mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Patch by James Lyon! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194832 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			913 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			913 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the DefaultJITMemoryManager class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "jit"
 | |
| #include "llvm/ExecutionEngine/JITMemoryManager.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Config/config.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/DynamicLibrary.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/Memory.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <climits>
 | |
| #include <cstring>
 | |
| #include <vector>
 | |
| 
 | |
| #if defined(__linux__)
 | |
| #if defined(HAVE_SYS_STAT_H)
 | |
| #include <sys/stat.h>
 | |
| #endif
 | |
| #include <fcntl.h>
 | |
| #include <unistd.h>
 | |
| #endif
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
 | |
| 
 | |
| JITMemoryManager::~JITMemoryManager() {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Memory Block Implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// MemoryRangeHeader - For a range of memory, this is the header that we put
 | |
|   /// on the block of memory.  It is carefully crafted to be one word of memory.
 | |
|   /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
 | |
|   /// which starts with this.
 | |
|   struct FreeRangeHeader;
 | |
|   struct MemoryRangeHeader {
 | |
|     /// ThisAllocated - This is true if this block is currently allocated.  If
 | |
|     /// not, this can be converted to a FreeRangeHeader.
 | |
|     unsigned ThisAllocated : 1;
 | |
| 
 | |
|     /// PrevAllocated - Keep track of whether the block immediately before us is
 | |
|     /// allocated.  If not, the word immediately before this header is the size
 | |
|     /// of the previous block.
 | |
|     unsigned PrevAllocated : 1;
 | |
| 
 | |
|     /// BlockSize - This is the size in bytes of this memory block,
 | |
|     /// including this header.
 | |
|     uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
 | |
| 
 | |
| 
 | |
|     /// getBlockAfter - Return the memory block immediately after this one.
 | |
|     ///
 | |
|     MemoryRangeHeader &getBlockAfter() const {
 | |
|       return *reinterpret_cast<MemoryRangeHeader *>(
 | |
|                 reinterpret_cast<char*>(
 | |
|                   const_cast<MemoryRangeHeader *>(this))+BlockSize);
 | |
|     }
 | |
| 
 | |
|     /// getFreeBlockBefore - If the block before this one is free, return it,
 | |
|     /// otherwise return null.
 | |
|     FreeRangeHeader *getFreeBlockBefore() const {
 | |
|       if (PrevAllocated) return 0;
 | |
|       intptr_t PrevSize = reinterpret_cast<intptr_t *>(
 | |
|                             const_cast<MemoryRangeHeader *>(this))[-1];
 | |
|       return reinterpret_cast<FreeRangeHeader *>(
 | |
|                reinterpret_cast<char*>(
 | |
|                  const_cast<MemoryRangeHeader *>(this))-PrevSize);
 | |
|     }
 | |
| 
 | |
|     /// FreeBlock - Turn an allocated block into a free block, adjusting
 | |
|     /// bits in the object headers, and adding an end of region memory block.
 | |
|     FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
 | |
| 
 | |
|     /// TrimAllocationToSize - If this allocated block is significantly larger
 | |
|     /// than NewSize, split it into two pieces (where the former is NewSize
 | |
|     /// bytes, including the header), and add the new block to the free list.
 | |
|     FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
 | |
|                                           uint64_t NewSize);
 | |
|   };
 | |
| 
 | |
|   /// FreeRangeHeader - For a memory block that isn't already allocated, this
 | |
|   /// keeps track of the current block and has a pointer to the next free block.
 | |
|   /// Free blocks are kept on a circularly linked list.
 | |
|   struct FreeRangeHeader : public MemoryRangeHeader {
 | |
|     FreeRangeHeader *Prev;
 | |
|     FreeRangeHeader *Next;
 | |
| 
 | |
|     /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
 | |
|     /// smaller than this size cannot be created.
 | |
|     static unsigned getMinBlockSize() {
 | |
|       return sizeof(FreeRangeHeader)+sizeof(intptr_t);
 | |
|     }
 | |
| 
 | |
|     /// SetEndOfBlockSizeMarker - The word at the end of every free block is
 | |
|     /// known to be the size of the free block.  Set it for this block.
 | |
|     void SetEndOfBlockSizeMarker() {
 | |
|       void *EndOfBlock = (char*)this + BlockSize;
 | |
|       ((intptr_t *)EndOfBlock)[-1] = BlockSize;
 | |
|     }
 | |
| 
 | |
|     FreeRangeHeader *RemoveFromFreeList() {
 | |
|       assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
 | |
|       Next->Prev = Prev;
 | |
|       return Prev->Next = Next;
 | |
|     }
 | |
| 
 | |
|     void AddToFreeList(FreeRangeHeader *FreeList) {
 | |
|       Next = FreeList;
 | |
|       Prev = FreeList->Prev;
 | |
|       Prev->Next = this;
 | |
|       Next->Prev = this;
 | |
|     }
 | |
| 
 | |
|     /// GrowBlock - The block after this block just got deallocated.  Merge it
 | |
|     /// into the current block.
