llvm-6502/lib/Target/X86/X86InstrInfo.td
Evan Cheng 2b4ea795a2 Added field noResults to Instruction.
Currently tblgen cannot tell which operands in the operand list are results so
it assumes the first one is a result. This is bad. Ideally we would fix this
by separating results from inputs, e.g. (res R32:$dst),
(ops R32:$src1, R32:$src2). But that's a more distruptive change. Adding
'let noResults = 1' is the workaround to tell tblgen that the instruction does
not produces a result. It works for now since tblgen does not support
instructions which produce multiple results.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25017 91177308-0d34-0410-b5e6-96231b3b80d8
2005-12-26 09:11:45 +00:00

2580 lines
128 KiB
C++

//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 instruction set, defining the instructions, and
// properties of the instructions which are needed for code generation, machine
// code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// X86 specific DAG Nodes.
//
def SDTX86CmpTest : SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisInt<1>,
SDTCisSameAs<1, 2>]>;
def SDTX86Cmov : SDTypeProfile<1, 4,
[SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>,
SDTCisVT<3, OtherVT>, SDTCisVT<4, FlagVT>]>;
def SDTX86BrCond : SDTypeProfile<0, 3,
[SDTCisVT<0, OtherVT>,
SDTCisVT<1, OtherVT>, SDTCisVT<2, FlagVT>]>;
def SDTX86SetCC : SDTypeProfile<1, 2,
[SDTCisVT<0, i8>, SDTCisVT<1, OtherVT>,
SDTCisVT<2, FlagVT>]>;
def SDTX86RetFlag : SDTypeProfile<0, 1, [SDTCisVT<0, i16>]>;
def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>;
def SDTX86FpSet : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
def X86cmp : SDNode<"X86ISD::CMP" , SDTX86CmpTest, []>;
def X86test : SDNode<"X86ISD::TEST", SDTX86CmpTest, []>;
def X86cmov : SDNode<"X86ISD::CMOV", SDTX86Cmov, []>;
def X86Brcond : SDNode<"X86ISD::BRCOND", SDTX86BrCond, [SDNPHasChain]>;
def X86SetCC : SDNode<"X86ISD::SETCC", SDTX86SetCC, []>;
def X86retflag : SDNode<"X86ISD::RET_FLAG", SDTX86RetFlag, [SDNPHasChain]>;
def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld, [SDNPHasChain]>;
def X86fpset : SDNode<"X86ISD::FP_SET_RESULT",
SDTX86FpSet, [SDNPHasChain]>;
//===----------------------------------------------------------------------===//
// X86 Operand Definitions.
//
// *mem - Operand definitions for the funky X86 addressing mode operands.
//
class X86MemOperand<string printMethod> : Operand<i32> {
let PrintMethod = printMethod;
let NumMIOperands = 4;
let MIOperandInfo = (ops R32, i8imm, R32, i32imm);
}
def i8mem : X86MemOperand<"printi8mem">;
def i16mem : X86MemOperand<"printi16mem">;
def i32mem : X86MemOperand<"printi32mem">;
def i64mem : X86MemOperand<"printi64mem">;
def f32mem : X86MemOperand<"printf32mem">;
def f64mem : X86MemOperand<"printf64mem">;
def f80mem : X86MemOperand<"printf80mem">;
def SSECC : Operand<i8> {
let PrintMethod = "printSSECC";
}
// A couple of more descriptive operand definitions.
// 16-bits but only 8 bits are significant.
def i16i8imm : Operand<i16>;
// 32-bits but only 8 bits are significant.
def i32i8imm : Operand<i32>;
// PCRelative calls need special operand formatting.
let PrintMethod = "printCallOperand" in
def calltarget : Operand<i32>;
// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT>;
//===----------------------------------------------------------------------===//
// X86 Complex Pattern Definitions.
//
// Define X86 specific addressing mode.
def addr : ComplexPattern<i32, 4, "SelectAddr", []>;
def leaaddr : ComplexPattern<i32, 4, "SelectLEAAddr",
[add, frameindex, constpool,
globaladdr, tglobaladdr, externalsym]>;
//===----------------------------------------------------------------------===//
// X86 Instruction Format Definitions.
//
// Format specifies the encoding used by the instruction. This is part of the
// ad-hoc solution used to emit machine instruction encodings by our machine
// code emitter.
class Format<bits<5> val> {
bits<5> Value = val;
}
def Pseudo : Format<0>; def RawFrm : Format<1>;
def AddRegFrm : Format<2>; def MRMDestReg : Format<3>;
def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>;
def MRMSrcMem : Format<6>;
def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>;
def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>;
def MRM6r : Format<22>; def MRM7r : Format<23>;
def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>;
def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>;
def MRM6m : Format<30>; def MRM7m : Format<31>;
//===----------------------------------------------------------------------===//
// X86 Instruction Predicate Definitions.
def HasSSE1 : Predicate<"X86Vector >= SSE">;
def HasSSE2 : Predicate<"X86Vector >= SSE2">;
def HasSSE3 : Predicate<"X86Vector >= SSE3">;
def FPStack : Predicate<"X86Vector < SSE2">;
//===----------------------------------------------------------------------===//
// X86 specific pattern fragments.
//
// ImmType - This specifies the immediate type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
// machine code emitter.
class ImmType<bits<2> val> {
bits<2> Value = val;
}
def NoImm : ImmType<0>;
def Imm8 : ImmType<1>;
def Imm16 : ImmType<2>;
def Imm32 : ImmType<3>;
// FPFormat - This specifies what form this FP instruction has. This is used by
// the Floating-Point stackifier pass.
class FPFormat<bits<3> val> {
bits<3> Value = val;
}
def NotFP : FPFormat<0>;
def ZeroArgFP : FPFormat<1>;
def OneArgFP : FPFormat<2>;
def OneArgFPRW : FPFormat<3>;
def TwoArgFP : FPFormat<4>;
def CompareFP : FPFormat<5>;
def CondMovFP : FPFormat<6>;
def SpecialFP : FPFormat<7>;
class X86Inst<bits<8> opcod, Format f, ImmType i, dag ops, string AsmStr>
: Instruction {
let Namespace = "X86";
bits<8> Opcode = opcod;
Format Form = f;
bits<5> FormBits = Form.Value;
ImmType ImmT = i;
bits<2> ImmTypeBits = ImmT.Value;
dag OperandList = ops;
string AsmString = AsmStr;
//
// Attributes specific to X86 instructions...
//
bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix?
bits<4> Prefix = 0; // Which prefix byte does this inst have?
FPFormat FPForm; // What flavor of FP instruction is this?
bits<3> FPFormBits = 0;
}
class Imp<list<Register> uses, list<Register> defs> {
list<Register> Uses = uses;
list<Register> Defs = defs;
}
// Prefix byte classes which are used to indicate to the ad-hoc machine code
// emitter that various prefix bytes are required.
class OpSize { bit hasOpSizePrefix = 1; }
class TB { bits<4> Prefix = 1; }
class REP { bits<4> Prefix = 2; }
class D8 { bits<4> Prefix = 3; }
class D9 { bits<4> Prefix = 4; }
class DA { bits<4> Prefix = 5; }
class DB { bits<4> Prefix = 6; }
class DC { bits<4> Prefix = 7; }
class DD { bits<4> Prefix = 8; }
class DE { bits<4> Prefix = 9; }
class DF { bits<4> Prefix = 10; }
class XD { bits<4> Prefix = 11; }
class XS { bits<4> Prefix = 12; }
//===----------------------------------------------------------------------===//
// Pattern fragments...
//
def i16immSExt8 : PatLeaf<(i16 imm), [{
// i16immSExt8 predicate - True if the 16-bit immediate fits in a 8-bit
// sign extended field.
return (int)N->getValue() == (signed char)N->getValue();
}]>;
def i32immSExt8 : PatLeaf<(i32 imm), [{
// i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit
// sign extended field.
return (int)N->getValue() == (signed char)N->getValue();
}]>;
def i16immZExt8 : PatLeaf<(i16 imm), [{
// i16immZExt8 predicate - True if the 16-bit immediate fits in a 8-bit zero
// extended field.
return (unsigned)N->getValue() == (unsigned char)N->getValue();
}]>;
// Helper fragments for loads.
def loadi8 : PatFrag<(ops node:$ptr), (i8 (load node:$ptr))>;
def loadi16 : PatFrag<(ops node:$ptr), (i16 (load node:$ptr))>;
def loadi32 : PatFrag<(ops node:$ptr), (i32 (load node:$ptr))>;
def loadf32 : PatFrag<(ops node:$ptr), (f32 (load node:$ptr))>;
def loadf64 : PatFrag<(ops node:$ptr), (f64 (load node:$ptr))>;
def sextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (sextload node:$ptr, i1))>;
def sextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (sextload node:$ptr, i1))>;
def sextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (sextload node:$ptr, i8))>;
def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextload node:$ptr, i8))>;
def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextload node:$ptr, i16))>;
def zextloadi16i1 : PatFrag<(ops node:$ptr), (i16 (zextload node:$ptr, i1))>;
def zextloadi32i1 : PatFrag<(ops node:$ptr), (i32 (zextload node:$ptr, i1))>;
def zextloadi16i8 : PatFrag<(ops node:$ptr), (i16 (zextload node:$ptr, i8))>;
def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextload node:$ptr, i8))>;
def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextload node:$ptr, i16))>;
def extloadi8i1 : PatFrag<(ops node:$ptr), (i8 (extload node:$ptr, i1))>;
def extloadf64f32 : PatFrag<(ops node:$ptr), (f64 (extload node:$ptr, f32))>;
//===----------------------------------------------------------------------===//
// Instruction templates...
class I<bits<8> o, Format f, dag ops, string asm, list<dag> pattern>
: X86Inst<o, f, NoImm, ops, asm> {
let Pattern = pattern;
}
class Ii8 <bits<8> o, Format f, dag ops, string asm, list<dag> pattern>
: X86Inst<o, f, Imm8 , ops, asm> {
let Pattern = pattern;
}
class Ii16<bits<8> o, Format f, dag ops, string asm, list<dag> pattern>
: X86Inst<o, f, Imm16, ops, asm> {
let Pattern = pattern;
}
class Ii32<bits<8> o, Format f, dag ops, string asm, list<dag> pattern>
: X86Inst<o, f, Imm32, ops, asm> {
let Pattern = pattern;
}
//===----------------------------------------------------------------------===//
// Instruction list...
//
def PHI : I<0, Pseudo, (ops variable_ops), "PHINODE", []>; // PHI node.
def NOOP : I<0x90, RawFrm, (ops), "nop", []>; // nop
def ADJCALLSTACKDOWN : I<0, Pseudo, (ops i32imm:$amt), "#ADJCALLSTACKDOWN", []>;
def ADJCALLSTACKUP : I<0, Pseudo, (ops i32imm:$amt1, i32imm:$amt2),
"#ADJCALLSTACKUP", []>;
def IMPLICIT_USE : I<0, Pseudo, (ops variable_ops), "#IMPLICIT_USE", []>;
def IMPLICIT_DEF : I<0, Pseudo, (ops variable_ops), "#IMPLICIT_DEF", []>;
let isTerminator = 1 in
let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
def FP_REG_KILL : I<0, Pseudo, (ops), "#FP_REG_KILL", []>;
//===----------------------------------------------------------------------===//
// Control Flow Instructions...
//
// Return instructions.
let isTerminator = 1, isReturn = 1, isBarrier = 1,
hasCtrlDep = 1, noResults = 1 in {
// FIXME: temporary workaround for return without an incoming flag.
def RETVOID : I<0xC3, RawFrm, (ops), "ret", [(ret)]>;
let hasInFlag = 1 in {
def RET : I<0xC3, RawFrm, (ops), "ret",
[(X86retflag 0)]>;
def RETI : Ii16<0xC2, RawFrm, (ops i16imm:$amt), "ret $amt",
[(X86retflag imm:$amt)]>;
}
}
def : Pat<(X86retflag 0), (RET)>;
def : Pat<(X86retflag imm:$amt), (RETI imm:$amt)>;
// All branches are RawFrm, Void, Branch, and Terminators
let isBranch = 1, isTerminator = 1, noResults = 1 in
class IBr<bits<8> opcode, dag ops, string asm, list<dag> pattern> :
I<opcode, RawFrm, ops, asm, pattern>;
let isBarrier = 1 in
def JMP : IBr<0xE9, (ops brtarget:$dst), "jmp $dst", [(br bb:$dst)]>;
def JE : IBr<0x84, (ops brtarget:$dst), "je $dst",
[(X86Brcond bb:$dst, SETEQ, STATUS)]>, Imp<[STATUS],[]>, TB;
def JNE : IBr<0x85, (ops brtarget:$dst), "jne $dst",
[(X86Brcond bb:$dst, SETNE, STATUS)]>, Imp<[STATUS],[]>, TB;
def JL : IBr<0x8C, (ops brtarget:$dst), "jl $dst",
[(X86Brcond bb:$dst, SETLT, STATUS)]>, Imp<[STATUS],[]>, TB;
def JLE : IBr<0x8E, (ops brtarget:$dst), "jle $dst",
[(X86Brcond bb:$dst, SETLE, STATUS)]>, Imp<[STATUS],[]>, TB;
def JG : IBr<0x8F, (ops brtarget:$dst), "jg $dst",
[(X86Brcond bb:$dst, SETGT, STATUS)]>, Imp<[STATUS],[]>, TB;
def JGE : IBr<0x8D, (ops brtarget:$dst), "jge $dst",
[(X86Brcond bb:$dst, SETGE, STATUS)]>, Imp<[STATUS],[]>, TB;
def JB : IBr<0x82, (ops brtarget:$dst), "jb $dst",
[(X86Brcond bb:$dst, SETULT, STATUS)]>, Imp<[STATUS],[]>, TB;
def JBE : IBr<0x86, (ops brtarget:$dst), "jbe $dst",
[(X86Brcond bb:$dst, SETULE, STATUS)]>, Imp<[STATUS],[]>, TB;
def JA : IBr<0x87, (ops brtarget:$dst), "ja $dst",
[(X86Brcond bb:$dst, SETUGT, STATUS)]>, Imp<[STATUS],[]>, TB;
def JAE : IBr<0x83, (ops brtarget:$dst), "jae $dst",
[(X86Brcond bb:$dst, SETUGE, STATUS)]>, Imp<[STATUS],[]>, TB;
def JS : IBr<0x88, (ops brtarget:$dst), "js $dst", []>, TB;
def JNS : IBr<0x89, (ops brtarget:$dst), "jns $dst", []>, TB;
def JP : IBr<0x8A, (ops brtarget:$dst), "jp $dst", []>, TB;
def JNP : IBr<0x8B, (ops brtarget:$dst), "jnp $dst", []>, TB;
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1, noResults = 1 in
// All calls clobber the non-callee saved registers...
