty.
 | |
| 
 | |
|       for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
 | |
|         ReusedOp &Op = Reuses[ro];
 | |
|         // If we find some other reuse that was supposed to use this register
 | |
|         // exactly for its reload, we can change this reload to use ITS reload
 | |
|         // register. That is, unless its reload register has already been
 | |
|         // considered and subsequently rejected because it has also been reused
 | |
|         // by another operand.
 | |
|         if (Op.PhysRegReused == PhysReg &&
 | |
|             Rejected.count(Op.AssignedPhysReg) == 0) {
 | |
|           // Yup, use the reload register that we didn't use before.
 | |
|           unsigned NewReg = Op.AssignedPhysReg;
 | |
|           Rejected.insert(PhysReg);
 | |
|           return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
 | |
|                                  RegKills, KillOps, VRM);
 | |
|         } else {
 | |
|           // Otherwise, we might also have a problem if a previously reused
 | |
|           // value aliases the new register.  If so, codegen the previous reload
 | |
|           // and use this one.          
 | |
|           unsigned PRRU = Op.PhysRegReused;
 | |
|           const TargetRegisterInfo *TRI = Spills.getRegInfo();
 | |
|           if (TRI->areAliases(PRRU, PhysReg)) {
 | |
|             // Okay, we found out that an alias of a reused register
 | |
|             // was used.  This isn't good because it means we have
 | |
|             // to undo a previous reuse.
 | |
|             MachineBasicBlock *MBB = MI->getParent();
 | |
|             const TargetRegisterClass *AliasRC =
 | |
|               MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
 | |
| 
 | |
|             // Copy Op out of the vector and remove it, we're going to insert an
 | |
|             // explicit load for it.
 | |
|             ReusedOp NewOp = Op;
 | |
|             Reuses.erase(Reuses.begin()+ro);
 | |
| 
 | |
|             // Ok, we're going to try to reload the assigned physreg into the
 | |
|             // slot that we were supposed to in the first place.  However, that
 | |
|             // register could hold a reuse.  Check to see if it conflicts or
 | |
|             // would prefer us to use a different register.
 | |
|             unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
 | |
|                                                   MI, Spills, MaybeDeadStores,
 | |
|                                               Rejected, RegKills, KillOps, VRM);
 | |
|             
 | |
|             MachineBasicBlock::iterator MII = MI;
 | |
|             if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
 | |
|               ReMaterialize(*MBB, MII, NewPhysReg, NewOp.VirtReg, TII, TRI,VRM);
 | |
|             } else {
 | |
|               TII->loadRegFromStackSlot(*MBB, MII, NewPhysReg,
 | |
|                                         NewOp.StackSlotOrReMat, AliasRC);
 | |
|               MachineInstr *LoadMI = prior(MII);
 | |
|               VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
 | |
|               // Any stores to this stack slot are not dead anymore.
 | |
|               MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;            
 | |
|               ++NumLoads;
 | |
|             }
 | |
|             Spills.ClobberPhysReg(NewPhysReg);
 | |
|             Spills.ClobberPhysReg(NewOp.PhysRegReused);
 | |
|             
 | |
|             MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
 | |
|             
 | |
|             Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
 | |
|             --MII;
 | |
|             UpdateKills(*MII, RegKills, KillOps);
 | |
|             DOUT << '\t' << *MII;
 | |
|             
 | |
|             DOUT << "Reuse undone!\n";
 | |
|             --NumReused;
 | |
|             
 | |
|             // Finally, PhysReg is now available, go ahead and use it.
 | |
|             return PhysReg;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       return PhysReg;
 | |
|     }
 | |
| 
 | |
|     /// GetRegForReload - Helper for the above GetRegForReload(). Add a
 | |
|     /// 'Rejected' set to remember which registers have been considered and
 | |
|     /// rejected for the reload. This avoids infinite looping in case like
 | |
|     /// this:
 | |
|     /// t1 := op t2, t3
 | |
|     /// t2 <- assigned r0 for use by the reload but ended up reuse r1
 | |
|     /// t3 <- assigned r1 for use by the reload but ended up reuse r0
 | |
|     /// t1 <- desires r1
 | |
|     ///       sees r1 is taken by t2, tries t2's reload register r0
 | |
|     ///       sees r0 is taken by t3, tries t3's reload register r1
 | |
|     ///       sees r1 is taken by t2, tries t2's reload register r0 ...
 | |
|     unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
 | |
|                              AvailableSpills &Spills,
 | |
|                              std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                              BitVector &RegKills,
 | |
|                              std::vector<MachineOperand*> &KillOps,
 | |
|                              VirtRegMap &VRM) {
 | |
|       SmallSet<unsigned, 8> Rejected;
 | |
|       return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
 | |
|                              RegKills, KillOps, VRM);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
 | |
| /// instruction. e.g.
 | |
| ///     xorl  %edi, %eax
 | |
| ///     movl  %eax, -32(%ebp)
 | |
| ///     movl  -36(%ebp), %eax
 | |
| ///     orl   %eax, -32(%ebp)
 | |
| /// ==>
 | |
| ///     xorl  %edi, %eax
 | |
| ///     orl   -36(%ebp), %eax
 | |
| ///     mov   %eax, -32(%ebp)
 | |
| /// This enables unfolding optimization for a subsequent instruction which will
 | |
| /// also eliminate the newly introduced store instruction.
 | |
| bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
 | |
|                                     MachineBasicBlock::iterator &MII,
 | |
|                                     std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                                     AvailableSpills &Spills,
 | |
|                                     BitVector &RegKills,
 | |
|                                     std::vector<MachineOperand*> &KillOps,
 | |
|                                     VirtRegMap &VRM) {
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineInstr &MI = *MII;
 | |
|   unsigned UnfoldedOpc = 0;
 | |
|   unsigned UnfoldPR = 0;
 | |
|   unsigned UnfoldVR = 0;
 | |
|   int FoldedSS = VirtRegMap::NO_STACK_SLOT;
 | |
|   VirtRegMap::MI2VirtMapTy::const_iterator I, End;
 | |
|   for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
 | |
|     // Only transform a MI that folds a single register.