 | |
|     void GrowBlock(uintptr_t NewSize);
 | |
| 
 | |
|     /// AllocateBlock - Mark this entire block allocated, updating freelists
 | |
|     /// etc.  This returns a pointer to the circular free-list.
 | |
|     FreeRangeHeader *AllocateBlock();
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AllocateBlock - Mark this entire block allocated, updating freelists
 | |
| /// etc.  This returns a pointer to the circular free-list.
 | |
| FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
 | |
|   assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
 | |
|          "Cannot allocate an allocated block!");
 | |
|   // Mark this block allocated.
 | |
|   ThisAllocated = 1;
 | |
|   getBlockAfter().PrevAllocated = 1;
 | |
| 
 | |
|   // Remove it from the free list.
 | |
|   return RemoveFromFreeList();
 | |
| }
 | |
| 
 | |
| /// FreeBlock - Turn an allocated block into a free block, adjusting
 | |
| /// bits in the object headers, and adding an end of region memory block.
 | |
| /// If possible, coalesce this block with neighboring blocks.  Return the
 | |
| /// FreeRangeHeader to allocate from.
 | |
| FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
 | |
|   MemoryRangeHeader *FollowingBlock = &getBlockAfter();
 | |
|   assert(ThisAllocated && "This block is already free!");
 | |
|   assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
 | |
| 
 | |
|   FreeRangeHeader *FreeListToReturn = FreeList;
 | |
| 
 | |
|   // If the block after this one is free, merge it into this block.
 | |
|   if (!FollowingBlock->ThisAllocated) {
 | |
|     FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
 | |
|     // "FreeList" always needs to be a valid free block.  If we're about to
 | |
|     // coalesce with it, update our notion of what the free list is.
 | |
|     if (&FollowingFreeBlock == FreeList) {
 | |
|       FreeList = FollowingFreeBlock.Next;
 | |
|       FreeListToReturn = 0;
 | |
|       assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
 | |
|     }
 | |
|     FollowingFreeBlock.RemoveFromFreeList();
 | |
| 
 | |
|     // Include the following block into this one.
 | |
|     BlockSize += FollowingFreeBlock.BlockSize;
 | |
|     FollowingBlock = &FollowingFreeBlock.getBlockAfter();
 | |
| 
 | |
|     // Tell the block after the block we are coalescing that this block is
 | |
|     // allocated.
 | |
|     FollowingBlock->PrevAllocated = 1;
 | |
|   }
 | |
| 
 | |
|   assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
 | |
| 
 | |
|   if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
 | |
|     PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
 | |
|     return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, mark this block free.
 | |
|   FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
 | |
|   FollowingBlock->PrevAllocated = 0;
 | |
|   FreeBlock.ThisAllocated = 0;
 | |
| 
 | |
|   // Link this into the linked list of free blocks.
 | |
|   FreeBlock.AddToFreeList(FreeList);
 | |
| 
 | |
|   // Add a marker at the end of the block, indicating the size of this free
 | |
|   // block.
 | |
|   FreeBlock.SetEndOfBlockSizeMarker();
 | |
|   return FreeListToReturn ? FreeListToReturn : &FreeBlock;
 | |
| }
 | |
| 
 | |
| /// GrowBlock - The block after this block just got deallocated.  Merge it
 | |
| /// into the current block.
 | |
| void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
 | |
|   assert(NewSize > BlockSize && "Not growing block?");
 | |
|   BlockSize = NewSize;
 | |
|   SetEndOfBlockSizeMarker();
 | |
|   getBlockAfter().PrevAllocated = 0;
 | |
| }
 | |
| 
 | |
| /// TrimAllocationToSize - If this allocated block is significantly larger
 | |
| /// than NewSize, split it into two pieces (where the former is NewSize
 | |
| /// bytes, including the header), and add the new block to the free list.
 | |
| FreeRangeHeader *MemoryRangeHeader::
 | |
| TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
 | |
|   assert(ThisAllocated && getBlockAfter().PrevAllocated &&
 | |
|          "Cannot deallocate part of an allocated block!");
 | |
| 
 | |
|   // Don't allow blocks to be trimmed below minimum required size
 | |
|   NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
 | |
| 
 | |
|   // Round up size for alignment of header.