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7] in {
def CALLpcrel32 : I<0xE8, RawFrm, (ops calltarget:$dst), "call $dst", []>;
def CALL32r : I<0xFF, MRM2r, (ops R32:$dst), "call {*}$dst", []>;
def CALL32m : I<0xFF, MRM2m, (ops i32mem:$dst), "call {*}$dst", []>;
}
// Tail call stuff.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, noResults = 1 in
def TAILJMPd : IBr<0xE9, (ops calltarget:$dst), "jmp $dst # TAIL CALL", []>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, noResults = 1 in
def TAILJMPr : I<0xFF, MRM4r, (ops R32:$dst), "jmp {*}$dst # TAIL CALL", []>;
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, noResults = 1 in
def TAILJMPm : I<0xFF, MRM4m, (ops i32mem:$dst),
"jmp {*}$dst # TAIL CALL", []>;
// ADJSTACKPTRri - This is a standard ADD32ri instruction, identical in every
// way, except that it is marked as being a terminator. This causes the epilog
// inserter to insert reloads of callee saved registers BEFORE this. We need
// this until we have a more accurate way of tracking where the stack pointer is
// within a function.
let isTerminator = 1, isTwoAddress = 1 in
def ADJSTACKPTRri : Ii32<0x81, MRM0r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"add{l} {$src2, $dst|$dst, $src2}", []>;
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
def LEAVE : I<0xC9, RawFrm,
(ops), "leave", []>, Imp<[EBP,ESP],[EBP,ESP]>;
def POP32r : I<0x58, AddRegFrm,
(ops R32:$reg), "pop{l} $reg", []>, Imp<[ESP],[ESP]>;
let isTwoAddress = 1 in // R32 = bswap R32
def BSWAP32r : I<0xC8, AddRegFrm,
(ops R32:$dst, R32:$src), "bswap{l} $dst", []>, TB;
def XCHG8rr : I<0x86, MRMDestReg, // xchg R8, R8
(ops R8:$src1, R8:$src2),
"xchg{b} {$src2|$src1}, {$src1|$src2}", []>;
def XCHG16rr : I<0x87, MRMDestReg, // xchg R16, R16
(ops R16:$src1, R16:$src2),
"xchg{w} {$src2|$src1}, {$src1|$src2}", []>, OpSize;
def XCHG32rr : I<0x87, MRMDestReg, // xchg R32, R32
(ops R32:$src1, R32:$src2),
"xchg{l} {$src2|$src1}, {$src1|$src2}", []>;
def XCHG8mr : I<0x86, MRMDestMem,
(ops i8mem:$src1, R8:$src2),
"xchg{b} {$src2|$src1}, {$src1|$src2}", []>;
def XCHG16mr : I<0x87, MRMDestMem,
(ops i16mem:$src1, R16:$src2),
"xchg{w} {$src2|$src1}, {$src1|$src2}", []>, OpSize;
def XCHG32mr : I<0x87, MRMDestMem,
(ops i32mem:$src1, R32:$src2),
"xchg{l} {$src2|$src1}, {$src1|$src2}", []>;
def XCHG8rm : I<0x86, MRMSrcMem,
(ops R8:$src1, i8mem:$src2),
"xchg{b} {$src2|$src1}, {$src1|$src2}", []>;
def XCHG16rm : I<0x87, MRMSrcMem,
(ops R16:$src1, i16mem:$src2),
"xchg{w} {$src2|$src1}, {$src1|$src2}", []>, OpSize;
def XCHG32rm : I<0x87, MRMSrcMem,
(ops R32:$src1, i32mem:$src2),
"xchg{l} {$src2|$src1}, {$src1|$src2}", []>;
def LEA16r : I<0x8D, MRMSrcMem,
(ops R16:$dst, i32mem:$src),
"lea{w} {$src|$dst}, {$dst|$src}", []>, OpSize;
def LEA32r : I<0x8D, MRMSrcMem,
(ops R32:$dst, i32mem:$src),
"lea{l} {$src|$dst}, {$dst|$src}",
[(set R32:$dst, leaaddr:$src)]>;
def REP_MOVSB : I<0xA4, RawFrm, (ops), "{rep;movsb|rep movsb}", []>,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP;
def REP_MOVSW : I<0xA5, RawFrm, (ops), "{rep;movsw|rep movsw}", []>,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP, OpSize;
def REP_MOVSD : I<0xA5, RawFrm, (ops), "{rep;movsd|rep movsd}", []>,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>, REP;
def REP_STOSB : I<0xAA, RawFrm, (ops), "{rep;stosb|rep stosb}", []>,
Imp<[AL,ECX,EDI], [ECX,EDI]>, REP;
def REP_STOSW : I<0xAB, RawFrm, (ops), "{rep;stosw|rep stosw}", []>,
Imp<[AX,ECX,EDI], [ECX,EDI]>, REP, OpSize;
def REP_STOSD : I<0xAB, RawFrm, (ops), "{rep;stosl|rep stosd}", []>,
Imp<[EAX,ECX,EDI], [ECX,EDI]>, REP;
//===----------------------------------------------------------------------===//
// Input/Output Instructions...
//
def IN8rr : I<0xEC, RawFrm, (ops),
"in{b} {%dx, %al|%AL, %DX}",
[(set AL, (readport DX))]>, Imp<[DX], [AL]>;
def IN16rr : I<0xED, RawFrm, (ops),
"in{w} {%dx, %ax|%AX, %DX}",
[(set AX, (readport DX))]>, Imp<[DX], [AX]>, OpSize;
def IN32rr : I<0xED, RawFrm, (ops),
"in{l} {%dx, %eax|%EAX, %DX}",
[(set EAX, (readport DX))]>, Imp<[DX],[EAX]>;
def IN8ri : Ii8<0xE4, RawFrm, (ops i16i8imm:$port),
"in{b} {$port, %al|%AL, $port}",
[(set AL, (readport i16immZExt8:$port))]>,
Imp<[], [AL]>;
def IN16ri : Ii8<0xE5, RawFrm, (ops i16i8imm:$port),
"in{w} {$port, %ax|%AX, $port}",
[(set AX, (readport i16immZExt8:$port))]>,
Imp<[], [AX]>, OpSize;
def IN32ri : Ii8<0xE5, RawFrm, (ops i16i8imm:$port),
"in{l} {$port, %eax|%EAX, $port}",
[(set EAX, (readport i16immZExt8:$port))]>,
Imp<[],[EAX]>;
def OUT8rr : I<0xEE, RawFrm, (ops),
"out{b} {%al, %dx|%DX, %AL}",
[(writeport AL, DX)]>, Imp<[DX, AL], []>;
def OUT16rr : I<0xEF, RawFrm, (ops),
"out{w} {%ax, %dx|%DX, %AX}",
[(writeport AX, DX)]>, Imp<[DX, AX], []>, OpSize;
def OUT32rr : I<0xEF, RawFrm, (ops),
"out{l} {%eax, %dx|%DX, %EAX}",
[(writeport EAX, DX)]>, Imp<[DX, EAX], []>;
def OUT8ir : Ii8<0xE6, RawFrm, (ops i16i8imm:$port),
"out{b} {%al, $port|$port, %AL}",
[(writeport AL, i16immZExt8:$port)]>,
Imp<[AL], []>;
def OUT16ir : Ii8<0xE7, RawFrm, (ops i16i8imm:$port),
"out{w} {%ax, $port|$port, %AX}",
[(writeport AX, i16immZExt8:$port)]>,
Imp<[AX], []>, OpSize;
def OUT32ir : Ii8<0xE7, RawFrm, (ops i16i8imm:$port),
"out{l} {%eax, $port|$port, %EAX}",
[(writeport EAX, i16immZExt8:$port)]>,
Imp<[EAX], []>;
//===----------------------------------------------------------------------===//
// Move Instructions...
//
def MOV8rr : I<0x88, MRMDestReg, (ops R8 :$dst, R8 :$src),
"mov{b} {$src, $dst|$dst, $src}", []>;
def MOV16rr : I<0x89, MRMDestReg, (ops R16:$dst, R16:$src),
"mov{w} {$src, $dst|$dst, $src}", []>, OpSize;
def MOV32rr : I<0x89, MRMDestReg, (ops R32:$dst, R32:$src),
"mov{l} {$src, $dst|$dst, $src}", []>;
def MOV8ri : Ii8 <0xB0, AddRegFrm, (ops R8 :$dst, i8imm :$src),
"mov{b} {$src, $dst|$dst, $src}",
[(set R8:$dst, imm:$src)]>;
def MOV16ri : Ii16<0xB8, AddRegFrm, (ops R16:$dst, i16imm:$src),
"mov{w} {$src, $dst|$dst, $src}",
[(set R16:$dst, imm:$src)]>, OpSize;
def MOV32ri : Ii32<0xB8, AddRegFrm, (ops R32:$dst, i32imm:$src),
"mov{l} {$src, $dst|$dst, $src}",
[(set R32:$dst, imm:$src)]>;
def MOV8mi : Ii8 <0xC6, MRM0m, (ops i8mem :$dst, i8imm :$src),
"mov{b} {$src, $dst|$dst, $src}",
[(store (i8 imm:$src), addr:$dst)]>;
def MOV16mi : Ii16<0xC7, MRM0m, (ops i16mem:$dst, i16imm:$src),
"mov{w} {$src, $dst|$dst, $src}",
[(store (i16 imm:$src), addr:$dst)]>, OpSize;
def MOV32mi : Ii32<0xC7, MRM0m, (ops i32mem:$dst, i32imm:$src),
"mov{l} {$src, $dst|$dst, $src}",
[(store (i32 imm:$src), addr:$dst)]>;
def MOV8rm : I<0x8A, MRMSrcMem, (ops R8 :$dst, i8mem :$src),
"mov{b} {$src, $dst|$dst, $src}",
[(set R8:$dst, (load addr:$src))]>;
def MOV16rm : I<0x8B, MRMSrcMem, (ops R16:$dst, i16mem:$src),
"mov{w} {$src, $dst|$dst, $src}",
[(set R16:$dst, (load addr:$src))]>, OpSize;
def MOV32rm : I<0x8B, MRMSrcMem, (ops R32:$dst, i32mem:$src),
"mov{l} {$src, $dst|$dst, $src}",
[(set R32:$dst, (load addr:$src))]>;
def MOV8mr : I<0x88, MRMDestMem, (ops i8mem :$dst, R8 :$src),
"mov{b} {$src, $dst|$dst, $src}",
[(store R8:$src, addr:$dst)]>;
def MOV16mr : I<0x89, MRMDestMem, (ops i16mem:$dst, R16:$src),
"mov{w} {$src, $dst|$dst, $src}",
[(store R16:$src, addr:$dst)]>, OpSize;
def MOV32mr : I<0x89, MRMDestMem, (ops i32mem:$dst, R32:$src),
"mov{l} {$src, $dst|$dst, $src}",
[(store R32:$src, addr:$dst)]>;
//===----------------------------------------------------------------------===//
// Fixed-Register Multiplication and Division Instructions...
//
// Extra precision multiplication
def MUL8r : I<0xF6, MRM4r, (ops R8:$src), "mul{b} $src", []>,
Imp<[AL],[AX]>; // AL,AH = AL*R8
def MUL16r : I<0xF7, MRM4r, (ops R16:$src), "mul{w} $src", []>,
Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16
def MUL32r : I<0xF7, MRM4r, (ops R32:$src), "mul{l} $src", []>,
Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32
def MUL8m : I<0xF6, MRM4m, (ops i8mem :$src),
"mul{b} $src", []>, Imp<[AL],[AX]>; // AL,AH = AL*[mem8]
def MUL16m : I<0xF7, MRM4m, (ops i16mem:$src),
"mul{w} $src", []>, Imp<[AX],[AX,DX]>,
OpSize; // AX,DX = AX*[mem16]
def MUL32m : I<0xF7, MRM4m, (ops i32mem:$src),
"mul{l} $src", []>, Imp<[EAX],[EAX,EDX]>;// EAX,EDX = EAX*[mem32]
def IMUL8r : I<0xF6, MRM5r, (ops R8:$src), "imul{b} $src", []>,
Imp<[AL],[AX]>; // AL,AH = AL*R8
def IMUL16r : I<0xF7, MRM5r, (ops R16:$src), "imul{w} $src", []>,
Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16
def IMUL32r : I<0xF7, MRM5r, (ops R32:$src), "imul{l} $src", []>,
Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32
def IMUL8m : I<0xF6, MRM5m, (ops i8mem :$src),
"imul{b} $src", []>, Imp<[AL],[AX]>; // AL,AH = AL*[mem8]
def IMUL16m : I<0xF7, MRM5m, (ops i16mem:$src),
"imul{w} $src", []>, Imp<[AX],[AX,DX]>,
OpSize; // AX,DX = AX*[mem16]
def IMUL32m : I<0xF7, MRM5m, (ops i32mem:$src),
"imul{l} $src", []>,
Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*[mem32]
// unsigned division/remainder
def DIV8r : I<0xF6, MRM6r, (ops R8:$src), // AX/r8 = AL,AH
"div{b} $src", []>, Imp<[AX],[AX]>;
def DIV16r : I<0xF7, MRM6r, (ops R16:$src), // DX:AX/r16 = AX,DX
"div{w} $src", []>, Imp<[AX,DX],[AX,DX]>, OpSize;
def DIV32r : I<0xF7, MRM6r, (ops R32:$src), // EDX:EAX/r32 = EAX,EDX
"div{l} $src", []>, Imp<[EAX,EDX],[EAX,EDX]>;
def DIV8m : I<0xF6, MRM6m, (ops i8mem:$src), // AX/[mem8] = AL,AH
"div{b} $src", []>, Imp<[AX],[AX]>;
def DIV16m : I<0xF7, MRM6m, (ops i16mem:$src), // DX:AX/[mem16] = AX,DX
"div{w} $src", []>, Imp<[AX,DX],[AX,DX]>, OpSize;
def DIV32m : I<0xF7, MRM6m, (ops i32mem:$src), // EDX:EAX/[mem32] = EAX,EDX
"div{l} $src", []>, Imp<[EAX,EDX],[EAX,EDX]>;
// Signed division/remainder.
def IDIV8r : I<0xF6, MRM7r, (ops R8:$src), // AX/r8 = AL,AH
"idiv{b} $src", []>, Imp<[AX],[AX]>;
def IDIV16r: I<0xF7, MRM7r, (ops R16:$src), // DX:AX/r16 = AX,DX
"idiv{w} $src", []>, Imp<[AX,DX],[AX,DX]>, OpSize;
def IDIV32r: I<0xF7, MRM7r, (ops R32:$src), // EDX:EAX/r32 = EAX,EDX
"idiv{l} $src", []>, Imp<[EAX,EDX],[EAX,EDX]>;
def IDIV8m : I<0xF6, MRM7m, (ops i8mem:$src), // AX/[mem8] = AL,AH
"idiv{b} $src", []>, Imp<[AX],[AX]>;
def IDIV16m: I<0xF7, MRM7m, (ops i16mem:$src), // DX:AX/[mem16] = AX,DX
"idiv{w} $src", []>, Imp<[AX,DX],[AX,DX]>, OpSize;
def IDIV32m: I<0xF7, MRM7m, (ops i32mem:$src), // EDX:EAX/[mem32] = EAX,EDX
"idiv{l} $src", []>, Imp<[EAX,EDX],[EAX,EDX]>;
// Sign-extenders for division.
def CBW : I<0x98, RawFrm, (ops),
"{cbtw|cbw}", []>, Imp<[AL],[AH]>; // AX = signext(AL)
def CWD : I<0x99, RawFrm, (ops),
"{cwtd|cwd}", []>, Imp<[AX],[DX]>; // DX:AX = signext(AX)
def CDQ : I<0x99, RawFrm, (ops),
"{cltd|cdq}", []>, Imp<[EAX],[EDX]>; // EDX:EAX = signext(EAX)
//===----------------------------------------------------------------------===//
// Two address Instructions...