 | |
|     if (UnfoldedOpc)
 | |
|       return false;
 | |
|     UnfoldVR = I->second.first;
 | |
|     VirtRegMap::ModRef MR = I->second.second;
 | |
|     // MI2VirtMap be can updated which invalidate the iterator.
 | |
|     // Increment the iterator first.
 | |
|     ++I; 
 | |
|     if (VRM.isAssignedReg(UnfoldVR))
 | |
|       continue;
 | |
|     // If this reference is not a use, any previous store is now dead.
 | |
|     // Otherwise, the store to this stack slot is not dead anymore.
 | |
|     FoldedSS = VRM.getStackSlot(UnfoldVR);
 | |
|     MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
 | |
|     if (DeadStore && (MR & VirtRegMap::isModRef)) {
 | |
|       unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
 | |
|       if (!PhysReg || !DeadStore->readsRegister(PhysReg))
 | |
|         continue;
 | |
|       UnfoldPR = PhysReg;
 | |
|       UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
 | |
|                                                     false, true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!UnfoldedOpc)
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
 | |
|       continue;
 | |
|     unsigned VirtReg = MO.getReg();
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
 | |
|       continue;
 | |
|     if (VRM.isAssignedReg(VirtReg)) {
 | |
|       unsigned PhysReg = VRM.getPhys(VirtReg);
 | |
|       if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
 | |
|         return false;
 | |
|     } else if (VRM.isReMaterialized(VirtReg))
 | |
|       continue;
 | |
|     int SS = VRM.getStackSlot(VirtReg);
 | |
|     unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
 | |
|     if (PhysReg) {
 | |
|       if (TRI->regsOverlap(PhysReg, UnfoldPR))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
|     if (VRM.hasPhys(VirtReg)) {
 | |
|       PhysReg = VRM.getPhys(VirtReg);
 | |
|       if (!TRI->regsOverlap(PhysReg, UnfoldPR))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Ok, we'll need to reload the value into a register which makes
 | |
|     // it impossible to perform the store unfolding optimization later.
 | |
|     // Let's see if it is possible to fold the load if the store is
 | |
|     // unfolded. This allows us to perform the store unfolding
 | |
|     // optimization.
 | |
|     SmallVector<MachineInstr*, 4> NewMIs;
 | |
|     if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
 | |
|       assert(NewMIs.size() == 1);
 | |
|       MachineInstr *NewMI = NewMIs.back();
 | |
|       NewMIs.clear();
 | |
|       int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
 | |
|       assert(Idx != -1);
 | |
|       SmallVector<unsigned, 2> Ops;
 | |
|       Ops.push_back(Idx);
 | |
|       MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, NewMI, Ops, SS);
 | |
|       if (FoldedMI) {
 | |
|         VRM.addSpillSlotUse(SS, FoldedMI);
 | |
|         if (!VRM.hasPhys(UnfoldVR))
 | |
|           VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
 | |
|         VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
 | |
|         MII = MBB.insert(MII, FoldedMI);
 | |
|         InvalidateKills(MI, RegKills, KillOps);
 | |
|         VRM.RemoveMachineInstrFromMaps(&MI);
 | |
|         MBB.erase(&MI);
 | |
|         MF.DeleteMachineInstr(NewMI);
 | |
|         return true;
 | |
|       }
 | |
|       MF.DeleteMachineInstr(NewMI);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CommuteToFoldReload -
 | |
| /// Look for
 | |
| /// r1 = load fi#1
 | |
| /// r1 = op r1, r2<kill>
 | |
| /// store r1, fi#1
 | |
| ///
 | |
| /// If op is commutable and r2 is killed, then we can xform these to
 | |
| /// r2 = op r2, fi#1
 | |
| /// store r2, fi#1
 | |
| bool LocalSpiller::CommuteToFoldReload(MachineBasicBlock &MBB,
 | |
|                                     MachineBasicBlock::iterator &MII,
 | |
|                                     unsigned VirtReg, unsigned SrcReg, int SS,
 | |
|                                     BitVector &RegKills,
 | |
|                                     std::vector<MachineOperand*> &KillOps,
 | |
|                                     const TargetRegisterInfo *TRI,
 | |
|                                     VirtRegMap &VRM) {
 | |
|   if (MII == MBB.begin() || !MII->killsRegister(SrcReg))
 | |
|     return false;
 | |
| 
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   MachineInstr &MI = *MII;
 | |
|   MachineBasicBlock::iterator DefMII = prior(MII);
 | |
|   MachineInstr *DefMI = DefMII;
 | |
|   const TargetInstrDesc &TID = DefMI->getDesc();
 | |
|   unsigned NewDstIdx;
 | |
|   if (DefMII != MBB.begin() &&
 | |
|       TID.isCommutable() &&
 | |
|       TII->CommuteChangesDestination(DefMI, NewDstIdx)) {
 | |
|     MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
 | |
|     unsigned NewReg = NewDstMO.getReg();
 | |
|     if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
 | |
|       return false;
 | |
|     MachineInstr *ReloadMI = prior(DefMII);
 | |
|     int FrameIdx;
 | |
|     unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
 | |
|     if (DestReg != SrcReg || FrameIdx != SS)
 | |
|       return false;
 | |
|     int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
 | |
|     if (UseIdx == -1)
 | |
|       return false;
 | |
|     int DefIdx = TID.getOperandConstraint(UseIdx, TOI::TIED_TO);
 | |
|     if (DefIdx == -1)
 | |
|       return false;
 | |
|     assert(DefMI->getOperand(DefIdx).isRegister() &&
 | |
|            DefMI->getOperand(DefIdx).getReg() == SrcReg);
 | |
| 
 | |
|     // Now commute def instruction.
 | |
|     MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
 | |
|     if (!CommutedMI)
 | |
|       return false;
 | |
|     SmallVector<unsigned, 2> Ops;
 | |
|     Ops.push_back(NewDstIdx);
 | |
|     MachineInstr *FoldedMI = TII->foldMemoryOperand(MF, CommutedMI, Ops, SS);
 | |
|     // Not needed since foldMemoryOperand returns new MI.
 | |
|     MF.DeleteMachineInstr(CommutedMI);
 | |
|     if (!FoldedMI)
 | |
|       return false;
 | |
| 
 | |
|     VRM.addSpillSlotUse(SS, FoldedMI);
 | |
|     VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
 | |
|     // Insert new def MI and spill MI.