 | |
|   unsigned HeaderAlign = __alignof(FreeRangeHeader);
 | |
|   NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
 | |
| 
 | |
|   // Size is now the size of the block we will remove from the start of the
 | |
|   // current block.
 | |
|   assert(NewSize <= BlockSize &&
 | |
|          "Allocating more space from this block than exists!");
 | |
| 
 | |
|   // If splitting this block will cause the remainder to be too small, do not
 | |
|   // split the block.
 | |
|   if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
 | |
|     return FreeList;
 | |
| 
 | |
|   // Otherwise, we splice the required number of bytes out of this block, form
 | |
|   // a new block immediately after it, then mark this block allocated.
 | |
|   MemoryRangeHeader &FormerNextBlock = getBlockAfter();
 | |
| 
 | |
|   // Change the size of this block.
 | |
|   BlockSize = NewSize;
 | |
| 
 | |
|   // Get the new block we just sliced out and turn it into a free block.
 | |
|   FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
 | |
|   NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
 | |
|   NewNextBlock.ThisAllocated = 0;
 | |
|   NewNextBlock.PrevAllocated = 1;
 | |
|   NewNextBlock.SetEndOfBlockSizeMarker();
 | |
|   FormerNextBlock.PrevAllocated = 0;
 | |
|   NewNextBlock.AddToFreeList(FreeList);
 | |
|   return &NewNextBlock;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Memory Block Implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class DefaultJITMemoryManager;
 | |
| 
 | |
|   class JITSlabAllocator : public SlabAllocator {
 | |
|     DefaultJITMemoryManager &JMM;
 | |
|   public:
 | |
|     JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
 | |
|     virtual ~JITSlabAllocator() { }
 | |
|     virtual MemSlab *Allocate(size_t Size);
 | |
|     virtual void Deallocate(MemSlab *Slab);
 | |
|   };
 | |
| 
 | |
|   /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
 | |
|   /// This splits a large block of MAP_NORESERVE'd memory into two
 | |
|   /// sections, one for function stubs, one for the functions themselves.  We
 | |
|   /// have to do this because we may need to emit a function stub while in the
 | |
|   /// middle of emitting a function, and we don't know how large the function we
 | |
|   /// are emitting is.
 | |
|   class DefaultJITMemoryManager : public JITMemoryManager {
 | |
| 
 | |
|     // Whether to poison freed memory.
 | |
|     bool PoisonMemory;
 | |
| 
 | |
|     /// LastSlab - This points to the last slab allocated and is used as the
 | |
|     /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
 | |
|     /// stubs, data, and code contiguously in memory.  In general, however, this
 | |
|     /// is not possible because the NearBlock parameter is ignored on Windows
 | |
|     /// platforms and even on Unix it works on a best-effort pasis.
 | |
|     sys::MemoryBlock LastSlab;
 | |
| 
 | |
|     // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
 | |
|     // confuse them with the blocks of memory described above.
 | |
|     std::vector<sys::MemoryBlock> CodeSlabs;
 | |
|     JITSlabAllocator BumpSlabAllocator;
 | |
|     BumpPtrAllocator StubAllocator;
 | |
|     BumpPtrAllocator DataAllocator;
 | |
| 
 | |
|     // Circular list of free blocks.
 | |
|     FreeRangeHeader *FreeMemoryList;
 | |
| 
 | |
|     // When emitting code into a memory block, this is the block.
 | |
|     MemoryRangeHeader *CurBlock;
 | |
| 
 | |
|     uint8_t *GOTBase;     // Target Specific reserved memory
 | |
|   public:
 | |
|     DefaultJITMemoryManager();
 | |
|     ~DefaultJITMemoryManager();
 | |
| 
 | |
|     /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
 | |
|     /// last slab it allocated, so that subsequent allocations follow it.
 | |
|     sys::MemoryBlock allocateNewSlab(size_t size);
 | |
| 
 | |
|     /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
 | |
|     /// least this much unless more is requested.
 | |
|     static const size_t DefaultCodeSlabSize;
 | |
| 
 | |
|     /// DefaultSlabSize - Allocate data into slabs of this size unless we get
 | |
|     /// an allocation above SizeThreshold.
 | |
|     static const size_t DefaultSlabSize;
 | |
| 
 | |
|     /// DefaultSizeThreshold - For any allocation larger than this threshold, we
 | |
|     /// should allocate a separate slab.
 | |
|     static const size_t DefaultSizeThreshold;
 | |
| 
 | |
|     /// getPointerToNamedFunction - This method returns the address of the
 | |
|     /// specified function by using the dlsym function call.