//
let isTwoAddress = 1 in {
// Conditional moves
def CMOVB16rr : I<0x42, MRMSrcReg, // if <u, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovb {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, R16:$src2,
SETULT, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVB16rm : I<0x42, MRMSrcMem, // if <u, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovb {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2),
SETULT, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVB32rr : I<0x42, MRMSrcReg, // if <u, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovb {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2,
SETULT, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVB32rm : I<0x42, MRMSrcMem, // if <u, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovb {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2),
SETULT, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVAE16rr: I<0x43, MRMSrcReg, // if >=u, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovae {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, R16:$src2,
SETUGE, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVAE16rm: I<0x43, MRMSrcMem, // if >=u, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovae {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2),
SETUGE, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVAE32rr: I<0x43, MRMSrcReg, // if >=u, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovae {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2,
SETUGE, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVAE32rm: I<0x43, MRMSrcMem, // if >=u, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovae {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2),
SETUGE, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVE16rr : I<0x44, MRMSrcReg, // if ==, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmove {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, R16:$src2,
SETEQ, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVE16rm : I<0x44, MRMSrcMem, // if ==, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmove {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2),
SETEQ, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVE32rr : I<0x44, MRMSrcReg, // if ==, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmove {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2,
SETEQ, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVE32rm : I<0x44, MRMSrcMem, // if ==, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmove {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2),
SETEQ, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVNE16rr: I<0x45, MRMSrcReg, // if !=, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovne {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, R16:$src2,
SETNE, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVNE16rm: I<0x45, MRMSrcMem, // if !=, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovne {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2),
SETNE, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVNE32rr: I<0x45, MRMSrcReg, // if !=, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovne {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2,
SETNE, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVNE32rm: I<0x45, MRMSrcMem, // if !=, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovne {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2),
SETNE, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVBE16rr: I<0x46, MRMSrcReg, // if <=u, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovbe {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, R16:$src2,
SETULE, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVBE16rm: I<0x46, MRMSrcMem, // if <=u, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovbe {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2),
SETULE, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVBE32rr: I<0x46, MRMSrcReg, // if <=u, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovbe {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2,
SETULE, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVBE32rm: I<0x46, MRMSrcMem, // if <=u, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovbe {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2),
SETULE, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVA16rr : I<0x47, MRMSrcReg, // if >u, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmova {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, R16:$src2,
SETUGT, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVA16rm : I<0x47, MRMSrcMem, // if >u, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmova {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2),
SETUGT, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVA32rr : I<0x47, MRMSrcReg, // if >u, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmova {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2,
SETUGT, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVA32rm : I<0x47, MRMSrcMem, // if >u, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmova {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2),
SETUGT, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVL16rr : I<0x4C, MRMSrcReg, // if <s, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovl {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, R16:$src2,
SETLT, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVL16rm : I<0x4C, MRMSrcMem, // if <s, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovl {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2),
SETLT, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVL32rr : I<0x4C, MRMSrcReg, // if <s, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovl {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2,
SETLT, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVL32rm : I<0x4C, MRMSrcMem, // if <s, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovl {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2),
SETLT, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVGE16rr: I<0x4D, MRMSrcReg, // if >=s, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovge {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, R16:$src2,
SETGE, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVGE16rm: I<0x4D, MRMSrcMem, // if >=s, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovge {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2),
SETGE, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVGE32rr: I<0x4D, MRMSrcReg, // if >=s, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovge {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2,
SETGE, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVGE32rm: I<0x4D, MRMSrcMem, // if >=s, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovge {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2),
SETGE, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVLE16rr: I<0x4E, MRMSrcReg, // if <=s, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovle {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, R16:$src2,
SETLE, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVLE16rm: I<0x4E, MRMSrcMem, // if <=s, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovle {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2),
SETLE, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVLE32rr: I<0x4E, MRMSrcReg, // if <=s, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovle {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2,
SETLE, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVLE32rm: I<0x4E, MRMSrcMem, // if <=s, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovle {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2),
SETLE, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVG16rr : I<0x4F, MRMSrcReg, // if >s, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovg {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, R16:$src2,
SETGT, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVG16rm : I<0x4F, MRMSrcMem, // if >s, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovg {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (X86cmov R16:$src1, (loadi16 addr:$src2),
SETGT, STATUS))]>,
Imp<[STATUS],[]>, TB, OpSize;
def CMOVG32rr : I<0x4F, MRMSrcReg, // if >s, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovg {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, R32:$src2,
SETGT, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVG32rm : I<0x4F, MRMSrcMem, // if >s, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovg {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (X86cmov R32:$src1, (loadi32 addr:$src2),
SETGT, STATUS))]>,
Imp<[STATUS],[]>, TB;
def CMOVS16rr : I<0x48, MRMSrcReg, // if signed, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovs {$src2, $dst|$dst, $src2}", []>, TB, OpSize;
def CMOVS16rm : I<0x48, MRMSrcMem, // if signed, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovs {$src2, $dst|$dst, $src2}", []>, TB, OpSize;
def CMOVS32rr : I<0x48, MRMSrcReg, // if signed, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovs {$src2, $dst|$dst, $src2}", []>, TB;
def CMOVS32rm : I<0x48, MRMSrcMem, // if signed, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovs {$src2, $dst|$dst, $src2}", []>, TB;
def CMOVNS16rr: I<0x49, MRMSrcReg, // if !signed, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovns {$src2, $dst|$dst, $src2}", []>, TB, OpSize;
def CMOVNS16rm: I<0x49, MRMSrcMem, // if !signed, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovns {$src2, $dst|$dst, $src2}", []>, TB, OpSize;
def CMOVNS32rr: I<0x49, MRMSrcReg, // if !signed, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovns {$src2, $dst|$dst, $src2}", []>, TB;
def CMOVNS32rm: I<0x49, MRMSrcMem, // if !signed, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovns {$src2, $dst|$dst, $src2}", []>, TB;
def CMOVP16rr : I<0x4A, MRMSrcReg, // if parity, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovp {$src2, $dst|$dst, $src2}", []>, TB, OpSize;
def CMOVP16rm : I<0x4A, MRMSrcMem, // if parity, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovp {$src2, $dst|$dst, $src2}", []>, TB, OpSize;
def CMOVP32rr : I<0x4A, MRMSrcReg, // if parity, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovp {$src2, $dst|$dst, $src2}", []>, TB;
def CMOVP32rm : I<0x4A, MRMSrcMem, // if parity, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovp {$src2, $dst|$dst, $src2}", []>, TB;
def CMOVNP16rr : I<0x4B, MRMSrcReg, // if !parity, R16 = R16
(ops R16:$dst, R16:$src1, R16:$src2),
"cmovnp {$src2, $dst|$dst, $src2}", []>, TB, OpSize;
def CMOVNP16rm : I<0x4B, MRMSrcMem, // if !parity, R16 = [mem16]
(ops R16:$dst, R16:$src1, i16mem:$src2),
"cmovnp {$src2, $dst|$dst, $src2}", []>, TB, OpSize;
def CMOVNP32rr : I<0x4B, MRMSrcReg, // if !parity, R32 = R32
(ops R32:$dst, R32:$src1, R32:$src2),
"cmovnp {$src2, $dst|$dst, $src2}", []>, TB;
def CMOVNP32rm : I<0x4B, MRMSrcMem, // if !parity, R32 = [mem32]
(ops R32:$dst, R32:$src1, i32mem:$src2),
"cmovnp {$src2, $dst|$dst, $src2}", []>, TB;
// unary instructions
def NEG8r : I<0xF6, MRM3r, (ops R8 :$dst, R8 :$src), "neg{b} $dst",
[(set R8:$dst, (ineg R8:$src))]>;
def NEG16r : I<0xF7, MRM3r, (ops R16:$dst, R16:$src), "neg{w} $dst",
[(set R16:$dst, (ineg R16:$src))]>, OpSize;
def NEG32r : I<0xF7, MRM3r, (ops R32:$dst, R32:$src), "neg{l} $dst",
[(set R32:$dst, (ineg R32:$src))]>;
let isTwoAddress = 0 in {
def NEG8m : I<0xF6, MRM3m, (ops i8mem :$dst), "neg{b} $dst",
[(store (ineg (loadi8 addr:$dst)), addr:$dst)]>;
def NEG16m : I<0xF7, MRM3m, (ops i16mem:$dst), "neg{w} $dst",
[(store (ineg (loadi16 addr:$dst)), addr:$dst)]>, OpSize;
def NEG32m : I<0xF7, MRM3m, (ops i32mem:$dst), "neg{l} $dst",
[(store (ineg (loadi32 addr:$dst)), addr:$dst)]>;
}
def NOT8r : I<0xF6, MRM2r, (ops R8 :$dst, R8 :$src), "not{b} $dst",
[(set R8:$dst, (not R8:$src))]>;
def NOT16r : I<0xF7, MRM2r, (ops R16:$dst, R16:$src), "not{w} $dst",
[(set R16:$dst, (not R16:$src))]>, OpSize;
def NOT32r : I<0xF7, MRM2r, (ops R32:$dst, R32:$src), "not{l} $dst",
[(set R32:$dst, (not R32:$src))]>;
let isTwoAddress = 0 in {
def NOT8m : I<0xF6, MRM2m, (ops i8mem :$dst), "not{b} $dst",
[(store (not (loadi8 addr:$dst)), addr:$dst)]>;
def NOT16m : I<0xF7, MRM2m, (ops i16mem:$dst), "not{w} $dst",
[(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize;
def NOT32m : I<0xF7, MRM2m, (ops i32mem:$dst), "not{l} $dst",
[(store (not (loadi32 addr:$dst)), addr:$dst)]>;
}
// TODO: inc/dec is slow for P4, but fast for Pentium-M.
def INC8r : I<0xFE, MRM0r, (ops R8 :$dst, R8 :$src), "inc{b} $dst",
[(set R8:$dst, (add R8:$src, 1))]>;
let isConvertibleToThreeAddress = 1 in { // Can transform into LEA.
def INC16r : I<0xFF, MRM0r, (ops R16:$dst, R16:$src), "inc{w} $dst",
[(set R16:$dst, (add R16:$src, 1))]>, OpSize;
def INC32r : I<0xFF, MRM0r, (ops R32:$dst, R32:$src), "inc{l} $dst",
[(set R32:$dst, (add R32:$src, 1))]>;
}
let isTwoAddress = 0 in {
def INC8m : I<0xFE, MRM0m, (ops i8mem :$dst), "inc{b} $dst",
[(store (add (loadi8 addr:$dst), 1), addr:$dst)]>;
def INC16m : I<0xFF, MRM0m, (ops i16mem:$dst), "inc{w} $dst",
[(store (add (loadi16 addr:$dst), 1), addr:$dst)]>, OpSize;
def INC32m : I<0xFF, MRM0m, (ops i32mem:$dst), "inc{l} $dst",
[(store (add (loadi32 addr:$dst), 1), addr:$dst)]>;
}
def DEC8r : I<0xFE, MRM1r, (ops R8 :$dst, R8 :$src), "dec{b} $dst",
[(set R8:$dst, (add R8:$src, -1))]>;
let isConvertibleToThreeAddress = 1 in { // Can transform into LEA.
def DEC16r : I<0xFF, MRM1r, (ops R16:$dst, R16:$src), "dec{w} $dst",
[(set R16:$dst, (add R16:$src, -1))]>, OpSize;
def DEC32r : I<0xFF, MRM1r, (ops R32:$dst, R32:$src), "dec{l} $dst",
[(set R32:$dst, (add R32:$src, -1))]>;
}
let isTwoAddress = 0 in {
def DEC8m : I<0xFE, MRM1m, (ops i8mem :$dst), "dec{b} $dst",
[(store (add (loadi8 addr:$dst), -1), addr:$dst)]>;
def DEC16m : I<0xFF, MRM1m, (ops i16mem:$dst), "dec{w} $dst",
[(store (add (loadi16 addr:$dst), -1), addr:$dst)]>, OpSize;
def DEC32m : I<0xFF, MRM1m, (ops i32mem:$dst), "dec{l} $dst",
[(store (add (loadi32 addr:$dst), -1), addr:$dst)]>;
}
// Logical operators...
let isCommutable = 1 in { // X = AND Y, Z --> X = AND Z, Y
def AND8rr : I<0x20, MRMDestReg,
(ops R8 :$dst, R8 :$src1, R8 :$src2),
"and{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (and R8:$src1, R8:$src2))]>;
def AND16rr : I<0x21, MRMDestReg,
(ops R16:$dst, R16:$src1, R16:$src2),
"and{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (and R16:$src1, R16:$src2))]>, OpSize;
def AND32rr : I<0x21, MRMDestReg,
(ops R32:$dst, R32:$src1, R32:$src2),
"and{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (and R32:$src1, R32:$src2))]>;
}
def AND8rm : I<0x22, MRMSrcMem,
(ops R8 :$dst, R8 :$src1, i8mem :$src2),
"and{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (and R8:$src1, (load addr:$src2)))]>;
def AND16rm : I<0x23, MRMSrcMem,
(ops R16:$dst, R16:$src1, i16mem:$src2),
"and{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (and R16:$src1, (load addr:$src2)))]>, OpSize;
def AND32rm : I<0x23, MRMSrcMem,
(ops R32:$dst, R32:$src1, i32mem:$src2),
"and{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (and R32:$src1, (load addr:$src2)))]>;
def AND8ri : Ii8<0x80, MRM4r,
(ops R8 :$dst, R8 :$src1, i8imm :$src2),
"and{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (and R8:$src1, imm:$src2))]>;
def AND16ri : Ii16<0x81, MRM4r,
(ops R16:$dst, R16:$src1, i16imm:$src2),
"and{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (and R16:$src1, imm:$src2))]>, OpSize;
def AND32ri : Ii32<0x81, MRM4r,
(ops R32:$dst, R32:$src1, i32imm:$src2),
"and{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (and R32:$src1, imm:$src2))]>;
def AND16ri8 : Ii8<0x83, MRM4r,
(ops R16:$dst, R16:$src1, i16i8imm:$src2),
"and{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (and R16:$src1, i16immSExt8:$src2))]>,
OpSize;
def AND32ri8 : Ii8<0x83, MRM4r,
(ops R32:$dst, R32:$src1, i32i8imm:$src2),
"and{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (and R32:$src1, i32immSExt8:$src2))]>;
let isTwoAddress = 0 in {
def AND8mr : I<0x20, MRMDestMem,
(ops i8mem :$dst, R8 :$src),
"and{b} {$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), R8:$src), addr:$dst)]>;
def AND16mr : I<0x21, MRMDestMem,
(ops i16mem:$dst, R16:$src),
"and{w} {$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), R16:$src), addr:$dst)]>,
OpSize;
def AND32mr : I<0x21, MRMDestMem,
(ops i32mem:$dst, R32:$src),
"and{l} {$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), R32:$src), addr:$dst)]>;
def AND8mi : Ii8<0x80, MRM4m,
(ops i8mem :$dst, i8imm :$src),
"and{b} {$src, $dst|$dst, $src}",
[(store (and (loadi8 addr:$dst), imm:$src), addr:$dst)]>;