 | |
|     const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
 | |
|     TII->storeRegToStackSlot(MBB, &MI, NewReg, true, SS, RC);
 | |
|     MII = prior(MII);
 | |
|     MachineInstr *StoreMI = MII;
 | |
|     VRM.addSpillSlotUse(SS, StoreMI);
 | |
|     VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
 | |
|     MII = MBB.insert(MII, FoldedMI);  // Update MII to backtrack.
 | |
| 
 | |
|     // Delete all 3 old instructions.
 | |
|     InvalidateKills(*ReloadMI, RegKills, KillOps);
 | |
|     VRM.RemoveMachineInstrFromMaps(ReloadMI);
 | |
|     MBB.erase(ReloadMI);
 | |
|     InvalidateKills(*DefMI, RegKills, KillOps);
 | |
|     VRM.RemoveMachineInstrFromMaps(DefMI);
 | |
|     MBB.erase(DefMI);
 | |
|     InvalidateKills(MI, RegKills, KillOps);
 | |
|     VRM.RemoveMachineInstrFromMaps(&MI);
 | |
|     MBB.erase(&MI);
 | |
| 
 | |
|     ++NumCommutes;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// findSuperReg - Find the SubReg's super-register of given register class
 | |
| /// where its SubIdx sub-register is SubReg.
 | |
| static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
 | |
|                              unsigned SubIdx, const TargetRegisterInfo *TRI) {
 | |
|   for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
 | |
|        I != E; ++I) {
 | |
|     unsigned Reg = *I;
 | |
|     if (TRI->getSubReg(Reg, SubIdx) == SubReg)
 | |
|       return Reg;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
 | |
| /// the last store to the same slot is now dead. If so, remove the last store.
 | |
| void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
 | |
|                                   MachineBasicBlock::iterator &MII,
 | |
|                                   int Idx, unsigned PhysReg, int StackSlot,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   bool isAvailable, MachineInstr *&LastStore,
 | |
|                                   AvailableSpills &Spills,
 | |
|                                   SmallSet<MachineInstr*, 4> &ReMatDefs,
 | |
|                                   BitVector &RegKills,
 | |
|                                   std::vector<MachineOperand*> &KillOps,
 | |
|                                   VirtRegMap &VRM) {
 | |
|   TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
 | |
|   MachineInstr *StoreMI = next(MII);
 | |
|   VRM.addSpillSlotUse(StackSlot, StoreMI);
 | |
|   DOUT << "Store:\t" << *StoreMI;
 | |
| 
 | |
|   // If there is a dead store to this stack slot, nuke it now.
 | |
|   if (LastStore) {
 | |
|     DOUT << "Removed dead store:\t" << *LastStore;
 | |
|     ++NumDSE;
 | |
|     SmallVector<unsigned, 2> KillRegs;
 | |
|     InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
 | |
|     MachineBasicBlock::iterator PrevMII = LastStore;
 | |
|     bool CheckDef = PrevMII != MBB.begin();
 | |
|     if (CheckDef)
 | |
|       --PrevMII;
 | |
|     VRM.RemoveMachineInstrFromMaps(LastStore);
 | |
|     MBB.erase(LastStore);
 | |
|     if (CheckDef) {
 | |
|       // Look at defs of killed registers on the store. Mark the defs
 | |
|       // as dead since the store has been deleted and they aren't
 | |
|       // being reused.
 | |
|       for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
 | |
|         bool HasOtherDef = false;
 | |
|         if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
 | |
|           MachineInstr *DeadDef = PrevMII;
 | |
|           if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
 | |
|             // FIXME: This assumes a remat def does not have side
 | |
|             // effects.
 | |
|             VRM.RemoveMachineInstrFromMaps(DeadDef);
 | |
|             MBB.erase(DeadDef);
 | |
|             ++NumDRM;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LastStore = next(MII);
 | |
| 
 | |
|   // If the stack slot value was previously available in some other
 | |
|   // register, change it now.  Otherwise, make the register available,
 | |
|   // in PhysReg.
 | |
|   Spills.ModifyStackSlotOrReMat(StackSlot);
 | |
|   Spills.ClobberPhysReg(PhysReg);
 | |
|   Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
 | |
|   ++NumStores;
 | |
| }
 | |
| 
 | |
| /// TransferDeadness - A identity copy definition is dead and it's being
 | |
| /// removed. Find the last def or use and mark it as dead / kill.
 | |
| void LocalSpiller::TransferDeadness(MachineBasicBlock *MBB, unsigned CurDist,
 | |
|                                     unsigned Reg, BitVector &RegKills,
 | |
|                                     std::vector<MachineOperand*> &KillOps) {
 | |
|   int LastUDDist = -1;
 | |
|   MachineInstr *LastUDMI = NULL;
 | |
|   for (MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(Reg),
 | |
|          RE = RegInfo->reg_end(); RI != RE; ++RI) {
 | |
|     MachineInstr *UDMI = &*RI;
 | |
|     if (UDMI->getParent() != MBB)
 | |
|       continue;
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
 | |
|     if (DI == DistanceMap.end() || DI->second > CurDist)
 | |
|       continue;
 | |
|     if ((int)DI->second < LastUDDist)
 | |
|       continue;
 | |
|     LastUDDist = DI->second;
 | |
|     LastUDMI = UDMI;
 | |
|   }
 | |
| 
 | |
|   if (LastUDMI) {
 | |
|     const TargetInstrDesc &TID = LastUDMI->getDesc();
 | |
|     MachineOperand *LastUD = NULL;
 | |
|     for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = LastUDMI->getOperand(i);
 | |
|       if (!MO.isRegister() || MO.getReg() != Reg)
 | |
|         continue;
 | |
|       if (!LastUD || (LastUD->isUse() && MO.isDef()))
 | |
|         LastUD = &MO;
 | |
|       if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1)
 | |
|         return;
 | |
|     }
 | |
|     if (LastUD->isDef())
 | |
|       LastUD->setIsDead();
 | |
|     else {
 | |
|       LastUD->setIsKill();
 | |
|       RegKills.set(Reg);
 | |
|       KillOps[Reg] = LastUD;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// rewriteMBB - Keep track of which spills are available even after the
 | |
| /// register allocator is done with them.  If possible, avid reloading vregs.
