mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106415 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1220 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1220 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the implementation of the FastISel class.
 | 
						|
//
 | 
						|
// "Fast" instruction selection is designed to emit very poor code quickly.
 | 
						|
// Also, it is not designed to be able to do much lowering, so most illegal
 | 
						|
// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
 | 
						|
// also not intended to be able to do much optimization, except in a few cases
 | 
						|
// where doing optimizations reduces overall compile time.  For example, folding
 | 
						|
// constants into immediate fields is often done, because it's cheap and it
 | 
						|
// reduces the number of instructions later phases have to examine.
 | 
						|
//
 | 
						|
// "Fast" instruction selection is able to fail gracefully and transfer
 | 
						|
// control to the SelectionDAG selector for operations that it doesn't
 | 
						|
// support.  In many cases, this allows us to avoid duplicating a lot of
 | 
						|
// the complicated lowering logic that SelectionDAG currently has.
 | 
						|
//
 | 
						|
// The intended use for "fast" instruction selection is "-O0" mode
 | 
						|
// compilation, where the quality of the generated code is irrelevant when
 | 
						|
// weighed against the speed at which the code can be generated.  Also,
 | 
						|
// at -O0, the LLVM optimizers are not running, and this makes the
 | 
						|
// compile time of codegen a much higher portion of the overall compile
 | 
						|
// time.  Despite its limitations, "fast" instruction selection is able to
 | 
						|
// handle enough code on its own to provide noticeable overall speedups
 | 
						|
// in -O0 compiles.
 | 
						|
//
 | 
						|
// Basic operations are supported in a target-independent way, by reading
 | 
						|
// the same instruction descriptions that the SelectionDAG selector reads,
 | 
						|
// and identifying simple arithmetic operations that can be directly selected
 | 
						|
// from simple operators.  More complicated operations currently require
 | 
						|
// target-specific code.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/GlobalVariable.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/CodeGen/FastISel.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineModuleInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Analysis/DebugInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "FunctionLoweringInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
bool FastISel::hasTrivialKill(const Value *V) const {
 | 
						|
  // Don't consider constants or arguments to have trivial kills.
 | 
						|
  const Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // No-op casts are trivially coalesced by fast-isel.
 | 
						|
  if (const CastInst *Cast = dyn_cast<CastInst>(I))
 | 
						|
    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
 | 
						|
        !hasTrivialKill(Cast->getOperand(0)))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Only instructions with a single use in the same basic block are considered
 | 
						|
  // to have trivial kills.
 | 
						|
  return I->hasOneUse() &&
 | 
						|
         !(I->getOpcode() == Instruction::BitCast ||
 | 
						|
           I->getOpcode() == Instruction::PtrToInt ||
 | 
						|
           I->getOpcode() == Instruction::IntToPtr) &&
 | 
						|
         cast<Instruction>(I->use_begin())->getParent() == I->getParent();
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::getRegForValue(const Value *V) {
 | 
						|
  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
 | 
						|
  // Don't handle non-simple values in FastISel.
 | 
						|
  if (!RealVT.isSimple())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Ignore illegal types. We must do this before looking up the value
 | 
						|
  // in ValueMap because Arguments are given virtual registers regardless
 | 
						|
  // of whether FastISel can handle them.
 | 
						|
  MVT VT = RealVT.getSimpleVT();
 | 
						|
  if (!TLI.isTypeLegal(VT)) {
 | 
						|
    // Promote MVT::i1 to a legal type though, because it's common and easy.
 | 
						|
    if (VT == MVT::i1)
 | 
						|
      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
 | 
						|
    else
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look up the value to see if we already have a register for it. We
 | 
						|
  // cache values defined by Instructions across blocks, and other values
 | 
						|
  // only locally. This is because Instructions already have the SSA
 | 
						|
  // def-dominates-use requirement enforced.