def AND16mi : Ii16<0x81, MRM4m,
(ops i16mem:$dst, i16imm:$src),
"and{w} {$src, $dst|$dst, $src}",
[(store (and (loadi16 addr:$dst), imm:$src), addr:$dst)]>,
OpSize;
def AND32mi : Ii32<0x81, MRM4m,
(ops i32mem:$dst, i32imm:$src),
"and{l} {$src, $dst|$dst, $src}",
[(store (and (loadi32 addr:$dst), imm:$src), addr:$dst)]>;
def AND16mi8 : Ii8<0x83, MRM4m,
(ops i16mem:$dst, i16i8imm :$src),
"and{w} {$src, $dst|$dst, $src}",
[(store (and (load addr:$dst), i16immSExt8:$src), addr:$dst)]>,
OpSize;
def AND32mi8 : Ii8<0x83, MRM4m,
(ops i32mem:$dst, i32i8imm :$src),
"and{l} {$src, $dst|$dst, $src}",
[(store (add (load addr:$dst), i32immSExt8:$src), addr:$dst)]>;
}
let isCommutable = 1 in { // X = OR Y, Z --> X = OR Z, Y
def OR8rr : I<0x08, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2),
"or{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (or R8:$src1, R8:$src2))]>;
def OR16rr : I<0x09, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2),
"or{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (or R16:$src1, R16:$src2))]>, OpSize;
def OR32rr : I<0x09, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"or{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (or R32:$src1, R32:$src2))]>;
}
def OR8rm : I<0x0A, MRMSrcMem , (ops R8 :$dst, R8 :$src1, i8mem :$src2),
"or{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (or R8:$src1, (load addr:$src2)))]>;
def OR16rm : I<0x0B, MRMSrcMem , (ops R16:$dst, R16:$src1, i16mem:$src2),
"or{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (or R16:$src1, (load addr:$src2)))]>, OpSize;
def OR32rm : I<0x0B, MRMSrcMem , (ops R32:$dst, R32:$src1, i32mem:$src2),
"or{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (or R32:$src1, (load addr:$src2)))]>;
def OR8ri : Ii8 <0x80, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"or{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (or R8:$src1, imm:$src2))]>;
def OR16ri : Ii16<0x81, MRM1r, (ops R16:$dst, R16:$src1, i16imm:$src2),
"or{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (or R16:$src1, imm:$src2))]>, OpSize;
def OR32ri : Ii32<0x81, MRM1r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"or{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (or R32:$src1, imm:$src2))]>;
def OR16ri8 : Ii8<0x83, MRM1r, (ops R16:$dst, R16:$src1, i16i8imm:$src2),
"or{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (or R16:$src1, i16immSExt8:$src2))]>, OpSize;
def OR32ri8 : Ii8<0x83, MRM1r, (ops R32:$dst, R32:$src1, i32i8imm:$src2),
"or{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (or R32:$src1, i32immSExt8:$src2))]>;
let isTwoAddress = 0 in {
def OR8mr : I<0x08, MRMDestMem, (ops i8mem:$dst, R8:$src),
"or{b} {$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), R8:$src), addr:$dst)]>;
def OR16mr : I<0x09, MRMDestMem, (ops i16mem:$dst, R16:$src),
"or{w} {$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), R16:$src), addr:$dst)]>, OpSize;
def OR32mr : I<0x09, MRMDestMem, (ops i32mem:$dst, R32:$src),
"or{l} {$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), R32:$src), addr:$dst)]>;
def OR8mi : Ii8<0x80, MRM1m, (ops i8mem :$dst, i8imm:$src),
"or{b} {$src, $dst|$dst, $src}",
[(store (or (loadi8 addr:$dst), imm:$src), addr:$dst)]>;
def OR16mi : Ii16<0x81, MRM1m, (ops i16mem:$dst, i16imm:$src),
"or{w} {$src, $dst|$dst, $src}",
[(store (or (loadi16 addr:$dst), imm:$src), addr:$dst)]>,
OpSize;
def OR32mi : Ii32<0x81, MRM1m, (ops i32mem:$dst, i32imm:$src),
"or{l} {$src, $dst|$dst, $src}",
[(store (or (loadi32 addr:$dst), imm:$src), addr:$dst)]>;
def OR16mi8 : Ii8<0x83, MRM1m, (ops i16mem:$dst, i16i8imm:$src),
"or{w} {$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), i16immSExt8:$src), addr:$dst)]>,
OpSize;
def OR32mi8 : Ii8<0x83, MRM1m, (ops i32mem:$dst, i32i8imm:$src),
"or{l} {$src, $dst|$dst, $src}",
[(store (or (load addr:$dst), i32immSExt8:$src), addr:$dst)]>;
}
let isCommutable = 1 in { // X = XOR Y, Z --> X = XOR Z, Y
def XOR8rr : I<0x30, MRMDestReg,
(ops R8 :$dst, R8 :$src1, R8 :$src2),
"xor{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (xor R8:$src1, R8:$src2))]>;
def XOR16rr : I<0x31, MRMDestReg,
(ops R16:$dst, R16:$src1, R16:$src2),
"xor{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (xor R16:$src1, R16:$src2))]>, OpSize;
def XOR32rr : I<0x31, MRMDestReg,
(ops R32:$dst, R32:$src1, R32:$src2),
"xor{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (xor R32:$src1, R32:$src2))]>;
}
def XOR8rm : I<0x32, MRMSrcMem ,
(ops R8 :$dst, R8:$src1, i8mem :$src2),
"xor{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (xor R8:$src1, (load addr:$src2)))]>;
def XOR16rm : I<0x33, MRMSrcMem ,
(ops R16:$dst, R16:$src1, i16mem:$src2),
"xor{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (xor R16:$src1, (load addr:$src2)))]>, OpSize;
def XOR32rm : I<0x33, MRMSrcMem ,
(ops R32:$dst, R32:$src1, i32mem:$src2),
"xor{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (xor R32:$src1, (load addr:$src2)))]>;
def XOR8ri : Ii8<0x80, MRM6r,
(ops R8:$dst, R8:$src1, i8imm:$src2),
"xor{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (xor R8:$src1, imm:$src2))]>;
def XOR16ri : Ii16<0x81, MRM6r,
(ops R16:$dst, R16:$src1, i16imm:$src2),
"xor{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (xor R16:$src1, imm:$src2))]>, OpSize;
def XOR32ri : Ii32<0x81, MRM6r,
(ops R32:$dst, R32:$src1, i32imm:$src2),
"xor{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (xor R32:$src1, imm:$src2))]>;
def XOR16ri8 : Ii8<0x83, MRM6r,
(ops R16:$dst, R16:$src1, i16i8imm:$src2),
"xor{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (xor R16:$src1, i16immSExt8:$src2))]>,
OpSize;
def XOR32ri8 : Ii8<0x83, MRM6r,
(ops R32:$dst, R32:$src1, i32i8imm:$src2),
"xor{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (xor R32:$src1, i32immSExt8:$src2))]>;
let isTwoAddress = 0 in {
def XOR8mr : I<0x30, MRMDestMem,
(ops i8mem :$dst, R8 :$src),
"xor{b} {$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), R8:$src), addr:$dst)]>;
def XOR16mr : I<0x31, MRMDestMem,
(ops i16mem:$dst, R16:$src),
"xor{w} {$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), R16:$src), addr:$dst)]>,
OpSize;
def XOR32mr : I<0x31, MRMDestMem,
(ops i32mem:$dst, R32:$src),
"xor{l} {$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), R32:$src), addr:$dst)]>;
def XOR8mi : Ii8<0x80, MRM6m,
(ops i8mem :$dst, i8imm :$src),
"xor{b} {$src, $dst|$dst, $src}",
[(store (xor (loadi8 addr:$dst), imm:$src), addr:$dst)]>;
def XOR16mi : Ii16<0x81, MRM6m,
(ops i16mem:$dst, i16imm:$src),
"xor{w} {$src, $dst|$dst, $src}",
[(store (xor (loadi16 addr:$dst), imm:$src), addr:$dst)]>,
OpSize;
def XOR32mi : Ii32<0x81, MRM6m,
(ops i32mem:$dst, i32imm:$src),
"xor{l} {$src, $dst|$dst, $src}",
[(store (xor (loadi32 addr:$dst), imm:$src), addr:$dst)]>;
def XOR16mi8 : Ii8<0x83, MRM6m,
(ops i16mem:$dst, i16i8imm :$src),
"xor{w} {$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), i16immSExt8:$src), addr:$dst)]>,
OpSize;
def XOR32mi8 : Ii8<0x83, MRM6m,
(ops i32mem:$dst, i32i8imm :$src),
"xor{l} {$src, $dst|$dst, $src}",
[(store (xor (load addr:$dst), i32immSExt8:$src), addr:$dst)]>;
}
// Shift instructions
// FIXME: provide shorter instructions when imm8 == 1
def SHL8rCL : I<0xD2, MRM4r, (ops R8 :$dst, R8 :$src),
"shl{b} {%cl, $dst|$dst, %CL}",
[(set R8:$dst, (shl R8:$src, CL))]>, Imp<[CL],[]>;
def SHL16rCL : I<0xD3, MRM4r, (ops R16:$dst, R16:$src),
"shl{w} {%cl, $dst|$dst, %CL}",
[(set R16:$dst, (shl R16:$src, CL))]>, Imp<[CL],[]>, OpSize;
def SHL32rCL : I<0xD3, MRM4r, (ops R32:$dst, R32:$src),
"shl{l} {%cl, $dst|$dst, %CL}",
[(set R32:$dst, (shl R32:$src, CL))]>, Imp<[CL],[]>;
def SHL8ri : Ii8<0xC0, MRM4r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"shl{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (shl R8:$src1, (i8 imm:$src2)))]>;
let isConvertibleToThreeAddress = 1 in { // Can transform into LEA.
def SHL16ri : Ii8<0xC1, MRM4r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"shl{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (shl R16:$src1, (i8 imm:$src2)))]>, OpSize;
def SHL32ri : Ii8<0xC1, MRM4r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"shl{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (shl R32:$src1, (i8 imm:$src2)))]>;
}
let isTwoAddress = 0 in {
def SHL8mCL : I<0xD2, MRM4m, (ops i8mem :$dst),
"shl{b} {%cl, $dst|$dst, %CL}",
[(store (shl (loadi8 addr:$dst), CL), addr:$dst)]>,
Imp<[CL],[]>;
def SHL16mCL : I<0xD3, MRM4m, (ops i16mem:$dst),
"shl{w} {%cl, $dst|$dst, %CL}",
[(store (shl (loadi16 addr:$dst), CL), addr:$dst)]>,
Imp<[CL],[]>, OpSize;
def SHL32mCL : I<0xD3, MRM4m, (ops i32mem:$dst),
"shl{l} {%cl, $dst|$dst, %CL}",
[(store (shl (loadi32 addr:$dst), CL), addr:$dst)]>,
Imp<[CL],[]>;
def SHL8mi : Ii8<0xC0, MRM4m, (ops i8mem :$dst, i8imm:$src),
"shl{b} {$src, $dst|$dst, $src}",
[(store (shl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SHL16mi : Ii8<0xC1, MRM4m, (ops i16mem:$dst, i8imm:$src),
"shl{w} {$src, $dst|$dst, $src}",
[(store (shl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>,
OpSize;
def SHL32mi : Ii8<0xC1, MRM4m, (ops i32mem:$dst, i8imm:$src),
"shl{l} {$src, $dst|$dst, $src}",
[(store (shl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
}
def SHR8rCL : I<0xD2, MRM5r, (ops R8 :$dst, R8 :$src),
"shr{b} {%cl, $dst|$dst, %CL}",
[(set R8:$dst, (srl R8:$src, CL))]>, Imp<[CL],[]>;
def SHR16rCL : I<0xD3, MRM5r, (ops R16:$dst, R16:$src),
"shr{w} {%cl, $dst|$dst, %CL}",
[(set R16:$dst, (srl R16:$src, CL))]>, Imp<[CL],[]>, OpSize;
def SHR32rCL : I<0xD3, MRM5r, (ops R32:$dst, R32:$src),
"shr{l} {%cl, $dst|$dst, %CL}",
[(set R32:$dst, (srl R32:$src, CL))]>, Imp<[CL],[]>;
def SHR8ri : Ii8<0xC0, MRM5r, (ops R8:$dst, R8:$src1, i8imm:$src2),
"shr{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (srl R8:$src1, (i8 imm:$src2)))]>;
def SHR16ri : Ii8<0xC1, MRM5r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"shr{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (srl R16:$src1, (i8 imm:$src2)))]>, OpSize;
def SHR32ri : Ii8<0xC1, MRM5r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"shr{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (srl R32:$src1, (i8 imm:$src2)))]>;
let isTwoAddress = 0 in {
def SHR8mCL : I<0xD2, MRM5m, (ops i8mem :$dst),
"shr{b} {%cl, $dst|$dst, %CL}",
[(store (srl (loadi8 addr:$dst), CL), addr:$dst)]>,
Imp<[CL],[]>;
def SHR16mCL : I<0xD3, MRM5m, (ops i16mem:$dst),
"shr{w} {%cl, $dst|$dst, %CL}",
[(store (srl (loadi16 addr:$dst), CL), addr:$dst)]>,
Imp<[CL],[]>, OpSize;
def SHR32mCL : I<0xD3, MRM5m, (ops i32mem:$dst),
"shr{l} {%cl, $dst|$dst, %CL}",
[(store (srl (loadi32 addr:$dst), CL), addr:$dst)]>,
Imp<[CL],[]>;
def SHR8mi : Ii8<0xC0, MRM5m, (ops i8mem :$dst, i8imm:$src),
"shr{b} {$src, $dst|$dst, $src}",
[(store (srl (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SHR16mi : Ii8<0xC1, MRM5m, (ops i16mem:$dst, i8imm:$src),
"shr{w} {$src, $dst|$dst, $src}",
[(store (srl (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>,
OpSize;
def SHR32mi : Ii8<0xC1, MRM5m, (ops i32mem:$dst, i8imm:$src),
"shr{l} {$src, $dst|$dst, $src}",
[(store (srl (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
}
def SAR8rCL : I<0xD2, MRM7r, (ops R8 :$dst, R8 :$src),
"sar{b} {%cl, $dst|$dst, %CL}",
[(set R8:$dst, (sra R8:$src, CL))]>, Imp<[CL],[]>;
def SAR16rCL : I<0xD3, MRM7r, (ops R16:$dst, R16:$src),
"sar{w} {%cl, $dst|$dst, %CL}",
[(set R16:$dst, (sra R16:$src, CL))]>, Imp<[CL],[]>, OpSize;
def SAR32rCL : I<0xD3, MRM7r, (ops R32:$dst, R32:$src),
"sar{l} {%cl, $dst|$dst, %CL}",
[(set R32:$dst, (sra R32:$src, CL))]>, Imp<[CL],[]>;
def SAR8ri : Ii8<0xC0, MRM7r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"sar{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (sra R8:$src1, (i8 imm:$src2)))]>;
def SAR16ri : Ii8<0xC1, MRM7r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"sar{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (sra R16:$src1, (i8 imm:$src2)))]>,
OpSize;
def SAR32ri : Ii8<0xC1, MRM7r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"sar{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (sra R32:$src1, (i8 imm:$src2)))]>;
let isTwoAddress = 0 in {
def SAR8mCL : I<0xD2, MRM7m, (ops i8mem :$dst),
"sar{b} {%cl, $dst|$dst, %CL}",
[(store (sra (loadi8 addr:$dst), CL), addr:$dst)]>,
Imp<[CL],[]>;
def SAR16mCL : I<0xD3, MRM7m, (ops i16mem:$dst),
"sar{w} {%cl, $dst|$dst, %CL}",
[(store (sra (loadi16 addr:$dst), CL), addr:$dst)]>,
Imp<[CL],[]>, OpSize;
def SAR32mCL : I<0xD3, MRM7m, (ops i32mem:$dst),
"sar{l} {%cl, $dst|$dst, %CL}",
[(store (sra (loadi32 addr:$dst), CL), addr:$dst)]>,
Imp<[CL],[]>;
def SAR8mi : Ii8<0xC0, MRM7m, (ops i8mem :$dst, i8imm:$src),
"sar{b} {$src, $dst|$dst, $src}",
[(store (sra (loadi8 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
def SAR16mi : Ii8<0xC1, MRM7m, (ops i16mem:$dst, i8imm:$src),
"sar{w} {$src, $dst|$dst, $src}",
[(store (sra (loadi16 addr:$dst), (i8 imm:$src)), addr:$dst)]>,
OpSize;
def SAR32mi : Ii8<0xC1, MRM7m, (ops i32mem:$dst, i8imm:$src),
"sar{l} {$src, $dst|$dst, $src}",
[(store (sra (loadi32 addr:$dst), (i8 imm:$src)), addr:$dst)]>;
}
// Rotate instructions
// FIXME: provide shorter instructions when imm8 == 1
def ROL8rCL : I<0xD2, MRM0r, (ops R8 :$dst, R8 :$src),
"rol{b} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>;
def ROL16rCL : I<0xD3, MRM0r, (ops R16:$dst, R16:$src),
"rol{w} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>, OpSize;
def ROL32rCL : I<0xD3, MRM0r, (ops R32:$dst, R32:$src),
"rol{l} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>;
def ROL8ri : Ii8<0xC0, MRM0r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"rol{b} {$src2, $dst|$dst, $src2}", []>;
def ROL16ri : Ii8<0xC1, MRM0r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"rol{w} {$src2, $dst|$dst, $src2}", []>, OpSize;
def ROL32ri : Ii8<0xC1, MRM0r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"rol{l} {$src2, $dst|$dst, $src2}", []>;
let isTwoAddress = 0 in {
def ROL8mCL : I<0xD2, MRM0m, (ops i8mem :$dst),
"rol{b} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>;
def ROL16mCL : I<0xD3, MRM0m, (ops i16mem:$dst),
"rol{w} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>, OpSize;
def ROL32mCL : I<0xD3, MRM0m, (ops i32mem:$dst),
"rol{l} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>;
def ROL8mi : Ii8<0xC0, MRM0m, (ops i8mem :$dst, i8imm:$src),
"rol{b} {$src, $dst|$dst, $src}", []>;
def ROL16mi : Ii8<0xC1, MRM0m, (ops i16mem:$dst, i8imm:$src),
"rol{w} {$src, $dst|$dst, $src}", []>, OpSize;
def ROL32mi : Ii8<0xC1, MRM0m, (ops i32mem:$dst, i8imm:$src),
"rol{l} {$src, $dst|$dst, $src}", []>;
}
def ROR8rCL : I<0xD2, MRM1r, (ops R8 :$dst, R8 :$src),
"ror{b} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>;
def ROR16rCL : I<0xD3, MRM1r, (ops R16:$dst, R16:$src),
"ror{w} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>, OpSize;
def ROR32rCL : I<0xD3, MRM1r, (ops R32:$dst, R32:$src),
"ror{l} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>;
def ROR8ri : Ii8<0xC0, MRM1r, (ops R8 :$dst, R8 :$src1, i8imm:$src2),
"ror{b} {$src2, $dst|$dst, $src2}", []>;
def ROR16ri : Ii8<0xC1, MRM1r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"ror{w} {$src2, $dst|$dst, $src2}", []>, OpSize;
def ROR32ri : Ii8<0xC1, MRM1r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"ror{l} {$src2, $dst|$dst, $src2}", []>;
let isTwoAddress = 0 in {
def ROR8mCL : I<0xD2, MRM1m, (ops i8mem :$dst),
"ror{b} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>;
def ROR16mCL : I<0xD3, MRM1m, (ops i16mem:$dst),
"ror{w} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>, OpSize;
def ROR32mCL : I<0xD3, MRM1m, (ops i32mem:$dst),
"ror{l} {%cl, $dst|$dst, %CL}", []>, Imp<[CL],[]>;
def ROR8mi : Ii8<0xC0, MRM1m, (ops i8mem :$dst, i8imm:$src),
"ror{b} {$src, $dst|$dst, $src}", []>;
def ROR16mi : Ii8<0xC1, MRM1m, (ops i16mem:$dst, i8imm:$src),
"ror{w} {$src, $dst|$dst, $src}", []>, OpSize;
def ROR32mi : Ii8<0xC1, MRM1m, (ops i32mem:$dst, i8imm:$src),
"ror{l} {$src, $dst|$dst, $src}", []>;
}
// Double shift instructions (generalizations of rotate)
def SHLD32rrCL : I<0xA5, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"shld{l} {%cl, $src2, $dst|$dst, $src2, %CL}", []>,
Imp<[CL],[]>, TB;
def SHRD32rrCL : I<0xAD, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"shrd{l} {%cl, $src2, $dst|$dst, $src2, %CL}", []>,
Imp<[CL],[]>, TB;
def SHLD16rrCL : I<0xA5, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2),
"shld{w} {%cl, $src2, $dst|$dst, $src2, %CL}", []>,
Imp<[CL],[]>, TB, OpSize;
def SHRD16rrCL : I<0xAD, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2),
"shrd{w} {%cl, $src2, $dst|$dst, $src2, %CL}", []>,
Imp<[CL],[]>, TB, OpSize;
let isCommutable = 1 in { // These instructions commute to each other.