 | |
|     virtual void *getPointerToNamedFunction(const std::string &Name,
 | |
|                                             bool AbortOnFailure = true);
 | |
| 
 | |
|     void AllocateGOT();
 | |
| 
 | |
|     // Testing methods.
 | |
|     virtual bool CheckInvariants(std::string &ErrorStr);
 | |
|     size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
 | |
|     size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
 | |
|     size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
 | |
|     unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
 | |
|     unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
 | |
|     unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
 | |
| 
 | |
|     /// startFunctionBody - When a function starts, allocate a block of free
 | |
|     /// executable memory, returning a pointer to it and its actual size.
 | |
|     uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
 | |
| 
 | |
|       FreeRangeHeader* candidateBlock = FreeMemoryList;
 | |
|       FreeRangeHeader* head = FreeMemoryList;
 | |
|       FreeRangeHeader* iter = head->Next;
 | |
| 
 | |
|       uintptr_t largest = candidateBlock->BlockSize;
 | |
| 
 | |
|       // Search for the largest free block
 | |
|       while (iter != head) {
 | |
|         if (iter->BlockSize > largest) {
 | |
|           largest = iter->BlockSize;
 | |
|           candidateBlock = iter;
 | |
|         }
 | |
|         iter = iter->Next;
 | |
|       }
 | |
| 
 | |
|       largest = largest - sizeof(MemoryRangeHeader);
 | |
| 
 | |
|       // If this block isn't big enough for the allocation desired, allocate
 | |
|       // another block of memory and add it to the free list.
 | |
|       if (largest < ActualSize ||
 | |
|           largest <= FreeRangeHeader::getMinBlockSize()) {
 | |
|         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
 | |
|         candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
 | |
|       }
 | |
| 
 | |
|       // Select this candidate block for allocation
 | |
|       CurBlock = candidateBlock;
 | |
| 
 | |
|       // Allocate the entire memory block.
 | |
|       FreeMemoryList = candidateBlock->AllocateBlock();
 | |
|       ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
 | |
|       return (uint8_t *)(CurBlock + 1);
 | |
|     }
 | |
| 
 | |
|     /// allocateNewCodeSlab - Helper method to allocate a new slab of code
 | |
|     /// memory from the OS and add it to the free list.  Returns the new
 | |
|     /// FreeRangeHeader at the base of the slab.
 | |
|     FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
 | |
|       // If the user needs at least MinSize free memory, then we account for
 | |
|       // two MemoryRangeHeaders: the one in the user's block, and the one at the
 | |
|       // end of the slab.
 | |
|       size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
 | |
|       size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
 | |
|       sys::MemoryBlock B = allocateNewSlab(SlabSize);
 | |
|       CodeSlabs.push_back(B);
 | |
|       char *MemBase = (char*)(B.base());
 | |
| 
 | |
|       // Put a tiny allocated block at the end of the memory chunk, so when
 | |
|       // FreeBlock calls getBlockAfter it doesn't fall off the end.
 | |
|       MemoryRangeHeader *EndBlock =
 | |
|           (MemoryRangeHeader*)(MemBase + B.size()) - 1;
 | |
|       EndBlock->ThisAllocated = 1;
 | |
|       EndBlock->PrevAllocated = 0;
 | |
|       EndBlock->BlockSize = sizeof(MemoryRangeHeader);
 | |
| 
 | |
|       // Start out with a vast new block of free memory.
 | |
|       FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
 | |
|       NewBlock->ThisAllocated = 0;
 | |
|       // Make sure getFreeBlockBefore doesn't look into unmapped memory.
 | |
|       NewBlock->PrevAllocated = 1;
 | |
|       NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
 | |
|       NewBlock->SetEndOfBlockSizeMarker();
 | |
|       NewBlock->AddToFreeList(FreeMemoryList);
 | |
| 
 | |
|       assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
 | |
|              "The block was too small!");
 | |
|       return NewBlock;
 | |
|     }
 | |
| 
 | |
|     /// endFunctionBody - The function F is now allocated, and takes the memory
 | |
|     /// in the range [FunctionStart,FunctionEnd).
 | |
|     void endFunctionBody(const Function *F, uint8_t *FunctionStart,
 | |
|                          uint8_t *FunctionEnd) {
 | |
|       assert(FunctionEnd > FunctionStart);
 | |
|       assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
 | |
|              "Mismatched function start/end!");
 | |
| 
 | |
|       uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
 | |
| 
 | |
|       // Release the memory at the end of this block that isn't needed.
 | |
|       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
 | |
|     }
 | |
| 
 | |
|     /// allocateSpace - Allocate a memory block of the given size.  This method
 | |
|     /// cannot be called between calls to startFunctionBody and endFunctionBody.