 | |
| void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
 | |
|   DOUT << MBB.getBasicBlock()->getName() << ":\n";
 | |
| 
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   
 | |
|   // Spills - Keep track of which spilled values are available in physregs so
 | |
|   // that we can choose to reuse the physregs instead of emitting reloads.
 | |
|   AvailableSpills Spills(TRI, TII);
 | |
|   
 | |
|   // MaybeDeadStores - When we need to write a value back into a stack slot,
 | |
|   // keep track of the inserted store.  If the stack slot value is never read
 | |
|   // (because the value was used from some available register, for example), and
 | |
|   // subsequently stored to, the original store is dead.  This map keeps track
 | |
|   // of inserted stores that are not used.  If we see a subsequent store to the
 | |
|   // same stack slot, the original store is deleted.
 | |
|   std::vector<MachineInstr*> MaybeDeadStores;
 | |
|   MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
 | |
| 
 | |
|   // ReMatDefs - These are rematerializable def MIs which are not deleted.
 | |
|   SmallSet<MachineInstr*, 4> ReMatDefs;
 | |
| 
 | |
|   // Keep track of kill information.
 | |
|   BitVector RegKills(TRI->getNumRegs());
 | |
|   std::vector<MachineOperand*>  KillOps;
 | |
|   KillOps.resize(TRI->getNumRegs(), NULL);
 | |
| 
 | |
|   unsigned Dist = 0;
 | |
|   DistanceMap.clear();
 | |
|   for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
 | |
|        MII != E; ) {
 | |
|     MachineBasicBlock::iterator NextMII = MII; ++NextMII;
 | |
| 
 | |
|     VirtRegMap::MI2VirtMapTy::const_iterator I, End;
 | |
|     bool Erased = false;
 | |
|     bool BackTracked = false;
 | |
|     if (PrepForUnfoldOpti(MBB, MII,
 | |
|                           MaybeDeadStores, Spills, RegKills, KillOps, VRM))
 | |
|       NextMII = next(MII);
 | |
| 
 | |
|     MachineInstr &MI = *MII;
 | |
|     const TargetInstrDesc &TID = MI.getDesc();
 | |
| 
 | |
|     if (VRM.hasEmergencySpills(&MI)) {
 | |
|       // Spill physical register(s) in the rare case the allocator has run out
 | |
|       // of registers to allocate.
 | |
|       SmallSet<int, 4> UsedSS;
 | |
|       std::vector<unsigned> &EmSpills = VRM.getEmergencySpills(&MI);
 | |
|       for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
 | |
|         unsigned PhysReg = EmSpills[i];
 | |
|         const TargetRegisterClass *RC =
 | |
|           TRI->getPhysicalRegisterRegClass(PhysReg);
 | |
|         assert(RC && "Unable to determine register class!");
 | |
|         int SS = VRM.getEmergencySpillSlot(RC);
 | |
|         if (UsedSS.count(SS))
 | |
|           assert(0 && "Need to spill more than one physical registers!");
 | |
|         UsedSS.insert(SS);
 | |
|         TII->storeRegToStackSlot(MBB, MII, PhysReg, true, SS, RC);
 | |
|         MachineInstr *StoreMI = prior(MII);
 | |
|         VRM.addSpillSlotUse(SS, StoreMI);
 | |
|         TII->loadRegFromStackSlot(MBB, next(MII), PhysReg, SS, RC);
 | |
|         MachineInstr *LoadMI = next(MII);
 | |
|         VRM.addSpillSlotUse(SS, LoadMI);
 | |
|         ++NumPSpills;
 | |
|       }
 | |
|       NextMII = next(MII);
 | |
|     }
 | |
| 
 | |
|     // Insert restores here if asked to.
 | |
|     if (VRM.isRestorePt(&MI)) {
 | |
|       std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
 | |
|       for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
 | |
|         unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
 | |
|         if (!VRM.getPreSplitReg(VirtReg))
 | |
|           continue; // Split interval spilled again.
 | |
|         unsigned Phys = VRM.getPhys(VirtReg);
 | |
|         RegInfo->setPhysRegUsed(Phys);
 | |
|         if (VRM.isReMaterialized(VirtReg)) {
 | |
|           ReMaterialize(MBB, MII, Phys, VirtReg, TII, TRI, VRM);
 | |
|         } else {
 | |
|           const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
 | |
|           int SS = VRM.getStackSlot(VirtReg);
 | |
|           TII->loadRegFromStackSlot(MBB, &MI, Phys, SS, RC);
 | |
|           MachineInstr *LoadMI = prior(MII);
 | |
|           VRM.addSpillSlotUse(SS, LoadMI);
 | |
|           ++NumLoads;
 | |
|         }
 | |
|         // This invalidates Phys.
 | |
|         Spills.ClobberPhysReg(Phys);
 | |
|         UpdateKills(*prior(MII), RegKills, KillOps);
 | |
|         DOUT << '\t' << *prior(MII);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Insert spills here if asked to.
 | |
|     if (VRM.isSpillPt(&MI)) {
 | |
|       std::vector<std::pair<unsigned,bool> > &SpillRegs =
 | |
|         VRM.getSpillPtSpills(&MI);
 | |
|       for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
 | |
|         unsigned VirtReg = SpillRegs[i].first;
 | |
|         bool isKill = SpillRegs[i].second;
 | |
|         if (!VRM.getPreSplitReg(VirtReg))
 | |
|           continue; // Split interval spilled again.
 | |
|         const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
 | |
|         unsigned Phys = VRM.getPhys(VirtReg);
 | |
|         int StackSlot = VRM.getStackSlot(VirtReg);
 | |
|         TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
 | |
|         MachineInstr *StoreMI = next(MII);
 | |
|         VRM.addSpillSlotUse(StackSlot, StoreMI);
 | |
|         DOUT << "Store:\t" << *StoreMI;
 | |
|         VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
 | |
|       }
 | |
|       NextMII = next(MII);
 | |
|     }
 | |
| 
 | |
|     /// ReusedOperands - Keep track of operand reuse in case we need to undo
 | |
|     /// reuse.