 | 
						|
  DenseMap<const Value *, unsigned>::iterator I = ValueMap.find(V);
 | 
						|
  if (I != ValueMap.end())
 | 
						|
    return I->second;
 | 
						|
  unsigned Reg = LocalValueMap[V];
 | 
						|
  if (Reg != 0)
 | 
						|
    return Reg;
 | 
						|
 | 
						|
  // In bottom-up mode, just create the virtual register which will be used
 | 
						|
  // to hold the value. It will be materialized later.
 | 
						|
  if (IsBottomUp) {
 | 
						|
    Reg = createResultReg(TLI.getRegClassFor(VT));
 | 
						|
    if (isa<Instruction>(V))
 | 
						|
      ValueMap[V] = Reg;
 | 
						|
    else
 | 
						|
      LocalValueMap[V] = Reg;
 | 
						|
    return Reg;
 | 
						|
  }
 | 
						|
 | 
						|
  return materializeRegForValue(V, VT);
 | 
						|
}
 | 
						|
 | 
						|
/// materializeRegForValue - Helper for getRegForVale. This function is
 | 
						|
/// called when the value isn't already available in a register and must
 | 
						|
/// be materialized with new instructions.
 | 
						|
unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
 | 
						|
  unsigned Reg = 0;
 | 
						|
 | 
						|
  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    if (CI->getValue().getActiveBits() <= 64)
 | 
						|
      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
 | 
						|
  } else if (isa<AllocaInst>(V)) {
 | 
						|
    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
 | 
						|
  } else if (isa<ConstantPointerNull>(V)) {
 | 
						|
    // Translate this as an integer zero so that it can be
 | 
						|
    // local-CSE'd with actual integer zeros.
 | 
						|
    Reg =
 | 
						|
      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
 | 
						|
  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
 | 
						|
    // Try to emit the constant directly.
 | 
						|
    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
 | 
						|
 | 
						|
    if (!Reg) {
 | 
						|
      // Try to emit the constant by using an integer constant with a cast.
 | 
						|
      const APFloat &Flt = CF->getValueAPF();
 | 
						|
      EVT IntVT = TLI.getPointerTy();
 | 
						|
 | 
						|
      uint64_t x[2];
 | 
						|
      uint32_t IntBitWidth = IntVT.getSizeInBits();
 | 
						|
      bool isExact;
 | 
						|
      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
 | 
						|
                                APFloat::rmTowardZero, &isExact);
 | 
						|
      if (isExact) {
 | 
						|
        APInt IntVal(IntBitWidth, 2, x);
 | 
						|
 | 
						|
        unsigned IntegerReg =
 | 
						|
          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
 | 
						|
        if (IntegerReg != 0)
 | 
						|
          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
 | 
						|
                           IntegerReg, /*Kill=*/false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
 | 
						|
    if (!SelectOperator(Op, Op->getOpcode())) return 0;
 | 
						|
    Reg = lookUpRegForValue(Op);
 | 
						|
  } else if (isa<UndefValue>(V)) {
 | 
						|
    Reg = createResultReg(TLI.getRegClassFor(VT));
 | 
						|
    BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If target-independent code couldn't handle the value, give target-specific
 | 
						|
  // code a try.
 | 
						|
  if (!Reg && isa<Constant>(V))
 | 
						|
    Reg = TargetMaterializeConstant(cast<Constant>(V));
 | 
						|
  
 | 
						|
  // Don't cache constant materializations in the general ValueMap.
 | 
						|
  // To do so would require tracking what uses they dominate.
 | 
						|
  if (Reg != 0)
 | 
						|
    LocalValueMap[V] = Reg;
 | 
						|
  return Reg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::lookUpRegForValue(const Value *V) {
 | 
						|
  // Look up the value to see if we already have a register for it. We
 | 
						|
  // cache values defined by Instructions across blocks, and other values
 | 
						|
  // only locally. This is because Instructions already have the SSA
 | 
						|
  // def-dominates-use requirement enforced.
 | 
						|
  DenseMap<const Value *, unsigned>::iterator I = ValueMap.find(V);
 | 
						|
  if (I != ValueMap.end())
 | 
						|
    return I->second;
 | 
						|
  return LocalValueMap[V];
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateValueMap - Update the value map to include the new mapping for this
 | 
						|
/// instruction, or insert an extra copy to get the result in a previous
 | 
						|
/// determined register.