 | |
|     uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
 | |
|       CurBlock = FreeMemoryList;
 | |
|       FreeMemoryList = FreeMemoryList->AllocateBlock();
 | |
| 
 | |
|       uint8_t *result = (uint8_t *)(CurBlock + 1);
 | |
| 
 | |
|       if (Alignment == 0) Alignment = 1;
 | |
|       result = (uint8_t*)(((intptr_t)result+Alignment-1) &
 | |
|                ~(intptr_t)(Alignment-1));
 | |
| 
 | |
|       uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
 | |
|       FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
 | |
| 
 | |
|       return result;
 | |
|     }
 | |
| 
 | |
|     /// allocateStub - Allocate memory for a function stub.
 | |
|     uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
 | |
|                           unsigned Alignment) {
 | |
|       return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
 | |
|     }
 | |
| 
 | |
|     /// allocateGlobal - Allocate memory for a global.
 | |
|     uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
 | |
|       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
 | |
|     }
 | |
| 
 | |
|     /// allocateCodeSection - Allocate memory for a code section.
 | |
|     uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
 | |
|                                  unsigned SectionID, StringRef SectionName) {
 | |
|       // Grow the required block size to account for the block header
 | |
|       Size += sizeof(*CurBlock);
 | |
| 
 | |
|       // Alignment handling.
 | |
|       if (!Alignment)
 | |
|         Alignment = 16;
 | |
|       Size += Alignment - 1;
 | |
| 
 | |
|       FreeRangeHeader* candidateBlock = FreeMemoryList;
 | |
|       FreeRangeHeader* head = FreeMemoryList;
 | |
|       FreeRangeHeader* iter = head->Next;
 | |
| 
 | |
|       uintptr_t largest = candidateBlock->BlockSize;
 | |
| 
 | |
|       // Search for the largest free block.
 | |
|       while (iter != head) {
 | |
|         if (iter->BlockSize > largest) {
 | |
|           largest = iter->BlockSize;
 | |
|           candidateBlock = iter;
 | |
|         }
 | |
|         iter = iter->Next;
 | |
|       }
 | |
| 
 | |
|       largest = largest - sizeof(MemoryRangeHeader);
 | |
| 
 | |
|       // If this block isn't big enough for the allocation desired, allocate
 | |
|       // another block of memory and add it to the free list.
 | |
|       if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
 | |
|         DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
 | |
|         candidateBlock = allocateNewCodeSlab((size_t)Size);
 | |
|       }
 | |
| 
 | |
|       // Select this candidate block for allocation
 | |
|       CurBlock = candidateBlock;
 | |
| 
 | |
|       // Allocate the entire memory block.
 | |
|       FreeMemoryList = candidateBlock->AllocateBlock();
 | |
|       // Release the memory at the end of this block that isn't needed.
 | |
|       FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
 | |
|       uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock);
 | |
|       return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment);
 | |
|     }
 | |
| 
 | |
|     /// allocateDataSection - Allocate memory for a data section.
 | |
|     uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
 | |
|                                  unsigned SectionID, StringRef SectionName,
 | |
|                                  bool IsReadOnly) {
 | |
|       return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
 | |
|     }
 | |
| 
 | |
|     bool finalizeMemory(std::string *ErrMsg) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     uint8_t *getGOTBase() const {
 | |
|       return GOTBase;
 | |
|     }
 | |
| 
 | |
|     void deallocateBlock(void *Block) {
 | |
|       // Find the block that is allocated for this function.
 | |
|       MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
 | |
|       assert(MemRange->ThisAllocated && "Block isn't allocated!");
 | |
| 
 | |
|       // Fill the buffer with garbage!
 | |
|       if (PoisonMemory) {
 | |
|         memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
 | |
|       }
 | |
| 
 | |
|       // Free the memory.
 | |
|       FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
 | |
|     }
 | |
| 
 | |
|     /// deallocateFunctionBody - Deallocate all memory for the specified
 | |
|     /// function body.
 | |
|     void deallocateFunctionBody(void *Body) {
 | |
|       if (Body) deallocateBlock(Body);
 | |
|     }
 | |
| 
 | |
|     /// setMemoryWritable - When code generation is in progress,
 | |
|     /// the code pages may need permissions changed.
 | |
|     void setMemoryWritable()
 | |
|     {
 | |
|       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
 | |
|         sys::Memory::setWritable(CodeSlabs[i]);
 | |
|     }
 | |
|     /// setMemoryExecutable - When code generation is done and we're ready to
 | |
|     /// start execution, the code pages may need permissions changed.