 | |
|     ReuseInfo ReusedOperands(MI, TRI);
 | |
|     SmallVector<unsigned, 4> VirtUseOps;
 | |
|     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (!MO.isRegister() || MO.getReg() == 0)
 | |
|         continue;   // Ignore non-register operands.
 | |
|       
 | |
|       unsigned VirtReg = MO.getReg();
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
 | |
|         // Ignore physregs for spilling, but remember that it is used by this
 | |
|         // function.
 | |
|         RegInfo->setPhysRegUsed(VirtReg);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We want to process implicit virtual register uses first.
 | |
|       if (MO.isImplicit())
 | |
|         // If the virtual register is implicitly defined, emit a implicit_def
 | |
|         // before so scavenger knows it's "defined".
 | |
|         VirtUseOps.insert(VirtUseOps.begin(), i);
 | |
|       else
 | |
|         VirtUseOps.push_back(i);
 | |
|     }
 | |
| 
 | |
|     // Process all of the spilled uses and all non spilled reg references.
 | |
|     for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
 | |
|       unsigned i = VirtUseOps[j];
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       unsigned VirtReg = MO.getReg();
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
 | |
|              "Not a virtual register?");
 | |
| 
 | |
|       unsigned SubIdx = MO.getSubReg();
 | |
|       if (VRM.isAssignedReg(VirtReg)) {
 | |
|         // This virtual register was assigned a physreg!
 | |
|         unsigned Phys = VRM.getPhys(VirtReg);
 | |
|         RegInfo->setPhysRegUsed(Phys);
 | |
|         if (MO.isDef())
 | |
|           ReusedOperands.markClobbered(Phys);
 | |
|         unsigned RReg = SubIdx ? TRI->getSubReg(Phys, SubIdx) : Phys;
 | |
|         MI.getOperand(i).setReg(RReg);
 | |
|         if (VRM.isImplicitlyDefined(VirtReg))
 | |
|           BuildMI(MBB, &MI, TII->get(TargetInstrInfo::IMPLICIT_DEF), RReg);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // This virtual register is now known to be a spilled value.
 | |
|       if (!MO.isUse())
 | |
|         continue;  // Handle defs in the loop below (handle use&def here though)
 | |
| 
 | |
|       bool DoReMat = VRM.isReMaterialized(VirtReg);
 | |
|       int SSorRMId = DoReMat
 | |
|         ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
 | |
|       int ReuseSlot = SSorRMId;
 | |
| 
 | |
|       // Check to see if this stack slot is available.
 | |
|       unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
 | |
| 
 | |
|       // If this is a sub-register use, make sure the reuse register is in the
 | |
|       // right register class. For example, for x86 not all of the 32-bit
 | |
|       // registers have accessible sub-registers.
 | |
|       // Similarly so for EXTRACT_SUBREG. Consider this:
 | |
|       // EDI = op
 | |
|       // MOV32_mr fi#1, EDI
 | |
|       // ...
 | |
|       //       = EXTRACT_SUBREG fi#1
 | |
|       // fi#1 is available in EDI, but it cannot be reused because it's not in
 | |
|       // the right register file.
 | |
|       if (PhysReg &&
 | |
|           (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
 | |
|         const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
 | |
|         if (!RC->contains(PhysReg))
 | |
|           PhysReg = 0;
 | |
|       }
 | |
| 
 | |
|       if (PhysReg) {
 | |
|         // This spilled operand might be part of a two-address operand.  If this
 | |
|         // is the case, then changing it will necessarily require changing the 
 | |
|         // def part of the instruction as well.  However, in some cases, we
 | |
|         // aren't allowed to modify the reused register.  If none of these cases
 | |
|         // apply, reuse it.
 | |
|         bool CanReuse = true;
 | |
|         int ti = TID.getOperandConstraint(i, TOI::TIED_TO);
 | |
|         if (ti != -1 &&
 | |
|             MI.getOperand(ti).isRegister() && 
 | |
|             MI.getOperand(ti).getReg() == VirtReg) {
 | |
|           // Okay, we have a two address operand.  We can reuse this physreg as
 | |
|           // long as we are allowed to clobber the value and there isn't an
 | |
|           // earlier def that has already clobbered the physreg.
 | |
|           CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
 | |
|             !ReusedOperands.isClobbered(PhysReg);
 | |
|         }
 | |
|         
 | |
|         if (CanReuse) {
 | |
|           // If this stack slot value is already available, reuse it!
 | |
|           if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
 | |
|             DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
 | |
|           else
 | |
|             DOUT << "Reusing SS#" << ReuseSlot;
 | |
|           DOUT << " from physreg "
 | |
|                << TRI->getName(PhysReg) << " for vreg"
 | |
|                << VirtReg <<" instead of reloading into physreg "
 | |
|                << TRI->getName(VRM.getPhys(VirtReg)) << "\n";
 | |
|           unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | |
|           MI.getOperand(i).setReg(RReg);
 | |
| 
 | |
|           // The only technical detail we have is that we don't know that
 | |
|           // PhysReg won't be clobbered by a reloaded stack slot that occurs
 | |
|           // later in the instruction.  In particular, consider 'op V1, V2'.
 | |
|           // If V1 is available in physreg R0, we would choose to reuse it
 | |
|           // here, instead of reloading it into the register the allocator
 | |
|           // indicated (say R1).  However, V2 might have to be reloaded
 | |
|           // later, and it might indicate that it needs to live in R0.  When
 | |
|           // this occurs, we need to have information available that
 | |
|           // indicates it is safe to use R1 for the reload instead of R0.
 | |
|           //
 | |
|           // To further complicate matters, we might conflict with an alias,
 | |
|           // or R0 and R1 might not be compatible with each other.  In this
 | |
|           // case, we actually insert a reload for V1 in R1, ensuring that
 | |
|           // we can get at R0 or its alias.
 | |
|           ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
 | |
|                                   VRM.getPhys(VirtReg), VirtReg);
 | |
|           if (ti != -1)
 | |
|             // Only mark it clobbered if this is a use&def operand.