def SHLD32rri8 : Ii8<0xA4, MRMDestReg,
(ops R32:$dst, R32:$src1, R32:$src2, i8imm:$src3),
"shld{l} {$src3, $src2, $dst|$dst, $src2, $src3}", []>, TB;
def SHRD32rri8 : Ii8<0xAC, MRMDestReg,
(ops R32:$dst, R32:$src1, R32:$src2, i8imm:$src3),
"shrd{l} {$src3, $src2, $dst|$dst, $src2, $src3}", []>, TB;
def SHLD16rri8 : Ii8<0xA4, MRMDestReg,
(ops R16:$dst, R16:$src1, R16:$src2, i8imm:$src3),
"shld{w} {$src3, $src2, $dst|$dst, $src2, $src3}", []>,
TB, OpSize;
def SHRD16rri8 : Ii8<0xAC, MRMDestReg,
(ops R16:$dst, R16:$src1, R16:$src2, i8imm:$src3),
"shrd{w} {$src3, $src2, $dst|$dst, $src2, $src3}", []>,
TB, OpSize;
}
let isTwoAddress = 0 in {
def SHLD32mrCL : I<0xA5, MRMDestMem, (ops i32mem:$dst, R32:$src2),
"shld{l} {%cl, $src2, $dst|$dst, $src2, %CL}", []>,
Imp<[CL],[]>, TB;
def SHRD32mrCL : I<0xAD, MRMDestMem, (ops i32mem:$dst, R32:$src2),
"shrd{l} {%cl, $src2, $dst|$dst, $src2, %CL}", []>,
Imp<[CL],[]>, TB;
def SHLD32mri8 : Ii8<0xA4, MRMDestMem,
(ops i32mem:$dst, R32:$src2, i8imm:$src3),
"shld{l} {$src3, $src2, $dst|$dst, $src2, $src3}", []>,
TB;
def SHRD32mri8 : Ii8<0xAC, MRMDestMem,
(ops i32mem:$dst, R32:$src2, i8imm:$src3),
"shrd{l} {$src3, $src2, $dst|$dst, $src2, $src3}", []>,
TB;
def SHLD16mrCL : I<0xA5, MRMDestMem, (ops i16mem:$dst, R16:$src2),
"shld{w} {%cl, $src2, $dst|$dst, $src2, %CL}", []>,
Imp<[CL],[]>, TB, OpSize;
def SHRD16mrCL : I<0xAD, MRMDestMem, (ops i16mem:$dst, R16:$src2),
"shrd{w} {%cl, $src2, $dst|$dst, $src2, %CL}", []>,
Imp<[CL],[]>, TB, OpSize;
def SHLD16mri8 : Ii8<0xA4, MRMDestMem,
(ops i16mem:$dst, R16:$src2, i8imm:$src3),
"shld{w} {$src3, $src2, $dst|$dst, $src2, $src3}", []>,
TB, OpSize;
def SHRD16mri8 : Ii8<0xAC, MRMDestMem,
(ops i16mem:$dst, R16:$src2, i8imm:$src3),
"shrd{w} {$src3, $src2, $dst|$dst, $src2, $src3}", []>,
TB, OpSize;
}
// Arithmetic.
let isCommutable = 1 in { // X = ADD Y, Z --> X = ADD Z, Y
def ADD8rr : I<0x00, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2),
"add{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (add R8:$src1, R8:$src2))]>;
let isConvertibleToThreeAddress = 1 in { // Can transform into LEA.
def ADD16rr : I<0x01, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2),
"add{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (add R16:$src1, R16:$src2))]>, OpSize;
def ADD32rr : I<0x01, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (add R32:$src1, R32:$src2))]>;
} // end isConvertibleToThreeAddress
} // end isCommutable
def ADD8rm : I<0x02, MRMSrcMem, (ops R8 :$dst, R8 :$src1, i8mem :$src2),
"add{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (add R8:$src1, (load addr:$src2)))]>;
def ADD16rm : I<0x03, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"add{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (add R16:$src1, (load addr:$src2)))]>, OpSize;
def ADD32rm : I<0x03, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (add R32:$src1, (load addr:$src2)))]>;
def ADD8ri : Ii8<0x80, MRM0r, (ops R8:$dst, R8:$src1, i8imm:$src2),
"add{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (add R8:$src1, imm:$src2))]>;
let isConvertibleToThreeAddress = 1 in { // Can transform into LEA.
def ADD16ri : Ii16<0x81, MRM0r, (ops R16:$dst, R16:$src1, i16imm:$src2),
"add{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (add R16:$src1, imm:$src2))]>, OpSize;
def ADD32ri : Ii32<0x81, MRM0r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (add R32:$src1, imm:$src2))]>;
}
// FIXME: move ADD16ri8 above ADD16ri to optimize for space.
def ADD16ri8 : Ii8<0x83, MRM0r, (ops R16:$dst, R16:$src1, i16i8imm:$src2),
"add{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (add R16:$src1, i16immSExt8:$src2))]>,
OpSize;
def ADD32ri8 : Ii8<0x83, MRM0r, (ops R32:$dst, R32:$src1, i32i8imm:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (add R32:$src1, i32immSExt8:$src2))]>;
let isTwoAddress = 0 in {
def ADD8mr : I<0x00, MRMDestMem, (ops i8mem :$dst, R8 :$src2),
"add{b} {$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), R8:$src2), addr:$dst)]>;
def ADD16mr : I<0x01, MRMDestMem, (ops i16mem:$dst, R16:$src2),
"add{w} {$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), R16:$src2), addr:$dst)]>,
OpSize;
def ADD32mr : I<0x01, MRMDestMem, (ops i32mem:$dst, R32:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), R32:$src2), addr:$dst)]>;
def ADD8mi : Ii8<0x80, MRM0m, (ops i8mem :$dst, i8imm :$src2),
"add{b} {$src2, $dst|$dst, $src2}",
[(store (add (loadi8 addr:$dst), imm:$src2), addr:$dst)]>;
def ADD16mi : Ii16<0x81, MRM0m, (ops i16mem:$dst, i16imm:$src2),
"add{w} {$src2, $dst|$dst, $src2}",
[(store (add (loadi16 addr:$dst), imm:$src2), addr:$dst)]>,
OpSize;
def ADD32mi : Ii32<0x81, MRM0m, (ops i32mem:$dst, i32imm:$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(store (add (loadi32 addr:$dst), imm:$src2), addr:$dst)]>;
def ADD16mi8 : Ii8<0x83, MRM0m, (ops i16mem:$dst, i16i8imm :$src2),
"add{w} {$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>,
OpSize;
def ADD32mi8 : Ii8<0x83, MRM0m, (ops i32mem:$dst, i32i8imm :$src2),
"add{l} {$src2, $dst|$dst, $src2}",
[(store (add (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>;
}
let isCommutable = 1 in { // X = ADC Y, Z --> X = ADC Z, Y
def ADC32rr : I<0x11, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"adc{l} {$src2, $dst|$dst, $src2}", []>;
}
def ADC32rm : I<0x13, MRMSrcMem , (ops R32:$dst, R32:$src1, i32mem:$src2),
"adc{l} {$src2, $dst|$dst, $src2}", []>;
def ADC32ri : Ii32<0x81, MRM2r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"adc{l} {$src2, $dst|$dst, $src2}", []>;
def ADC32ri8 : Ii8<0x83, MRM2r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"adc{l} {$src2, $dst|$dst, $src2}", []>;
let isTwoAddress = 0 in {
def ADC32mr : I<0x11, MRMDestMem, (ops i32mem:$dst, R32:$src2),
"adc{l} {$src2, $dst|$dst, $src2}", []>;
def ADC32mi : Ii32<0x81, MRM2m, (ops i32mem:$dst, i32imm:$src2),
"adc{l} {$src2, $dst|$dst, $src2}", []>;
def ADC32mi8 : Ii8<0x83, MRM2m, (ops i32mem:$dst, i8imm :$src2),
"adc{l} {$src2, $dst|$dst, $src2}", []>;
}
def SUB8rr : I<0x28, MRMDestReg, (ops R8 :$dst, R8 :$src1, R8 :$src2),
"sub{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (sub R8:$src1, R8:$src2))]>;
def SUB16rr : I<0x29, MRMDestReg, (ops R16:$dst, R16:$src1, R16:$src2),
"sub{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (sub R16:$src1, R16:$src2))]>, OpSize;
def SUB32rr : I<0x29, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"sub{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (sub R32:$src1, R32:$src2))]>;
def SUB8rm : I<0x2A, MRMSrcMem, (ops R8 :$dst, R8 :$src1, i8mem :$src2),
"sub{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (sub R8:$src1, (load addr:$src2)))]>;
def SUB16rm : I<0x2B, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"sub{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (sub R16:$src1, (load addr:$src2)))]>, OpSize;
def SUB32rm : I<0x2B, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"sub{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (sub R32:$src1, (load addr:$src2)))]>;
def SUB8ri : Ii8 <0x80, MRM5r, (ops R8:$dst, R8:$src1, i8imm:$src2),
"sub{b} {$src2, $dst|$dst, $src2}",
[(set R8:$dst, (sub R8:$src1, imm:$src2))]>;
def SUB16ri : Ii16<0x81, MRM5r, (ops R16:$dst, R16:$src1, i16imm:$src2),
"sub{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (sub R16:$src1, imm:$src2))]>, OpSize;
def SUB32ri : Ii32<0x81, MRM5r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"sub{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (sub R32:$src1, imm:$src2))]>;
def SUB16ri8 : Ii8<0x83, MRM5r, (ops R16:$dst, R16:$src1, i16i8imm:$src2),
"sub{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (sub R16:$src1, i16immSExt8:$src2))]>,
OpSize;
def SUB32ri8 : Ii8<0x83, MRM5r, (ops R32:$dst, R32:$src1, i32i8imm:$src2),
"sub{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (sub R32:$src1, i32immSExt8:$src2))]>;
let isTwoAddress = 0 in {
def SUB8mr : I<0x28, MRMDestMem, (ops i8mem :$dst, R8 :$src2),
"sub{b} {$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), R8:$src2), addr:$dst)]>;
def SUB16mr : I<0x29, MRMDestMem, (ops i16mem:$dst, R16:$src2),
"sub{w} {$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), R16:$src2), addr:$dst)]>,
OpSize;
def SUB32mr : I<0x29, MRMDestMem, (ops i32mem:$dst, R32:$src2),
"sub{l} {$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), R32:$src2), addr:$dst)]>;
def SUB8mi : Ii8<0x80, MRM5m, (ops i8mem :$dst, i8imm:$src2),
"sub{b} {$src2, $dst|$dst, $src2}",
[(store (sub (loadi8 addr:$dst), imm:$src2), addr:$dst)]>;
def SUB16mi : Ii16<0x81, MRM5m, (ops i16mem:$dst, i16imm:$src2),
"sub{w} {$src2, $dst|$dst, $src2}",
[(store (sub (loadi16 addr:$dst), imm:$src2), addr:$dst)]>,
OpSize;
def SUB32mi : Ii32<0x81, MRM5m, (ops i32mem:$dst, i32imm:$src2),
"sub{l} {$src2, $dst|$dst, $src2}",
[(store (sub (loadi32 addr:$dst), imm:$src2), addr:$dst)]>;
def SUB16mi8 : Ii8<0x83, MRM5m, (ops i16mem:$dst, i16i8imm :$src2),
"sub{w} {$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), i16immSExt8:$src2), addr:$dst)]>,
OpSize;
def SUB32mi8 : Ii8<0x83, MRM5m, (ops i32mem:$dst, i32i8imm :$src2),
"sub{l} {$src2, $dst|$dst, $src2}",
[(store (sub (load addr:$dst), i32immSExt8:$src2), addr:$dst)]>;
}
def SBB32rr : I<0x19, MRMDestReg, (ops R32:$dst, R32:$src1, R32:$src2),
"sbb{l} {$src2, $dst|$dst, $src2}", []>;
let isTwoAddress = 0 in {
def SBB32mr : I<0x19, MRMDestMem, (ops i32mem:$dst, R32:$src2),
"sbb{l} {$src2, $dst|$dst, $src2}", []>;
def SBB8mi : Ii32<0x80, MRM3m, (ops i8mem:$dst, i8imm:$src2),
"sbb{b} {$src2, $dst|$dst, $src2}", []>;
def SBB16mi : Ii32<0x81, MRM3m, (ops i16mem:$dst, i16imm:$src2),
"sbb{w} {$src2, $dst|$dst, $src2}", []>, OpSize;
def SBB32mi : Ii32<0x81, MRM3m, (ops i32mem:$dst, i32imm:$src2),
"sbb{l} {$src2, $dst|$dst, $src2}", []>;
def SBB16mi8 : Ii8<0x83, MRM3m, (ops i16mem:$dst, i8imm :$src2),
"sbb{w} {$src2, $dst|$dst, $src2}", []>, OpSize;
def SBB32mi8 : Ii8<0x83, MRM3m, (ops i32mem:$dst, i8imm :$src2),
"sbb{l} {$src2, $dst|$dst, $src2}", []>;
}
def SBB8ri : Ii8<0x80, MRM3r, (ops R8:$dst, R8:$src1, i8imm:$src2),
"sbb{b} {$src2, $dst|$dst, $src2}", []>;
def SBB16ri : Ii16<0x81, MRM3r, (ops R16:$dst, R16:$src1, i16imm:$src2),
"sbb{w} {$src2, $dst|$dst, $src2}", []>, OpSize;
def SBB32rm : I<0x1B, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"sbb{l} {$src2, $dst|$dst, $src2}", []>;
def SBB32ri : Ii32<0x81, MRM3r, (ops R32:$dst, R32:$src1, i32imm:$src2),
"sbb{l} {$src2, $dst|$dst, $src2}", []>;
def SBB16ri8 : Ii8<0x83, MRM3r, (ops R16:$dst, R16:$src1, i8imm:$src2),
"sbb{w} {$src2, $dst|$dst, $src2}", []>, OpSize;
def SBB32ri8 : Ii8<0x83, MRM3r, (ops R32:$dst, R32:$src1, i8imm:$src2),
"sbb{l} {$src2, $dst|$dst, $src2}", []>;
let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y
def IMUL16rr : I<0xAF, MRMSrcReg, (ops R16:$dst, R16:$src1, R16:$src2),
"imul{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (mul R16:$src1, R16:$src2))]>, TB, OpSize;
def IMUL32rr : I<0xAF, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
"imul{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (mul R32:$src1, R32:$src2))]>, TB;
}
def IMUL16rm : I<0xAF, MRMSrcMem, (ops R16:$dst, R16:$src1, i16mem:$src2),
"imul{w} {$src2, $dst|$dst, $src2}",
[(set R16:$dst, (mul R16:$src1, (load addr:$src2)))]>,
TB, OpSize;
def IMUL32rm : I<0xAF, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
"imul{l} {$src2, $dst|$dst, $src2}",
[(set R32:$dst, (mul R32:$src1, (load addr:$src2)))]>, TB;
} // end Two Address instructions
// Suprisingly enough, these are not two address instructions!
def IMUL16rri : Ii16<0x69, MRMSrcReg, // R16 = R16*I16
(ops R16:$dst, R16:$src1, i16imm:$src2),
"imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set R16:$dst, (mul R16:$src1, imm:$src2))]>, OpSize;
def IMUL32rri : Ii32<0x69, MRMSrcReg, // R32 = R32*I32
(ops R32:$dst, R32:$src1, i32imm:$src2),
"imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set R32:$dst, (mul R32:$src1, imm:$src2))]>;
def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // R16 = R16*I8
(ops R16:$dst, R16:$src1, i16i8imm:$src2),
"imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set R16:$dst, (mul R16:$src1, i16immSExt8:$src2))]>,
OpSize;
def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // R32 = R32*I8
(ops R32:$dst, R32:$src1, i32i8imm:$src2),
"imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set R32:$dst, (mul R32:$src1, i32immSExt8:$src2))]>;
def IMUL16rmi : Ii16<0x69, MRMSrcMem, // R16 = [mem16]*I16
(ops R16:$dst, i16mem:$src1, i16imm:$src2),
"imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set R16:$dst, (mul (load addr:$src1), imm:$src2))]>,
OpSize;
def IMUL32rmi : Ii32<0x69, MRMSrcMem, // R32 = [mem32]*I32
(ops R32:$dst, i32mem:$src1, i32imm:$src2),
"imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set R32:$dst, (mul (load addr:$src1), imm:$src2))]>;
def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // R16 = [mem16]*I8
(ops R16:$dst, i16mem:$src1, i16i8imm :$src2),
"imul{w} {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set R16:$dst, (mul (load addr:$src1), i16immSExt8:$src2))]>,
OpSize;
def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // R32 = [mem32]*I8
(ops R32:$dst, i32mem:$src1, i32i8imm: $src2),
"imul{l} {$src2, $src1, $dst|$dst, $src1, $src2}",
[(set R32:$dst, (mul (load addr:$src1), i32immSExt8:$src2))]>;
//===----------------------------------------------------------------------===//
// Test instructions are just like AND, except they don't generate a result.