 | |
|     void setMemoryExecutable()
 | |
|     {
 | |
|       for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
 | |
|         sys::Memory::setExecutable(CodeSlabs[i]);
 | |
|     }
 | |
| 
 | |
|     /// setPoisonMemory - Controls whether we write garbage over freed memory.
 | |
|     ///
 | |
|     void setPoisonMemory(bool poison) {
 | |
|       PoisonMemory = poison;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| MemSlab *JITSlabAllocator::Allocate(size_t Size) {
 | |
|   sys::MemoryBlock B = JMM.allocateNewSlab(Size);
 | |
|   MemSlab *Slab = (MemSlab*)B.base();
 | |
|   Slab->Size = B.size();
 | |
|   Slab->NextPtr = 0;
 | |
|   return Slab;
 | |
| }
 | |
| 
 | |
| void JITSlabAllocator::Deallocate(MemSlab *Slab) {
 | |
|   sys::MemoryBlock B(Slab, Slab->Size);
 | |
|   sys::Memory::ReleaseRWX(B);
 | |
| }
 | |
| 
 | |
| DefaultJITMemoryManager::DefaultJITMemoryManager()
 | |
|   :
 | |
| #ifdef NDEBUG
 | |
|     PoisonMemory(false),
 | |
| #else
 | |
|     PoisonMemory(true),
 | |
| #endif
 | |
|     LastSlab(0, 0),
 | |
|     BumpSlabAllocator(*this),
 | |
|     StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
 | |
|     DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
 | |
| 
 | |
|   // Allocate space for code.
 | |
|   sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
 | |
|   CodeSlabs.push_back(MemBlock);
 | |
|   uint8_t *MemBase = (uint8_t*)MemBlock.base();
 | |
| 
 | |
|   // We set up the memory chunk with 4 mem regions, like this:
 | |
|   //  [ START
 | |
|   //    [ Free      #0 ] -> Large space to allocate functions from.
 | |
|   //    [ Allocated #1 ] -> Tiny space to separate regions.
 | |
|   //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
 | |
|   //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
 | |
|   //  END ]
 | |
|   //
 | |
|   // The last three blocks are never deallocated or touched.
 | |
| 
 | |
|   // Add MemoryRangeHeader to the end of the memory region, indicating that
 | |
|   // the space after the block of memory is allocated.  This is block #3.
 | |
|   MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
 | |
|   Mem3->ThisAllocated = 1;
 | |
|   Mem3->PrevAllocated = 0;
 | |
|   Mem3->BlockSize     = sizeof(MemoryRangeHeader);
 | |
| 
 | |
|   /// Add a tiny free region so that the free list always has one entry.
 | |
|   FreeRangeHeader *Mem2 =
 | |
|     (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
 | |
|   Mem2->ThisAllocated = 0;
 | |
|   Mem2->PrevAllocated = 1;
 | |
|   Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
 | |
|   Mem2->SetEndOfBlockSizeMarker();
 | |
|   Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
 | |
|   Mem2->Next = Mem2;
 | |
| 
 | |
|   /// Add a tiny allocated region so that Mem2 is never coalesced away.
 | |
|   MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
 | |
|   Mem1->ThisAllocated = 1;
 | |
|   Mem1->PrevAllocated = 0;
 | |
|   Mem1->BlockSize     = sizeof(MemoryRangeHeader);
 | |
| 
 | |
|   // Add a FreeRangeHeader to the start of the function body region, indicating
 | |
|   // that the space is free.  Mark the previous block allocated so we never look
 | |
|   // at it.
 | |
|   FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
 | |
|   Mem0->ThisAllocated = 0;
 | |
|   Mem0->PrevAllocated = 1;
 | |
|   Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
 | |
|   Mem0->SetEndOfBlockSizeMarker();
 | |
|   Mem0->AddToFreeList(Mem2);
 | |
| 
 | |
|   // Start out with the freelist pointing to Mem0.
 | |
|   FreeMemoryList = Mem0;
 | |
| 
 | |
|   GOTBase = NULL;
 | |
| }
 | |
| 
 | |
| void DefaultJITMemoryManager::AllocateGOT() {
 | |
|   assert(GOTBase == 0 && "Cannot allocate the got multiple times");
 | |
|   GOTBase = new uint8_t[sizeof(void*) * 8192];
 | |
|   HasGOT = true;
 | |
| }
 | |
| 
 | |
| DefaultJITMemoryManager::~DefaultJITMemoryManager() {
 | |
|   for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
 | |
|     sys::Memory::ReleaseRWX(CodeSlabs[i]);
 | |
| 
 | |
|   delete[] GOTBase;
 | |
| }
 | |
| 
 | |
| sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
 | |
|   // Allocate a new block close to the last one.