 | |
|             ReusedOperands.markClobbered(PhysReg);
 | |
|           ++NumReused;
 | |
| 
 | |
|           if (MI.getOperand(i).isKill() &&
 | |
|               ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
 | |
|             // This was the last use and the spilled value is still available
 | |
|             // for reuse. That means the spill was unnecessary!
 | |
|             MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
 | |
|             if (DeadStore) {
 | |
|               DOUT << "Removed dead store:\t" << *DeadStore;
 | |
|               InvalidateKills(*DeadStore, RegKills, KillOps);
 | |
|               VRM.RemoveMachineInstrFromMaps(DeadStore);
 | |
|               MBB.erase(DeadStore);
 | |
|               MaybeDeadStores[ReuseSlot] = NULL;
 | |
|               ++NumDSE;
 | |
|             }
 | |
|           }
 | |
|           continue;
 | |
|         }  // CanReuse
 | |
|         
 | |
|         // Otherwise we have a situation where we have a two-address instruction
 | |
|         // whose mod/ref operand needs to be reloaded.  This reload is already
 | |
|         // available in some register "PhysReg", but if we used PhysReg as the
 | |
|         // operand to our 2-addr instruction, the instruction would modify
 | |
|         // PhysReg.  This isn't cool if something later uses PhysReg and expects
 | |
|         // to get its initial value.
 | |
|         //
 | |
|         // To avoid this problem, and to avoid doing a load right after a store,
 | |
|         // we emit a copy from PhysReg into the designated register for this
 | |
|         // operand.
 | |
|         unsigned DesignatedReg = VRM.getPhys(VirtReg);
 | |
|         assert(DesignatedReg && "Must map virtreg to physreg!");
 | |
| 
 | |
|         // Note that, if we reused a register for a previous operand, the
 | |
|         // register we want to reload into might not actually be
 | |
|         // available.  If this occurs, use the register indicated by the
 | |
|         // reuser.
 | |
|         if (ReusedOperands.hasReuses())
 | |
|           DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, 
 | |
|                                Spills, MaybeDeadStores, RegKills, KillOps, VRM);
 | |
|         
 | |
|         // If the mapped designated register is actually the physreg we have
 | |
|         // incoming, we don't need to inserted a dead copy.
 | |
|         if (DesignatedReg == PhysReg) {
 | |
|           // If this stack slot value is already available, reuse it!
 | |
|           if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
 | |
|             DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
 | |
|           else
 | |
|             DOUT << "Reusing SS#" << ReuseSlot;
 | |
|           DOUT << " from physreg " << TRI->getName(PhysReg)
 | |
|                << " for vreg" << VirtReg
 | |
|                << " instead of reloading into same physreg.\n";
 | |
|           unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | |
|           MI.getOperand(i).setReg(RReg);
 | |
|           ReusedOperands.markClobbered(RReg);
 | |
|           ++NumReused;
 | |
|           continue;
 | |
|         }
 | |
|         
 | |
|         const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
 | |
|         RegInfo->setPhysRegUsed(DesignatedReg);
 | |
|         ReusedOperands.markClobbered(DesignatedReg);
 | |
|         TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
 | |
| 
 | |
|         MachineInstr *CopyMI = prior(MII);
 | |
|         UpdateKills(*CopyMI, RegKills, KillOps);
 | |
| 
 | |
|         // This invalidates DesignatedReg.
 | |
|         Spills.ClobberPhysReg(DesignatedReg);
 | |
|         
 | |
|         Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
 | |
|         unsigned RReg =
 | |
|           SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
 | |
|         MI.getOperand(i).setReg(RReg);
 | |
|         DOUT << '\t' << *prior(MII);
 | |
|         ++NumReused;
 | |
|         continue;
 | |
|       } // if (PhysReg)
 | |
|       
 | |
|       // Otherwise, reload it and remember that we have it.
 | |
|       PhysReg = VRM.getPhys(VirtReg);
 | |
|       assert(PhysReg && "Must map virtreg to physreg!");
 | |
| 
 | |
|       // Note that, if we reused a register for a previous operand, the
 | |
|       // register we want to reload into might not actually be
 | |
|       // available.  If this occurs, use the register indicated by the
 | |
|       // reuser.
 | |
|       if (ReusedOperands.hasReuses())
 | |
|         PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
 | |
|                                Spills, MaybeDeadStores, RegKills, KillOps, VRM);
 | |
|       
 | |
|       RegInfo->setPhysRegUsed(PhysReg);
 | |
|       ReusedOperands.markClobbered(PhysReg);
 | |
|       if (DoReMat) {
 | |
|         ReMaterialize(MBB, MII, PhysReg, VirtReg, TII, TRI, VRM);
 | |
|       } else {
 | |
|         const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
 | |
|         TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
 | |
|         MachineInstr *LoadMI = prior(MII);
 | |
|         VRM.addSpillSlotUse(SSorRMId, LoadMI);
 | |
|         ++NumLoads;
 | |
|       }
 | |
|       // This invalidates PhysReg.
 | |
|       Spills.ClobberPhysReg(PhysReg);
 | |
| 
 | |
|       // Any stores to this stack slot are not dead anymore.
 | |
|       if (!DoReMat)
 | |
|         MaybeDeadStores[SSorRMId] = NULL;
 | |
|       Spills.addAvailable(SSorRMId, &MI, PhysReg);
 | |
|       // Assumes this is the last use. IsKill will be unset if reg is reused
 | |
|       // unless it's a two-address operand.
 | |
|       if (TID.getOperandConstraint(i, TOI::TIED_TO) == -1)
 | |
|         MI.getOperand(i).setIsKill();
 | |
|       unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | |
|       MI.getOperand(i).setReg(RReg);
 | |
|       UpdateKills(*prior(MII), RegKills, KillOps);
 | |
|       DOUT << '\t' << *prior(MII);
 | |
|     }
 | |
| 
 | |
|     DOUT << '\t' << MI;
 | |
| 
 | |
| 
 | |
|     // If we have folded references to memory operands, make sure we clear all
 | |
|     // physical registers that may contain the value of the spilled virtual
 | |
|     // register
 | |
|     SmallSet<int, 2> FoldedSS;
 | |
|     for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ) {
 | |
|       unsigned VirtReg = I->second.first;
 | |
|       VirtRegMap::ModRef MR = I->second.second;
 | |
|       DOUT << "Folded vreg: " << VirtReg << "  MR: " << MR;
 | |
| 
 | |
|       // MI2VirtMap be can updated which invalidate the iterator.