//
let isCommutable = 1 in { // TEST X, Y --> TEST Y, X
def TEST8rr : I<0x84, MRMDestReg, (ops R8:$src1, R8:$src2),
"test{b} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test R8:$src1, R8:$src2))]>,
Imp<[],[STATUS]>;
def TEST16rr : I<0x85, MRMDestReg, (ops R16:$src1, R16:$src2),
"test{w} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test R16:$src1, R16:$src2))]>,
Imp<[],[STATUS]>, OpSize;
def TEST32rr : I<0x85, MRMDestReg, (ops R32:$src1, R32:$src2),
"test{l} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test R32:$src1, R32:$src2))]>,
Imp<[],[STATUS]>;
}
def TEST8mr : I<0x84, MRMDestMem, (ops i8mem :$src1, R8 :$src2),
"test{b} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test (loadi8 addr:$src1), R8:$src2))]>,
Imp<[],[STATUS]>;
def TEST16mr : I<0x85, MRMDestMem, (ops i16mem:$src1, R16:$src2),
"test{w} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test (loadi16 addr:$src1), R16:$src2))]>,
Imp<[],[STATUS]>, OpSize;
def TEST32mr : I<0x85, MRMDestMem, (ops i32mem:$src1, R32:$src2),
"test{l} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test (loadi32 addr:$src1), R32:$src2))]>,
Imp<[],[STATUS]>;
def TEST8rm : I<0x84, MRMSrcMem, (ops R8 :$src1, i8mem :$src2),
"test{b} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test R8:$src1, (loadi8 addr:$src2)))]>,
Imp<[],[STATUS]>;
def TEST16rm : I<0x85, MRMSrcMem, (ops R16:$src1, i16mem:$src2),
"test{w} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test R16:$src1, (loadi16 addr:$src2)))]>,
Imp<[],[STATUS]>, OpSize;
def TEST32rm : I<0x85, MRMSrcMem, (ops R32:$src1, i32mem:$src2),
"test{l} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test R32:$src1, (loadi32 addr:$src2)))]>,
Imp<[],[STATUS]>;
def TEST8ri : Ii8 <0xF6, MRM0r, // flags = R8 & imm8
(ops R8:$src1, i8imm:$src2),
"test{b} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test R8:$src1, imm:$src2))]>,
Imp<[],[STATUS]>;
def TEST16ri : Ii16<0xF7, MRM0r, // flags = R16 & imm16
(ops R16:$src1, i16imm:$src2),
"test{w} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test R16:$src1, imm:$src2))]>,
Imp<[],[STATUS]>, OpSize;
def TEST32ri : Ii32<0xF7, MRM0r, // flags = R32 & imm32
(ops R32:$src1, i32imm:$src2),
"test{l} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test R32:$src1, imm:$src2))]>,
Imp<[],[STATUS]>;
def TEST8mi : Ii8 <0xF6, MRM0m, // flags = [mem8] & imm8
(ops i8mem:$src1, i8imm:$src2),
"test{b} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test (loadi8 addr:$src1), imm:$src2))]>,
Imp<[],[STATUS]>;
def TEST16mi : Ii16<0xF7, MRM0m, // flags = [mem16] & imm16
(ops i16mem:$src1, i16imm:$src2),
"test{w} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test (loadi16 addr:$src1), imm:$src2))]>,
Imp<[],[STATUS]>, OpSize;
def TEST32mi : Ii32<0xF7, MRM0m, // flags = [mem32] & imm32
(ops i32mem:$src1, i32imm:$src2),
"test{l} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86test (loadi32 addr:$src1), imm:$src2))]>,
Imp<[],[STATUS]>;
// Condition code ops, incl. set if equal/not equal/...
def SAHF : I<0x9E, RawFrm, (ops), "sahf", []>, Imp<[AH],[]>; // flags = AH
def LAHF : I<0x9F, RawFrm, (ops), "lahf", []>, Imp<[],[AH]>; // AH = flags
def SETEr : I<0x94, MRM0r,
(ops R8 :$dst),
"sete $dst", [(set R8:$dst, (X86SetCC SETEQ, STATUS))]>,
TB; // R8 = ==
def SETEm : I<0x94, MRM0m,
(ops i8mem:$dst),
"sete $dst", [(store (X86SetCC SETEQ, STATUS), addr:$dst)]>,
TB; // [mem8] = ==
def SETNEr : I<0x95, MRM0r,
(ops R8 :$dst),
"setne $dst", [(set R8:$dst, (X86SetCC SETNE, STATUS))]>,
TB; // R8 = !=
def SETNEm : I<0x95, MRM0m,
(ops i8mem:$dst),
"setne $dst", [(store (X86SetCC SETNE, STATUS), addr:$dst)]>,
TB; // [mem8] = !=
def SETLr : I<0x9C, MRM0r,
(ops R8 :$dst),
"setl $dst", [(set R8:$dst, (X86SetCC SETLT, STATUS))]>,
TB; // R8 = < signed
def SETLm : I<0x9C, MRM0m,
(ops i8mem:$dst),
"setl $dst", [(store (X86SetCC SETLT, STATUS), addr:$dst)]>,
TB; // [mem8] = < signed
def SETGEr : I<0x9D, MRM0r,
(ops R8 :$dst),
"setge $dst", [(set R8:$dst, (X86SetCC SETGE, STATUS))]>,
TB; // R8 = >= signed
def SETGEm : I<0x9D, MRM0m,
(ops i8mem:$dst),
"setge $dst", [(store (X86SetCC SETGE, STATUS), addr:$dst)]>,
TB; // [mem8] = >= signed
def SETLEr : I<0x9E, MRM0r,
(ops R8 :$dst),
"setle $dst", [(set R8:$dst, (X86SetCC SETLE, STATUS))]>,
TB; // R8 = <= signed
def SETLEm : I<0x9E, MRM0m,
(ops i8mem:$dst),
"setle $dst", [(store (X86SetCC SETLE, STATUS), addr:$dst)]>,
TB; // [mem8] = <= signed
def SETGr : I<0x9F, MRM0r,
(ops R8 :$dst),
"setg $dst", [(set R8:$dst, (X86SetCC SETGT, STATUS))]>,
TB; // R8 = > signed
def SETGm : I<0x9F, MRM0m,
(ops i8mem:$dst),
"setg $dst", [(store (X86SetCC SETGT, STATUS), addr:$dst)]>,
TB; // [mem8] = > signed
def SETBr : I<0x92, MRM0r,
(ops R8 :$dst),
"setb $dst", [(set R8:$dst, (X86SetCC SETULT, STATUS))]>,
TB; // R8 = < unsign
def SETBm : I<0x92, MRM0m,
(ops i8mem:$dst),
"setb $dst", [(store (X86SetCC SETULT, STATUS), addr:$dst)]>,
TB; // [mem8] = < unsign
def SETAEr : I<0x93, MRM0r,
(ops R8 :$dst),
"setae $dst", [(set R8:$dst, (X86SetCC SETUGE, STATUS))]>,
TB; // R8 = >= unsign
def SETAEm : I<0x93, MRM0m,
(ops i8mem:$dst),
"setae $dst", [(store (X86SetCC SETUGE, STATUS), addr:$dst)]>,
TB; // [mem8] = >= unsign
def SETBEr : I<0x96, MRM0r,
(ops R8 :$dst),
"setbe $dst", [(set R8:$dst, (X86SetCC SETULE, STATUS))]>,
TB; // R8 = <= unsign
def SETBEm : I<0x96, MRM0m,
(ops i8mem:$dst),
"setbe $dst", [(store (X86SetCC SETULE, STATUS), addr:$dst)]>,
TB; // [mem8] = <= unsign
def SETAr : I<0x97, MRM0r,
(ops R8 :$dst),
"seta $dst", [(set R8:$dst, (X86SetCC SETUGT, STATUS))]>,
TB; // R8 = > signed
def SETAm : I<0x97, MRM0m,
(ops i8mem:$dst),
"seta $dst", [(store (X86SetCC SETUGT, STATUS), addr:$dst)]>,
TB; // [mem8] = > signed
def SETSr : I<0x98, MRM0r,
(ops R8 :$dst),
"sets $dst", []>, TB; // R8 = <sign bit>
def SETSm : I<0x98, MRM0m,
(ops i8mem:$dst),
"sets $dst", []>, TB; // [mem8] = <sign bit>
def SETNSr : I<0x99, MRM0r,
(ops R8 :$dst),
"setns $dst", []>, TB; // R8 = !<sign bit>
def SETNSm : I<0x99, MRM0m,
(ops i8mem:$dst),
"setns $dst", []>, TB; // [mem8] = !<sign bit>
def SETPr : I<0x9A, MRM0r,
(ops R8 :$dst),
"setp $dst", []>, TB; // R8 = parity
def SETPm : I<0x9A, MRM0m,
(ops i8mem:$dst),
"setp $dst", []>, TB; // [mem8] = parity
def SETNPr : I<0x9B, MRM0r,
(ops R8 :$dst),
"setnp $dst", []>, TB; // R8 = not parity
def SETNPm : I<0x9B, MRM0m,
(ops i8mem:$dst),
"setnp $dst", []>, TB; // [mem8] = not parity
// Integer comparisons
def CMP8rr : I<0x38, MRMDestReg,
(ops R8 :$src1, R8 :$src2),
"cmp{b} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp R8:$src1, R8:$src2))]>,
Imp<[],[STATUS]>;
def CMP16rr : I<0x39, MRMDestReg,
(ops R16:$src1, R16:$src2),
"cmp{w} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp R16:$src1, R16:$src2))]>,
Imp<[],[STATUS]>, OpSize;
def CMP32rr : I<0x39, MRMDestReg,
(ops R32:$src1, R32:$src2),
"cmp{l} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp R32:$src1, R32:$src2))]>,
Imp<[],[STATUS]>;
def CMP8mr : I<0x38, MRMDestMem,
(ops i8mem :$src1, R8 :$src2),
"cmp{b} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp (loadi8 addr:$src1), R8:$src2))]>,
Imp<[],[STATUS]>;
def CMP16mr : I<0x39, MRMDestMem,
(ops i16mem:$src1, R16:$src2),
"cmp{w} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp (loadi16 addr:$src1), R16:$src2))]>,
Imp<[],[STATUS]>, OpSize;
def CMP32mr : I<0x39, MRMDestMem,
(ops i32mem:$src1, R32:$src2),
"cmp{l} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp (loadi32 addr:$src1), R32:$src2))]>,
Imp<[],[STATUS]>;
def CMP8rm : I<0x3A, MRMSrcMem,
(ops R8 :$src1, i8mem :$src2),
"cmp{b} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp R8:$src1, (loadi8 addr:$src2)))]>,
Imp<[],[STATUS]>;
def CMP16rm : I<0x3B, MRMSrcMem,
(ops R16:$src1, i16mem:$src2),
"cmp{w} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp R16:$src1, (loadi16 addr:$src2)))]>,
Imp<[],[STATUS]>, OpSize;
def CMP32rm : I<0x3B, MRMSrcMem,
(ops R32:$src1, i32mem:$src2),
"cmp{l} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp R32:$src1, (loadi32 addr:$src2)))]>,
Imp<[],[STATUS]>;
def CMP8ri : Ii8<0x80, MRM7r,
(ops R8:$src1, i8imm:$src2),
"cmp{b} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp R8:$src1, imm:$src2))]>,
Imp<[],[STATUS]>;
def CMP16ri : Ii16<0x81, MRM7r,
(ops R16:$src1, i16imm:$src2),
"cmp{w} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp R16:$src1, imm:$src2))]>,
Imp<[],[STATUS]>, OpSize;
def CMP32ri : Ii32<0x81, MRM7r,
(ops R32:$src1, i32imm:$src2),
"cmp{l} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp R32:$src1, imm:$src2))]>,
Imp<[],[STATUS]>;
def CMP8mi : Ii8 <0x80, MRM7m,
(ops i8mem :$src1, i8imm :$src2),
"cmp{b} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp (loadi8 addr:$src1), imm:$src2))]>,
Imp<[],[STATUS]>;
def CMP16mi : Ii16<0x81, MRM7m,
(ops i16mem:$src1, i16imm:$src2),
"cmp{w} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp (loadi16 addr:$src1), imm:$src2))]>,
Imp<[],[STATUS]>, OpSize;
def CMP32mi : Ii32<0x81, MRM7m,
(ops i32mem:$src1, i32imm:$src2),
"cmp{l} {$src2, $src1|$src1, $src2}",
[(set STATUS, (X86cmp (loadi32 addr:$src1), imm:$src2))]>,
Imp<[],[STATUS]>;
// Sign/Zero extenders
def MOVSX16rr8 : I<0xBE, MRMSrcReg, (ops R16:$dst, R8 :$src),
"movs{bw|x} {$src, $dst|$dst, $src}",
[(set R16:$dst, (sext R8:$src))]>, TB, OpSize;
def MOVSX16rm8 : I<0xBE, MRMSrcMem, (ops R16:$dst, i8mem :$src),
"movs{bw|x} {$src, $dst|$dst, $src}",
[(set R16:$dst, (sextloadi16i8 addr:$src))]>, TB, OpSize;
def MOVSX32rr8 : I<0xBE, MRMSrcReg, (ops R32:$dst, R8 :$src),
"movs{bl|x} {$src, $dst|$dst, $src}",
[(set R32:$dst, (sext R8:$src))]>, TB;
def MOVSX32rm8 : I<0xBE, MRMSrcMem, (ops R32:$dst, i8mem :$src),
"movs{bl|x} {$src, $dst|$dst, $src}",
[(set R32:$dst, (sextloadi32i8 addr:$src))]>, TB;
def MOVSX32rr16: I<0xBF, MRMSrcReg, (ops R32:$dst, R16:$src),
"movs{wl|x} {$src, $dst|$dst, $src}",
[(set R32:$dst, (sext R16:$src))]>, TB;
def MOVSX32rm16: I<0xBF, MRMSrcMem, (ops R32:$dst, i16mem:$src),
"movs{wl|x} {$src, $dst|$dst, $src}",
[(set R32:$dst, (sextloadi32i16 addr:$src))]>, TB;
def MOVZX16rr8 : I<0xB6, MRMSrcReg, (ops R16:$dst, R8 :$src),
"movz{bw|x} {$src, $dst|$dst, $src}",
[(set R16:$dst, (zext R8:$src))]>, TB, OpSize;
def MOVZX16rm8 : I<0xB6, MRMSrcMem, (ops R16:$dst, i8mem :$src),
"movz{bw|x} {$src, $dst|$dst, $src}",
[(set R16:$dst, (zextloadi16i8 addr:$src))]>, TB, OpSize;
def MOVZX32rr8 : I<0xB6, MRMSrcReg, (ops R32:$dst, R8 :$src),
"movz{bl|x} {$src, $dst|$dst, $src}",
[(set R32:$dst, (zext R8:$src))]>, TB;
def MOVZX32rm8 : I<0xB6, MRMSrcMem, (ops R32:$dst, i8mem :$src),
"movz{bl|x} {$src, $dst|$dst, $src}",
[(set R32:$dst, (zextloadi32i8 addr:$src))]>, TB;
def MOVZX32rr16: I<0xB7, MRMSrcReg, (ops R32:$dst, R16:$src),
"movz{wl|x} {$src, $dst|$dst, $src}",
[(set R32:$dst, (zext R16:$src))]>, TB;
def MOVZX32rm16: I<0xB7, MRMSrcMem, (ops R32:$dst, i16mem:$src),
"movz{wl|x} {$src, $dst|$dst, $src}",
[(set R32:$dst, (zextloadi32i16 addr:$src))]>, TB;
// Handling 1 bit zextload and sextload
def : Pat<(sextloadi16i1 addr:$src), (MOVSX16rm8 addr:$src)>;
def : Pat<(sextloadi32i1 addr:$src), (MOVSX32rm8 addr:$src)>;
def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