 | |
|   std::string ErrMsg;
 | |
|   sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
 | |
|   sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
 | |
|   if (B.base() == 0) {
 | |
|     report_fatal_error("Allocation failed when allocating new memory in the"
 | |
|                        " JIT\n" + Twine(ErrMsg));
 | |
|   }
 | |
|   LastSlab = B;
 | |
|   ++NumSlabs;
 | |
|   // Initialize the slab to garbage when debugging.
 | |
|   if (PoisonMemory) {
 | |
|     memset(B.base(), 0xCD, B.size());
 | |
|   }
 | |
|   return B;
 | |
| }
 | |
| 
 | |
| /// CheckInvariants - For testing only.  Return "" if all internal invariants
 | |
| /// are preserved, and a helpful error message otherwise.  For free and
 | |
| /// allocated blocks, make sure that adding BlockSize gives a valid block.
 | |
| /// For free blocks, make sure they're in the free list and that their end of
 | |
| /// block size marker is correct.  This function should return an error before
 | |
| /// accessing bad memory.  This function is defined here instead of in
 | |
| /// JITMemoryManagerTest.cpp so that we don't have to expose all of the
 | |
| /// implementation details of DefaultJITMemoryManager.
 | |
| bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
 | |
|   raw_string_ostream Err(ErrorStr);
 | |
| 
 | |
|   // Construct a the set of FreeRangeHeader pointers so we can query it
 | |
|   // efficiently.
 | |
|   llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
 | |
|   FreeRangeHeader* FreeHead = FreeMemoryList;
 | |
|   FreeRangeHeader* FreeRange = FreeHead;
 | |
| 
 | |
|   do {
 | |
|     // Check that the free range pointer is in the blocks we've allocated.
 | |
|     bool Found = false;
 | |
|     for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
 | |
|          E = CodeSlabs.end(); I != E && !Found; ++I) {
 | |
|       char *Start = (char*)I->base();
 | |
|       char *End = Start + I->size();
 | |
|       Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
 | |
|     }
 | |
|     if (!Found) {
 | |
|       Err << "Corrupt free list; points to " << FreeRange;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (FreeRange->Next->Prev != FreeRange) {
 | |
|       Err << "Next and Prev pointers do not match.";
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, add it to the set.
 | |
|     FreeHdrSet.insert(FreeRange);
 | |
|     FreeRange = FreeRange->Next;
 | |
|   } while (FreeRange != FreeHead);
 | |
| 
 | |
|   // Go over each block, and look at each MemoryRangeHeader.
 | |
|   for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
 | |
|        E = CodeSlabs.end(); I != E; ++I) {
 | |
|     char *Start = (char*)I->base();
 | |
|     char *End = Start + I->size();
 | |
| 
 | |
|     // Check each memory range.
 | |
|     for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
 | |
|          Start <= (char*)Hdr && (char*)Hdr < End;
 | |
|          Hdr = &Hdr->getBlockAfter()) {
 | |
|       if (Hdr->ThisAllocated == 0) {
 | |
|         // Check that this range is in the free list.
 | |
|         if (!FreeHdrSet.count(Hdr)) {
 | |
|           Err << "Found free header at " << Hdr << " that is not in free list.";
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         // Now make sure the size marker at the end of the block is correct.
 | |
|         uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
 | |
|         if (!(Start <= (char*)Marker && (char*)Marker < End)) {
 | |
|           Err << "Block size in header points out of current MemoryBlock.";
 | |
|           return false;
 | |
|         }
 | |
|         if (Hdr->BlockSize != *Marker) {
 | |
|           Err << "End of block size marker (" << *Marker << ") "
 | |
|               << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
 | |
|         Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
 | |
|             << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
 | |
|         return false;
 | |
|       } else if (!LastHdr && !Hdr->PrevAllocated) {
 | |
|         Err << "The first header should have PrevAllocated true.";
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Remember the last header.
 | |
|       LastHdr = Hdr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All invariants are preserved.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // getPointerToNamedFunction() implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // AtExitHandlers - List of functions to call when the program exits,
 | |
| // registered with the atexit() library function.
 | |
| static std::vector<void (*)()> AtExitHandlers;
 | |
| 
 | |
| /// runAtExitHandlers - Run any functions registered by the program's
 | |
| /// calls to atexit(3), which we intercept and store in
 | |
| /// AtExitHandlers.