 | |
|       // Increment the iterator first.
 | |
|       ++I;
 | |
|       int SS = VRM.getStackSlot(VirtReg);
 | |
|       if (SS == VirtRegMap::NO_STACK_SLOT)
 | |
|         continue;
 | |
|       FoldedSS.insert(SS);
 | |
|       DOUT << " - StackSlot: " << SS << "\n";
 | |
|       
 | |
|       // If this folded instruction is just a use, check to see if it's a
 | |
|       // straight load from the virt reg slot.
 | |
|       if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
 | |
|         int FrameIdx;
 | |
|         unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
 | |
|         if (DestReg && FrameIdx == SS) {
 | |
|           // If this spill slot is available, turn it into a copy (or nothing)
 | |
|           // instead of leaving it as a load!
 | |
|           if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
 | |
|             DOUT << "Promoted Load To Copy: " << MI;
 | |
|             if (DestReg != InReg) {
 | |
|               const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
 | |
|               TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
 | |
|               // Revisit the copy so we make sure to notice the effects of the
 | |
|               // operation on the destreg (either needing to RA it if it's 
 | |
|               // virtual or needing to clobber any values if it's physical).
 | |
|               NextMII = &MI;
 | |
|               --NextMII;  // backtrack to the copy.
 | |
|               BackTracked = true;
 | |
|             } else {
 | |
|               DOUT << "Removing now-noop copy: " << MI;
 | |
|               // Unset last kill since it's being reused.
 | |
|               InvalidateKill(InReg, RegKills, KillOps);
 | |
|             }
 | |
| 
 | |
|             InvalidateKills(MI, RegKills, KillOps);
 | |
|             VRM.RemoveMachineInstrFromMaps(&MI);
 | |
|             MBB.erase(&MI);
 | |
|             Erased = true;
 | |
|             goto ProcessNextInst;
 | |
|           }
 | |
|         } else {
 | |
|           unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
 | |
|           SmallVector<MachineInstr*, 4> NewMIs;
 | |
|           if (PhysReg &&
 | |
|               TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
 | |
|             MBB.insert(MII, NewMIs[0]);
 | |
|             InvalidateKills(MI, RegKills, KillOps);
 | |
|             VRM.RemoveMachineInstrFromMaps(&MI);
 | |
|             MBB.erase(&MI);
 | |
|             Erased = true;
 | |
|             --NextMII;  // backtrack to the unfolded instruction.
 | |
|             BackTracked = true;
 | |
|             goto ProcessNextInst;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If this reference is not a use, any previous store is now dead.
 | |
|       // Otherwise, the store to this stack slot is not dead anymore.
 | |
|       MachineInstr* DeadStore = MaybeDeadStores[SS];
 | |
|       if (DeadStore) {
 | |
|         bool isDead = !(MR & VirtRegMap::isRef);
 | |
|         MachineInstr *NewStore = NULL;
 | |
|         if (MR & VirtRegMap::isModRef) {
 | |
|           unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
 | |
|           SmallVector<MachineInstr*, 4> NewMIs;
 | |
|           // We can reuse this physreg as long as we are allowed to clobber
 | |
|           // the value and there isn't an earlier def that has already clobbered
 | |
|           // the physreg.
 | |
|           if (PhysReg &&
 | |
|               !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
 | |
|             MachineOperand *KillOpnd =
 | |
|               DeadStore->findRegisterUseOperand(PhysReg, true);
 | |
|             // Note, if the store is storing a sub-register, it's possible the
 | |
|             // super-register is needed below.
 | |
|             if (KillOpnd && !KillOpnd->getSubReg() &&
 | |
|                 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
 | |
|               MBB.insert(MII, NewMIs[0]);
 | |
|               NewStore = NewMIs[1];
 | |
|               MBB.insert(MII, NewStore);
 | |
|               VRM.addSpillSlotUse(SS, NewStore);
 | |
|               InvalidateKills(MI, RegKills, KillOps);
 | |
|               VRM.RemoveMachineInstrFromMaps(&MI);
 | |
|               MBB.erase(&MI);
 | |
|               Erased = true;
 | |
|               --NextMII;
 | |
|               --NextMII;  // backtrack to the unfolded instruction.
 | |
|               BackTracked = true;
 | |
|               isDead = true;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (isDead) {  // Previous store is dead.
 | |
|           // If we get here, the store is dead, nuke it now.
 | |
|           DOUT << "Removed dead store:\t" << *DeadStore;
 | |
|           InvalidateKills(*DeadStore, RegKills, KillOps);
 | |
|           VRM.RemoveMachineInstrFromMaps(DeadStore);
 | |
|           MBB.erase(DeadStore);
 | |
|           if (!NewStore)
 | |
|             ++NumDSE;
 | |
|         }
 | |
| 
 | |
|         MaybeDeadStores[SS] = NULL;
 | |
|         if (NewStore) {
 | |
|           // Treat this store as a spill merged into a copy. That makes the
 | |
|           // stack slot value available.
 | |
|           VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
 | |
|           goto ProcessNextInst;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the spill slot value is available, and this is a new definition of
 | |
|       // the value, the value is not available anymore.
 | |
|       if (MR & VirtRegMap::isMod) {
 | |
|         // Notice that the value in this stack slot has been modified.
 | |
|         Spills.ModifyStackSlotOrReMat(SS);
 | |
|         
 | |
|         // If this is *just* a mod of the value, check to see if this is just a
 | |
|         // store to the spill slot (i.e. the spill got merged into the copy). If
 | |
|         // so, realize that the vreg is available now, and add the store to the
 | |
|         // MaybeDeadStore info.
 | |
|         int StackSlot;
 | |
|         if (!(MR & VirtRegMap::isRef)) {
 | |
|           if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
 | |
|             assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
 | |
|                    "Src hasn't been allocated yet?");
 | |
| 
 | |
|             if (CommuteToFoldReload(MBB, MII, VirtReg, SrcReg, StackSlot,
 | |
|                                     RegKills, KillOps, TRI, VRM)) {
 | |
|               NextMII = next(MII);
 | |
|               BackTracked = true;
 | |
|               goto ProcessNextInst;
 | |
|             }
 | |
| 
 | |
|             // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
 | |
|             // this as a potentially dead store in case there is a subsequent
 | |
|             // store into the stack slot without a read from it.