// Handling 1 bit extload
def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
// Modeling anyext as zext
def : Pat<(i16 (anyext R8 :$src)), (MOVZX16rr8 R8 :$src)>;
def : Pat<(i32 (anyext R8 :$src)), (MOVZX32rr8 R8 :$src)>;
def : Pat<(i32 (anyext R16:$src)), (MOVZX32rr16 R16:$src)>;
//===----------------------------------------------------------------------===//
// XMM Floating point support (requires SSE / SSE2)
//===----------------------------------------------------------------------===//
def MOVSSrr : I<0x10, MRMSrcReg, (ops FR32:$dst, FR32:$src),
"movss {$src, $dst|$dst, $src}", []>,
Requires<[HasSSE1]>, XS;
def MOVSDrr : I<0x10, MRMSrcReg, (ops FR64:$dst, FR64:$src),
"movsd {$src, $dst|$dst, $src}", []>,
Requires<[HasSSE2]>, XD;
def MOVSSrm : I<0x10, MRMSrcMem, (ops FR32:$dst, f32mem:$src),
"movss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (loadf32 addr:$src))]>,
Requires<[HasSSE1]>, XS;
def MOVSSmr : I<0x11, MRMDestMem, (ops f32mem:$dst, FR32:$src),
"movss {$src, $dst|$dst, $src}",
[(store FR32:$src, addr:$dst)]>,
Requires<[HasSSE1]>, XS;
def MOVSDrm : I<0x10, MRMSrcMem, (ops FR64:$dst, f64mem:$src),
"movsd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (loadf64 addr:$src))]>,
Requires<[HasSSE2]>, XD;
def MOVSDmr : I<0x11, MRMDestMem, (ops f64mem:$dst, FR64:$src),
"movsd {$src, $dst|$dst, $src}",
[(store FR64:$src, addr:$dst)]>,
Requires<[HasSSE2]>, XD;
def CVTTSD2SIrr: I<0x2C, MRMSrcReg, (ops R32:$dst, FR64:$src),
"cvttsd2si {$src, $dst|$dst, $src}",
[(set R32:$dst, (fp_to_sint FR64:$src))]>,
Requires<[HasSSE2]>, XD;
def CVTTSD2SIrm: I<0x2C, MRMSrcMem, (ops R32:$dst, f64mem:$src),
"cvttsd2si {$src, $dst|$dst, $src}",
[(set R32:$dst, (fp_to_sint (loadf64 addr:$src)))]>,
Requires<[HasSSE2]>, XD;
def CVTTSS2SIrr: I<0x2C, MRMSrcReg, (ops R32:$dst, FR32:$src),
"cvttss2si {$src, $dst|$dst, $src}",
[(set R32:$dst, (fp_to_sint FR32:$src))]>,
Requires<[HasSSE1]>, XS;
def CVTTSS2SIrm: I<0x2C, MRMSrcMem, (ops R32:$dst, f32mem:$src),
"cvttss2si {$src, $dst|$dst, $src}",
[(set R32:$dst, (fp_to_sint (loadf32 addr:$src)))]>,
Requires<[HasSSE1]>, XS;
def CVTSD2SSrr: I<0x5A, MRMSrcReg, (ops FR32:$dst, FR64:$src),
"cvtsd2ss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround FR64:$src))]>,
Requires<[HasSSE2]>, XS;
def CVTSD2SSrm: I<0x5A, MRMSrcMem, (ops FR32:$dst, f64mem:$src),
"cvtsd2ss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (fround (loadf64 addr:$src)))]>,
Requires<[HasSSE2]>, XS;
def CVTSS2SDrr: I<0x5A, MRMSrcReg, (ops FR64:$dst, FR32:$src),
"cvtss2sd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (fextend FR32:$src))]>,
Requires<[HasSSE2]>, XD;
def CVTSS2SDrm: I<0x5A, MRMSrcMem, (ops FR64:$dst, f32mem:$src),
"cvtss2sd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (fextend (loadf32 addr:$src)))]>,
Requires<[HasSSE2]>, XD;
def CVTSI2SSrr: I<0x2A, MRMSrcReg, (ops FR32:$dst, R32:$src),
"cvtsi2ss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (sint_to_fp R32:$src))]>,
Requires<[HasSSE2]>, XS;
def CVTSI2SSrm: I<0x2A, MRMSrcMem, (ops FR32:$dst, i32mem:$src),
"cvtsi2ss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (sint_to_fp (loadi32 addr:$src)))]>,
Requires<[HasSSE2]>, XS;
def CVTSI2SDrr: I<0x2A, MRMSrcReg, (ops FR64:$dst, R32:$src),
"cvtsi2sd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp R32:$src))]>,
Requires<[HasSSE2]>, XD;
def CVTSI2SDrm: I<0x2A, MRMSrcMem, (ops FR64:$dst, i32mem:$src),
"cvtsi2sd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (sint_to_fp (loadi32 addr:$src)))]>,
Requires<[HasSSE2]>, XD;
def SQRTSSrm : I<0x51, MRMSrcMem, (ops FR32:$dst, f32mem:$src),
"sqrtss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (fsqrt (loadf32 addr:$src)))]>,
Requires<[HasSSE1]>, XS;
def SQRTSSrr : I<0x51, MRMSrcReg, (ops FR32:$dst, FR32:$src),
"sqrtss {$src, $dst|$dst, $src}",
[(set FR32:$dst, (fsqrt FR32:$src))]>,
Requires<[HasSSE1]>, XS;
def SQRTSDrm : I<0x51, MRMSrcMem, (ops FR64:$dst, f64mem:$src),
"sqrtsd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (fsqrt (loadf64 addr:$src)))]>,
Requires<[HasSSE2]>, XD;
def SQRTSDrr : I<0x51, MRMSrcReg, (ops FR64:$dst, FR64:$src),
"sqrtsd {$src, $dst|$dst, $src}",
[(set FR64:$dst, (fsqrt FR64:$src))]>,
Requires<[HasSSE2]>, XD;
def UCOMISDrr: I<0x2E, MRMSrcReg, (ops FR64:$dst, FR64:$src),
"ucomisd {$src, $dst|$dst, $src}", []>,
Requires<[HasSSE2]>, TB, OpSize;
def UCOMISDrm: I<0x2E, MRMSrcMem, (ops FR64:$dst, f64mem:$src),
"ucomisd {$src, $dst|$dst, $src}", []>,
Requires<[HasSSE2]>, TB, OpSize;
def UCOMISSrr: I<0x2E, MRMSrcReg, (ops FR32:$dst, FR32:$src),
"ucomiss {$src, $dst|$dst, $src}", []>,
Requires<[HasSSE1]>, TB;
def UCOMISSrm: I<0x2E, MRMSrcMem, (ops FR32:$dst, f32mem:$src),
"ucomiss {$src, $dst|$dst, $src}", []>,
Requires<[HasSSE1]>, TB;
// Pseudo-instructions that map fld0 to xorps/xorpd for sse.
// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
def FLD0SS : I<0x57, MRMSrcReg, (ops FR32:$dst),
"xorps $dst, $dst", []>, Requires<[HasSSE1]>, TB;
def FLD0SD : I<0x57, MRMSrcReg, (ops FR64:$dst),
"xorpd $dst, $dst", []>, Requires<[HasSSE2]>, TB, OpSize;
let isTwoAddress = 1 in {
// SSE Scalar Arithmetic
let isCommutable = 1 in {
def ADDSSrr : I<0x58, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"addss {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (fadd FR32:$src1, FR32:$src2))]>,
Requires<[HasSSE1]>, XS;
def ADDSDrr : I<0x58, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"addsd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (fadd FR64:$src1, FR64:$src2))]>,
Requires<[HasSSE2]>, XD;
def MULSSrr : I<0x59, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"mulss {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (fmul FR32:$src1, FR32:$src2))]>,
Requires<[HasSSE1]>, XS;
def MULSDrr : I<0x59, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"mulsd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (fmul FR64:$src1, FR64:$src2))]>,
Requires<[HasSSE2]>, XD;
}
def ADDSSrm : I<0x58, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src2),
"addss {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (fadd FR32:$src1, (loadf32 addr:$src2)))]>,
Requires<[HasSSE1]>, XS;
def ADDSDrm : I<0x58, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f64mem:$src2),
"addsd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (fadd FR64:$src1, (loadf64 addr:$src2)))]>,
Requires<[HasSSE2]>, XD;
def MULSSrm : I<0x59, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src2),
"mulss {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (fmul FR32:$src1, (loadf32 addr:$src2)))]>,
Requires<[HasSSE1]>, XS;
def MULSDrm : I<0x59, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f64mem:$src2),
"mulsd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (fmul FR64:$src1, (loadf64 addr:$src2)))]>,
Requires<[HasSSE2]>, XD;
def DIVSSrr : I<0x5E, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"divss {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (fdiv FR32:$src1, FR32:$src2))]>,
Requires<[HasSSE1]>, XS;
def DIVSSrm : I<0x5E, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src2),
"divss {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (fdiv FR32:$src1, (loadf32 addr:$src2)))]>,
Requires<[HasSSE1]>, XS;
def DIVSDrr : I<0x5E, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"divsd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (fdiv FR64:$src1, FR64:$src2))]>,
Requires<[HasSSE2]>, XD;
def DIVSDrm : I<0x5E, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f64mem:$src2),
"divsd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (fdiv FR64:$src1, (loadf64 addr:$src2)))]>,
Requires<[HasSSE2]>, XD;
def SUBSSrr : I<0x5C, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"subss {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (fsub FR32:$src1, FR32:$src2))]>,
Requires<[HasSSE1]>, XS;
def SUBSSrm : I<0x5C, MRMSrcMem, (ops FR32:$dst, FR32:$src1, f32mem:$src2),
"subss {$src2, $dst|$dst, $src2}",
[(set FR32:$dst, (fsub FR32:$src1, (loadf32 addr:$src2)))]>,
Requires<[HasSSE1]>, XS;
def SUBSDrr : I<0x5C, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"subsd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (fsub FR64:$src1, FR64:$src2))]>,
Requires<[HasSSE2]>, XD;
def SUBSDrm : I<0x5C, MRMSrcMem, (ops FR64:$dst, FR64:$src1, f64mem:$src2),
"subsd {$src2, $dst|$dst, $src2}",
[(set FR64:$dst, (fsub FR64:$src1, (loadf64 addr:$src2)))]>,
Requires<[HasSSE2]>, XD;
// SSE Logical
let isCommutable = 1 in {
def ANDPSrr : I<0x54, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"andps {$src2, $dst|$dst, $src2}", []>,
Requires<[HasSSE1]>, TB;
def ANDPDrr : I<0x54, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"andpd {$src2, $dst|$dst, $src2}", []>,
Requires<[HasSSE2]>, TB, OpSize;
def ORPSrr : I<0x56, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"orps {$src2, $dst|$dst, $src2}", []>,
Requires<[HasSSE1]>, TB;
def ORPDrr : I<0x56, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"orpd {$src2, $dst|$dst, $src2}", []>,
Requires<[HasSSE2]>, TB, OpSize;
def XORPSrr : I<0x57, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"xorps {$src2, $dst|$dst, $src2}", []>,
Requires<[HasSSE1]>, TB;
def XORPDrr : I<0x57, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"xorpd {$src2, $dst|$dst, $src2}", []>,
Requires<[HasSSE2]>, TB, OpSize;
}
def ANDNPSrr : I<0x55, MRMSrcReg, (ops FR32:$dst, FR32:$src1, FR32:$src2),
"andnps {$src2, $dst|$dst, $src2}", []>,
Requires<[HasSSE1]>, TB;
def ANDNPDrr : I<0x55, MRMSrcReg, (ops FR64:$dst, FR64:$src1, FR64:$src2),
"andnpd {$src2, $dst|$dst, $src2}", []>,
Requires<[HasSSE2]>, TB, OpSize;
def CMPSSrr : I<0xC2, MRMSrcReg,
(ops FR32:$dst, FR32:$src1, FR32:$src, SSECC:$cc),
"cmp${cc}ss {$src, $dst|$dst, $src}", []>,
Requires<[HasSSE1]>, XS;
def CMPSSrm : I<0xC2, MRMSrcMem,
(ops FR32:$dst, FR32:$src1, f32mem:$src, SSECC:$cc),
"cmp${cc}ss {$src, $dst|$dst, $src}", []>,
Requires<[HasSSE1]>, XS;
def CMPSDrr : I<0xC2, MRMSrcReg,
(ops FR64:$dst, FR64:$src1, FR64:$src, SSECC:$cc),
"cmp${cc}sd {$src, $dst|$dst, $src}", []>,
Requires<[HasSSE1]>, XD;
def CMPSDrm : I<0xC2, MRMSrcMem,
(ops FR64:$dst, FR64:$src1, f64mem:$src, SSECC:$cc),
"cmp${cc}sd {$src, $dst|$dst, $src}", []>,
Requires<[HasSSE2]>, XD;
}
//===----------------------------------------------------------------------===//
// Floating Point Stack Support
//===----------------------------------------------------------------------===//
// Floating point support. All FP Stack operations are represented with two
// instructions here. The first instruction, generated by the instruction
// selector, uses "RFP" registers: a traditional register file to reference
// floating point values. These instructions are all psuedo instructions and
// use the "Fp" prefix. The second instruction is defined with FPI, which is
// the actual instruction emitted by the assembler. The FP stackifier pass
// converts one to the other after register allocation occurs.
//
// Note that the FpI instruction should have instruction selection info (e.g.
// a pattern) and the FPI instruction should have emission info (e.g. opcode
// encoding and asm printing info).