 | |
| ///
 | |
| static void runAtExitHandlers() {
 | |
|   while (!AtExitHandlers.empty()) {
 | |
|     void (*Fn)() = AtExitHandlers.back();
 | |
|     AtExitHandlers.pop_back();
 | |
|     Fn();
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Function stubs that are invoked instead of certain library calls
 | |
| //
 | |
| // Force the following functions to be linked in to anything that uses the
 | |
| // JIT. This is a hack designed to work around the all-too-clever Glibc
 | |
| // strategy of making these functions work differently when inlined vs. when
 | |
| // not inlined, and hiding their real definitions in a separate archive file
 | |
| // that the dynamic linker can't see. For more info, search for
 | |
| // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
 | |
| #if defined(__linux__) && defined(__GLIBC__)
 | |
| /* stat functions are redirecting to __xstat with a version number.  On x86-64
 | |
|  * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
 | |
|  * available as an exported symbol, so we have to add it explicitly.
 | |
|  */
 | |
| namespace {
 | |
| class StatSymbols {
 | |
| public:
 | |
|   StatSymbols() {
 | |
|     sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
 | |
|     sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
 | |
|     sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
 | |
|     sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
 | |
|     sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
 | |
|     sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
 | |
|     sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
 | |
|     sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
 | |
|     sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
 | |
|     sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
 | |
|     sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
 | |
|   }
 | |
| };
 | |
| }
 | |
| static StatSymbols initStatSymbols;
 | |
| #endif // __linux__
 | |
| 
 | |
| // jit_exit - Used to intercept the "exit" library call.
 | |
| static void jit_exit(int Status) {
 | |
|   runAtExitHandlers();   // Run atexit handlers...
 | |
|   exit(Status);
 | |
| }
 | |
| 
 | |
| // jit_atexit - Used to intercept the "atexit" library call.
 | |
| static int jit_atexit(void (*Fn)()) {
 | |
|   AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
 | |
|   return 0;  // Always successful
 | |
| }
 | |
| 
 | |
| static int jit_noop() {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// getPointerToNamedFunction - This method returns the address of the specified
 | |
| /// function by using the dynamic loader interface.  As such it is only useful
 | |
| /// for resolving library symbols, not code generated symbols.
 | |
| ///
 | |
| void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
 | |
|                                                          bool AbortOnFailure) {
 | |
|   // Check to see if this is one of the functions we want to intercept.  Note,
 | |
|   // we cast to intptr_t here to silence a -pedantic warning that complains
 | |
|   // about casting a function pointer to a normal pointer.
 | |
|   if (Name == "exit") return (void*)(intptr_t)&jit_exit;
 | |
|   if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
 | |
| 
 | |
|   // We should not invoke parent's ctors/dtors from generated main()!
 | |
|   // On Mingw and Cygwin, the symbol __main is resolved to
 | |
|   // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
 | |
|   // (and register wrong callee's dtors with atexit(3)).
 | |
|   // We expect ExecutionEngine::runStaticConstructorsDestructors()
 | |
|   // is called before ExecutionEngine::runFunctionAsMain() is called.
 | |
|   if (Name == "__main") return (void*)(intptr_t)&jit_noop;
 | |
| 
 | |
|   const char *NameStr = Name.c_str();
 | |
|   // If this is an asm specifier, skip the sentinal.
 | |
|   if (NameStr[0] == 1) ++NameStr;
 | |
| 
 | |
|   // If it's an external function, look it up in the process image...
 | |
|   void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
 | |
|   if (Ptr) return Ptr;
 | |
| 
 | |
|   // If it wasn't found and if it starts with an underscore ('_') character,
 | |
|   // try again without the underscore.
 | |
|   if (NameStr[0] == '_') {
 | |
|     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
 | |
|     if (Ptr) return Ptr;
 | |
|   }
 | |
| 
 | |
|   // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
 | |
|   // are references to hidden visibility symbols that dlsym cannot resolve.
 | |
|   // If we have one of these, strip off $LDBLStub and try again.
 | |
| #if defined(__APPLE__) && defined(__ppc__)
 | |
|   if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
 | |
|       memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
 | |
|     // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
 | |
|     // This mirrors logic in libSystemStubs.a.
 | |
|     std::string Prefix = std::string(Name.begin(), Name.end()-9);
 | |
|     if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
 | |
|       return Ptr;
 | |
|     if (void *Ptr = getPointerToNamedFunction(Prefix, false))
 | |
|       return Ptr;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if (AbortOnFailure) {
 | |
|     report_fatal_error("Program used external function '"+Name+
 | |
|                       "' which could not be resolved!");
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
 | |
|   return new DefaultJITMemoryManager();
 | |
| }
 | |
| 
 | |
| // Allocate memory for code in 512K slabs.
 | |
| const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
 | |
| 
 | |
| // Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
 | |
| const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
 | |
| 
 | |
| // Waste at most 16K at the end of each bump slab.  (probably 4 pages)
 | |
| const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
 |