 | |
|             MaybeDeadStores[StackSlot] = &MI;
 | |
| 
 | |
|             // If the stack slot value was previously available in some other
 | |
|             // register, change it now.  Otherwise, make the register
 | |
|             // available in PhysReg.
 | |
|             Spills.addAvailable(StackSlot, &MI, SrcReg, false/*!clobber*/);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Process all of the spilled defs.
 | |
|     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
 | |
|         continue;
 | |
| 
 | |
|       unsigned VirtReg = MO.getReg();
 | |
|       if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
 | |
|         // Check to see if this is a noop copy.  If so, eliminate the
 | |
|         // instruction before considering the dest reg to be changed.
 | |
|         unsigned Src, Dst;
 | |
|         if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
 | |
|           ++NumDCE;
 | |
|           DOUT << "Removing now-noop copy: " << MI;
 | |
|           SmallVector<unsigned, 2> KillRegs;
 | |
|           InvalidateKills(MI, RegKills, KillOps, &KillRegs);
 | |
|           if (MO.isDead() && !KillRegs.empty()) {
 | |
|             // Source register or an implicit super-register use is killed.
 | |
|             assert(KillRegs[0] == Dst || TRI->isSubRegister(KillRegs[0], Dst));
 | |
|             // Last def is now dead.
 | |
|             TransferDeadness(&MBB, Dist, Src, RegKills, KillOps);
 | |
|           }
 | |
|           VRM.RemoveMachineInstrFromMaps(&MI);
 | |
|           MBB.erase(&MI);
 | |
|           Erased = true;
 | |
|           Spills.disallowClobberPhysReg(VirtReg);
 | |
|           goto ProcessNextInst;
 | |
|         }
 | |
|           
 | |
|         // If it's not a no-op copy, it clobbers the value in the destreg.
 | |
|         Spills.ClobberPhysReg(VirtReg);
 | |
|         ReusedOperands.markClobbered(VirtReg);
 | |
|  
 | |
|         // Check to see if this instruction is a load from a stack slot into
 | |
|         // a register.  If so, this provides the stack slot value in the reg.
 | |
|         int FrameIdx;
 | |
|         if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
 | |
|           assert(DestReg == VirtReg && "Unknown load situation!");
 | |
| 
 | |
|           // If it is a folded reference, then it's not safe to clobber.
 | |
|           bool Folded = FoldedSS.count(FrameIdx);
 | |
|           // Otherwise, if it wasn't available, remember that it is now!
 | |
|           Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
 | |
|           goto ProcessNextInst;
 | |
|         }
 | |
|             
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       unsigned SubIdx = MO.getSubReg();
 | |
|       bool DoReMat = VRM.isReMaterialized(VirtReg);
 | |
|       if (DoReMat)
 | |
|         ReMatDefs.insert(&MI);
 | |
| 
 | |
|       // The only vregs left are stack slot definitions.
 | |
|       int StackSlot = VRM.getStackSlot(VirtReg);
 | |
|       const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
 | |
| 
 | |
|       // If this def is part of a two-address operand, make sure to execute
 | |
|       // the store from the correct physical register.
 | |
|       unsigned PhysReg;
 | |
|       int TiedOp = MI.getDesc().findTiedToSrcOperand(i);
 | |
|       if (TiedOp != -1) {
 | |
|         PhysReg = MI.getOperand(TiedOp).getReg();
 | |
|         if (SubIdx) {
 | |
|           unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
 | |
|           assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
 | |
|                  "Can't find corresponding super-register!");
 | |
|           PhysReg = SuperReg;
 | |
|         }
 | |
|       } else {
 | |
|         PhysReg = VRM.getPhys(VirtReg);
 | |
|         if (ReusedOperands.isClobbered(PhysReg)) {
 | |
|           // Another def has taken the assigned physreg. It must have been a
 | |
|           // use&def which got it due to reuse. Undo the reuse!
 | |
|           PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
 | |
|                                Spills, MaybeDeadStores, RegKills, KillOps, VRM);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       assert(PhysReg && "VR not assigned a physical register?");
 | |
|       RegInfo->setPhysRegUsed(PhysReg);
 | |
|       unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | |
|       ReusedOperands.markClobbered(RReg);
 | |
|       MI.getOperand(i).setReg(RReg);
 | |
| 
 | |
|       if (!MO.isDead()) {
 | |
|         MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
 | |
|         SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
 | |
|                           LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
 | |
|         NextMII = next(MII);
 | |
| 
 | |
|         // Check to see if this is a noop copy.  If so, eliminate the
 | |
|         // instruction before considering the dest reg to be changed.
 | |
|         {
 | |
|           unsigned Src, Dst;
 | |
|           if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
 | |
|             ++NumDCE;
 | |
|             DOUT << "Removing now-noop copy: " << MI;
 | |
|             InvalidateKills(MI, RegKills, KillOps);
 | |
|             VRM.RemoveMachineInstrFromMaps(&MI);
 | |
|             MBB.erase(&MI);
 | |
|             Erased = true;
 | |
|             UpdateKills(*LastStore, RegKills, KillOps);
 | |
|             goto ProcessNextInst;
 | |
|           }
 | |
|         }
 | |
|       }    
 | |
|     }
 | |
|   ProcessNextInst:
 | |
|     DistanceMap.insert(std::make_pair(&MI, Dist++));
 | |
|     if (!Erased && !BackTracked) {
 | |
|       for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
 | |
|         UpdateKills(*II, RegKills, KillOps);
 | |
|     }
 | |
|     MII = NextMII;
 | |
|   }
 | |
| }
 | |
| 
 | |
| llvm::Spiller* llvm::createSpiller() {
 | |
|   switch (SpillerOpt) {
 | |
|   default: assert(0 && "Unreachable!");
 | |
|   case local:
 | |
|     return new LocalSpiller();
 | |
|   case simple:
 | |
|     return new SimpleSpiller();
 | |
|   }
 | |
| }
 |