// FPI - Floating Point Instruction template.
class FPI<bits<8> o, Format F, dag ops, string asm> : I<o, F, ops, asm, []> {}
// FpI - Floating Point Psuedo Instruction template.
class FpI<dag ops, FPFormat fp, list<dag> pattern>
: X86Inst<0, Pseudo, NoImm, ops, "">, Requires<[FPStack]> {
let FPForm = fp; let FPFormBits = FPForm.Value;
let Pattern = pattern;
}
// Random Pseudo Instructions.
def FpGETRESULT : FpI<(ops RFP:$dst), SpecialFP, []>; // FPR = ST(0)
let noResults = 1, hasOutFlag = 1 in
def FpSETRESULT : FpI<(ops RFP:$src), SpecialFP,
[]>, Imp<[], [ST0]>; // ST(0) = FPR
def : Pat<(X86fpset RFP:$src), (FpSETRESULT RFP:$src)>;
def FpMOV : FpI<(ops RFP:$dst, RFP:$src), SpecialFP, []>; // f1 = fmov f2
// Arithmetic
// Add, Sub, Mul, Div.
def FpADD : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP,
[(set RFP:$dst, (fadd RFP:$src1, RFP:$src2))]>;
def FpSUB : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP,
[(set RFP:$dst, (fsub RFP:$src1, RFP:$src2))]>;
def FpMUL : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP,
[(set RFP:$dst, (fmul RFP:$src1, RFP:$src2))]>;
def FpDIV : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP,
[(set RFP:$dst, (fdiv RFP:$src1, RFP:$src2))]>;
class FPST0rInst<bits<8> o, string asm>
: FPI<o, AddRegFrm, (ops RST:$op), asm>, D8;
class FPrST0Inst<bits<8> o, string asm>
: FPI<o, AddRegFrm, (ops RST:$op), asm>, DC;
class FPrST0PInst<bits<8> o, string asm>
: FPI<o, AddRegFrm, (ops RST:$op), asm>, DE;
// Binary Ops with a memory source.
def FpADD32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fadd RFP:$src1,
(extloadf64f32 addr:$src2)))]>;
// ST(0) = ST(0) + [mem32]
def FpADD64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fadd RFP:$src1, (loadf64 addr:$src2)))]>;
// ST(0) = ST(0) + [mem64]
def FpMUL32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fmul RFP:$src1,
(extloadf64f32 addr:$src2)))]>;
// ST(0) = ST(0) * [mem32]
def FpMUL64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fmul RFP:$src1, (loadf64 addr:$src2)))]>;
// ST(0) = ST(0) * [mem64]
def FpSUB32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub RFP:$src1,
(extloadf64f32 addr:$src2)))]>;
// ST(0) = ST(0) - [mem32]
def FpSUB64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub RFP:$src1, (loadf64 addr:$src2)))]>;
// ST(0) = ST(0) - [mem64]
def FpSUBR32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fadd (extloadf64f32 addr:$src2),
RFP:$src1))]>;
// ST(0) = [mem32] - ST(0)
def FpSUBR64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub (loadf64 addr:$src2), RFP:$src1))]>;
// ST(0) = [mem64] - ST(0)
def FpDIV32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv RFP:$src1,
(extloadf64f32 addr:$src2)))]>;
// ST(0) = ST(0) / [mem32]
def FpDIV64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv RFP:$src1, (loadf64 addr:$src2)))]>;
// ST(0) = ST(0) / [mem64]
def FpDIVR32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv (extloadf64f32 addr:$src2),
RFP:$src1))]>;
// ST(0) = [mem32] / ST(0)
def FpDIVR64m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv (loadf64 addr:$src2), RFP:$src1))]>;
// ST(0) = [mem64] / ST(0)
def FADD32m : FPI<0xD8, MRM0m, (ops f32mem:$src), "fadd{s} $src">;
def FADD64m : FPI<0xDC, MRM0m, (ops f64mem:$src), "fadd{l} $src">;
def FMUL32m : FPI<0xD8, MRM1m, (ops f32mem:$src), "fmul{s} $src">;
def FMUL64m : FPI<0xDC, MRM1m, (ops f64mem:$src), "fmul{l} $src">;
def FSUB32m : FPI<0xD8, MRM4m, (ops f32mem:$src), "fsub{s} $src">;
def FSUB64m : FPI<0xDC, MRM4m, (ops f64mem:$src), "fsub{l} $src">;
def FSUBR32m : FPI<0xD8, MRM5m, (ops f32mem:$src), "fsubr{s} $src">;
def FSUBR64m : FPI<0xDC, MRM5m, (ops f64mem:$src), "fsubr{l} $src">;
def FDIV32m : FPI<0xD8, MRM6m, (ops f32mem:$src), "fdiv{s} $src">;
def FDIV64m : FPI<0xDC, MRM6m, (ops f64mem:$src), "fdiv{l} $src">;
def FDIVR32m : FPI<0xD8, MRM7m, (ops f32mem:$src), "fdivr{s} $src">;
def FDIVR64m : FPI<0xDC, MRM7m, (ops f64mem:$src), "fdivr{l} $src">;
// FIXME: Implement these when we have a dag-dag isel!
//def FIADD16m : FPI<0xDE, MRM0m>; // ST(0) = ST(0) + [mem16int]
//def FIADD32m : FPI<0xDA, MRM0m>; // ST(0) = ST(0) + [mem32int]
//def FIMUL16m : FPI<0xDE, MRM1m>; // ST(0) = ST(0) * [mem16]
//def FIMUL32m : FPI<0xDA, MRM1m>; // ST(0) = ST(0) * [mem32]
//def FISUB16m : FPI<0xDE, MRM4m>; // ST(0) = ST(0) - [mem16int]
//def FISUB32m : FPI<0xDA, MRM4m>; // ST(0) = ST(0) - [mem32int]
//def FISUBR16m : FPI<0xDE, MRM5m>; // ST(0) = [mem16int] - ST(0)
//def FISUBR32m : FPI<0xDA, MRM5m>; // ST(0) = [mem32int] - ST(0)
//def FIDIV16m : FPI<0xDE, MRM6m>; // ST(0) = ST(0) / [mem16int]
//def FIDIV32m : FPI<0xDA, MRM6m>; // ST(0) = ST(0) / [mem32int]
//def FIDIVR16m : FPI<0xDE, MRM7m>; // ST(0) = [mem16int] / ST(0)
//def FIDIVR32m : FPI<0xDA, MRM7m>; // ST(0) = [mem32int] / ST(0)
// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
// of some of the 'reverse' forms of the fsub and fdiv instructions. As such,
// we have to put some 'r's in and take them out of weird places.
def FADDST0r : FPST0rInst <0xC0, "fadd $op">;
def FADDrST0 : FPrST0Inst <0xC0, "fadd {%ST(0), $op|$op, %ST(0)}">;
def FADDPrST0 : FPrST0PInst<0xC0, "faddp $op">;
def FSUBRST0r : FPST0rInst <0xE8, "fsubr $op">;
def FSUBrST0 : FPrST0Inst <0xE8, "fsub{r} {%ST(0), $op|$op, %ST(0)}">;
def FSUBPrST0 : FPrST0PInst<0xE8, "fsub{r}p $op">;
def FSUBST0r : FPST0rInst <0xE0, "fsub $op">;
def FSUBRrST0 : FPrST0Inst <0xE0, "fsub{|r} {%ST(0), $op|$op, %ST(0)}">;
def FSUBRPrST0 : FPrST0PInst<0xE0, "fsub{|r}p $op">;
def FMULST0r : FPST0rInst <0xC8, "fmul $op">;
def FMULrST0 : FPrST0Inst <0xC8, "fmul {%ST(0), $op|$op, %ST(0)}">;
def FMULPrST0 : FPrST0PInst<0xC8, "fmulp $op">;
def FDIVRST0r : FPST0rInst <0xF8, "fdivr $op">;
def FDIVrST0 : FPrST0Inst <0xF8, "fdiv{r} {%ST(0), $op|$op, %ST(0)}">;
def FDIVPrST0 : FPrST0PInst<0xF8, "fdiv{r}p $op">;
def FDIVST0r : FPST0rInst <0xF0, "fdiv $op">;
def FDIVRrST0 : FPrST0Inst <0xF0, "fdiv{|r} {%ST(0), $op|$op, %ST(0)}">;
def FDIVRPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p $op">;
// Unary operations.
def FpCHS : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW,
[(set RFP:$dst, (fneg RFP:$src))]>;
def FpABS : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW,
[(set RFP:$dst, (fabs RFP:$src))]>;
def FpSQRT : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW,
[(set RFP:$dst, (fsqrt RFP:$src))]>;
def FpSIN : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW,
[(set RFP:$dst, (fsin RFP:$src))]>;
def FpCOS : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW,
[(set RFP:$dst, (fcos RFP:$src))]>;
def FpTST : FpI<(ops RFP:$src), OneArgFP,
[]>;
def FCHS : FPI<0xE0, RawFrm, (ops), "fchs">, D9;
def FABS : FPI<0xE1, RawFrm, (ops), "fabs">, D9;
def FSQRT : FPI<0xFA, RawFrm, (ops), "fsqrt">, D9;
def FSIN : FPI<0xFE, RawFrm, (ops), "fsin">, D9;
def FCOS : FPI<0xFF, RawFrm, (ops), "fcos">, D9;
def FTST : FPI<0xE4, RawFrm, (ops), "ftst">, D9;
// Floating point cmovs.
let isTwoAddress = 1 in {
def FpCMOVB : FpI<(ops RST:$dst, RFP:$src1, RFP:$src2), CondMovFP, []>;
def FpCMOVBE : FpI<(ops RST:$dst, RFP:$src1, RFP:$src2), CondMovFP, []>;
def FpCMOVE : FpI<(ops RST:$dst, RFP:$src1, RFP:$src2), CondMovFP, []>;
def FpCMOVP : FpI<(ops RST:$dst, RFP:$src1, RFP:$src2), CondMovFP, []>;
def FpCMOVAE : FpI<(ops RST:$dst, RFP:$src1, RFP:$src2), CondMovFP, []>;
def FpCMOVA : FpI<(ops RST:$dst, RFP:$src1, RFP:$src2), CondMovFP, []>;
def FpCMOVNE : FpI<(ops RST:$dst, RFP:$src1, RFP:$src2), CondMovFP, []>;
def FpCMOVNP : FpI<(ops RST:$dst, RFP:$src1, RFP:$src2), CondMovFP, []>;
}
def FCMOVB : FPI<0xC0, AddRegFrm, (ops RST:$op),
"fcmovb {$op, %ST(0)|%ST(0), $op}">, DA;
def FCMOVBE : FPI<0xD0, AddRegFrm, (ops RST:$op),
"fcmovbe {$op, %ST(0)|%ST(0), $op}">, DA;
def FCMOVE : FPI<0xC8, AddRegFrm, (ops RST:$op),
"fcmove {$op, %ST(0)|%ST(0), $op}">, DA;
def FCMOVP : FPI<0xD8, AddRegFrm, (ops RST:$op),
"fcmovu {$op, %ST(0)|%ST(0), $op}">, DA;
def FCMOVAE : FPI<0xC0, AddRegFrm, (ops RST:$op),
"fcmovae {$op, %ST(0)|%ST(0), $op}">, DB;
def FCMOVA : FPI<0xD0, AddRegFrm, (ops RST:$op),
"fcmova {$op, %ST(0)|%ST(0), $op}">, DB;
def FCMOVNE : FPI<0xC8, AddRegFrm, (ops RST:$op),
"fcmovne {$op, %ST(0)|%ST(0), $op}">, DB;
def FCMOVNP : FPI<0xD8, AddRegFrm, (ops RST:$op),
"fcmovnu {$op, %ST(0)|%ST(0), $op}">, DB;
// Floating point loads & stores.
def FpLD32m : FpI<(ops RFP:$dst, f32mem:$src), ZeroArgFP,
[(set RFP:$dst, (extloadf64f32 addr:$src))]>;
def FpLD64m : FpI<(ops RFP:$dst, f64mem:$src), ZeroArgFP,
[(set RFP:$dst, (loadf64 addr:$src))]>;
def FpILD16m : FpI<(ops RFP:$dst, i16mem:$src), ZeroArgFP,
[]>;
def FpILD32m : FpI<(ops RFP:$dst, i32mem:$src), ZeroArgFP,
[]>;
def FpILD64m : FpI<(ops RFP:$dst, i64mem:$src), ZeroArgFP,
[]>;
// Required for RET of f32 / f64 values.
def : Pat<(X86fld addr:$src, f32), (FpLD32m addr:$src)>;
def : Pat<(X86fld addr:$src, f64), (FpLD64m addr:$src)>;
def FpST32m : FpI<(ops f32mem:$op, RFP:$src), OneArgFP,
[(truncstore RFP:$src, addr:$op, f32)]>;
def FpST64m : FpI<(ops f64mem:$op, RFP:$src), OneArgFP,
[(store RFP:$src, addr:$op)]>;
def FpSTP32m : FpI<(ops f32mem:$op, RFP:$src), OneArgFP, []>;
def FpSTP64m : FpI<(ops f64mem:$op, RFP:$src), OneArgFP, []>;
def FpIST16m : FpI<(ops i16mem:$op, RFP:$src), OneArgFP, []>;
def FpIST32m : FpI<(ops i32mem:$op, RFP:$src), OneArgFP, []>;
def FpIST64m : FpI<(ops i64mem:$op, RFP:$src), OneArgFP, []>;
def FLD32m : FPI<0xD9, MRM0m, (ops f32mem:$src), "fld{s} $src">;
def FLD64m : FPI<0xDD, MRM0m, (ops f64mem:$src), "fld{l} $src">;
def FILD16m : FPI<0xDF, MRM0m, (ops i16mem:$src), "fild{s} $src">;
def FILD32m : FPI<0xDB, MRM0m, (ops i32mem:$src), "fild{l} $src">;
def FILD64m : FPI<0xDF, MRM5m, (ops i64mem:$src), "fild{ll} $src">;
def FST32m : FPI<0xD9, MRM2m, (ops f32mem:$dst), "fst{s} $dst">;
def FST64m : FPI<0xDD, MRM2m, (ops f64mem:$dst), "fst{l} $dst">;
def FSTP32m : FPI<0xD9, MRM3m, (ops f32mem:$dst), "fstp{s} $dst">;
def FSTP64m : FPI<0xDD, MRM3m, (ops f64mem:$dst), "fstp{l} $dst">;
def FIST16m : FPI<0xDF, MRM2m, (ops i16mem:$dst), "fist{s} $dst">;
def FIST32m : FPI<0xDB, MRM2m, (ops i32mem:$dst), "fist{l} $dst">;
def FISTP16m : FPI<0xDF, MRM3m, (ops i16mem:$dst), "fistp{s} $dst">;
def FISTP32m : FPI<0xDB, MRM3m, (ops i32mem:$dst), "fistp{l} $dst">;
def FISTP64m : FPI<0xDF, MRM7m, (ops i64mem:$dst), "fistp{ll} $dst">;
// FP Stack manipulation instructions.
def FLDrr : FPI<0xC0, AddRegFrm, (ops RST:$op), "fld $op">, D9;
def FSTrr : FPI<0xD0, AddRegFrm, (ops RST:$op), "fst $op">, DD;
def FSTPrr : FPI<0xD8, AddRegFrm, (ops RST:$op), "fstp $op">, DD;
def FXCH : FPI<0xC8, AddRegFrm, (ops RST:$op), "fxch $op">, D9;
// Floating point constant loads.
def FpLD0 : FpI<(ops RFP:$dst), ZeroArgFP, []>;
def FpLD1 : FpI<(ops RFP:$dst), ZeroArgFP, []>;
def FLD0 : FPI<0xEE, RawFrm, (ops), "fldz">, D9;
def FLD1 : FPI<0xE8, RawFrm, (ops), "fld1">, D9;
// Floating point compares.
def FpUCOMr : FpI<(ops RST:$lhs, RST:$rhs), CompareFP,
[]>; // FPSW = cmp ST(0) with ST(i)
def FpUCOMIr : FpI<(ops RST:$lhs, RST:$rhs), CompareFP,
[]>; // CC = cmp ST(0) with ST(i)
def FUCOMr : FPI<0xE0, AddRegFrm, // FPSW = cmp ST(0) with ST(i)
(ops RST:$reg),
"fucom $reg">, DD, Imp<[ST0],[]>;
def FUCOMPr : FPI<0xE8, AddRegFrm, // FPSW = cmp ST(0) with ST(i), pop
(ops RST:$reg),
"fucomp $reg">, DD, Imp<[ST0],[]>;
def FUCOMPPr : FPI<0xE9, RawFrm, // cmp ST(0) with ST(1), pop, pop
(ops),
"fucompp">, DA, Imp<[ST0],[]>;
def FUCOMIr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i)
(ops RST:$reg),
"fucomi {$reg, %ST(0)|%ST(0), $reg}">, DB, Imp<[ST0],[]>;
def FUCOMIPr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i), pop
(ops RST:$reg),
"fucomip {$reg, %ST(0)|%ST(0), $reg}">, DF, Imp<[ST0],[]>;
// Floating point flag ops.
def FNSTSW8r : I<0xE0, RawFrm, // AX = fp flags
(ops), "fnstsw", []>, DF, Imp<[],[AX]>;
def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world
(ops i16mem:$dst), "fnstcw $dst", []>;
def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16]
(ops i16mem:$dst), "fldcw $dst", []>;
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions
//===----------------------------------------------------------------------===//
def RDTSC : I<0x31, RawFrm, (ops), "rdtsc", []>, TB, Imp<[],[EAX,EDX]>;