 | 
						|
/// NOTE: This is only necessary because we might select a block that uses
 | 
						|
/// a value before we select the block that defines the value.  It might be
 | 
						|
/// possible to fix this by selecting blocks in reverse postorder.
 | 
						|
unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) {
 | 
						|
  if (!isa<Instruction>(I)) {
 | 
						|
    LocalValueMap[I] = Reg;
 | 
						|
    return Reg;
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned &AssignedReg = ValueMap[I];
 | 
						|
  if (AssignedReg == 0)
 | 
						|
    AssignedReg = Reg;
 | 
						|
  else if (Reg != AssignedReg) {
 | 
						|
    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
 | 
						|
    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
 | 
						|
                     Reg, RegClass, RegClass, DL);
 | 
						|
  }
 | 
						|
  return AssignedReg;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
 | 
						|
  unsigned IdxN = getRegForValue(Idx);
 | 
						|
  if (IdxN == 0)
 | 
						|
    // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
    return std::pair<unsigned, bool>(0, false);
 | 
						|
 | 
						|
  bool IdxNIsKill = hasTrivialKill(Idx);
 | 
						|
 | 
						|
  // If the index is smaller or larger than intptr_t, truncate or extend it.
 | 
						|
  MVT PtrVT = TLI.getPointerTy();
 | 
						|
  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
 | 
						|
  if (IdxVT.bitsLT(PtrVT)) {
 | 
						|
    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
 | 
						|
                      IdxN, IdxNIsKill);
 | 
						|
    IdxNIsKill = true;
 | 
						|
  }
 | 
						|
  else if (IdxVT.bitsGT(PtrVT)) {
 | 
						|
    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
 | 
						|
                      IdxN, IdxNIsKill);
 | 
						|
    IdxNIsKill = true;
 | 
						|
  }
 | 
						|
  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
 | 
						|
}
 | 
						|
 | 
						|
/// SelectBinaryOp - Select and emit code for a binary operator instruction,
 | 
						|
/// which has an opcode which directly corresponds to the given ISD opcode.
 | 
						|
///
 | 
						|
bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
 | 
						|
  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
 | 
						|
  if (VT == MVT::Other || !VT.isSimple())
 | 
						|
    // Unhandled type. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We only handle legal types. For example, on x86-32 the instruction
 | 
						|
  // selector contains all of the 64-bit instructions from x86-64,
 | 
						|
  // under the assumption that i64 won't be used if the target doesn't
 | 
						|
  // support it.
 | 
						|
  if (!TLI.isTypeLegal(VT)) {
 | 
						|
    // MVT::i1 is special. Allow AND, OR, or XOR because they
 | 
						|
    // don't require additional zeroing, which makes them easy.
 | 
						|
    if (VT == MVT::i1 &&
 | 
						|
        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
 | 
						|
         ISDOpcode == ISD::XOR))
 | 
						|
      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Op0 = getRegForValue(I->getOperand(0));
 | 
						|
  if (Op0 == 0)
 | 
						|
    // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
 | 
						|
 | 
						|
  // Check if the second operand is a constant and handle it appropriately.
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
 | 
						|
                                     ISDOpcode, Op0, Op0IsKill,
 | 
						|
                                     CI->getZExtValue());
 | 
						|
    if (ResultReg != 0) {
 | 
						|
      // We successfully emitted code for the given LLVM Instruction.
 | 
						|
      UpdateValueMap(I, ResultReg);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the second operand is a constant float.
 | 
						|
  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
 | 
						|
    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
 | 
						|
                                     ISDOpcode, Op0, Op0IsKill, CF);
 | 
						|
    if (ResultReg != 0) {
 | 
						|
      // We successfully emitted code for the given LLVM Instruction.
 | 
						|
      UpdateValueMap(I, ResultReg);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Op1 = getRegForValue(I->getOperand(1));
 | 
						|
  if (Op1 == 0)
 | 
						|
    // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
 | 
						|
 | 
						|
  // Now we have both operands in registers. Emit the instruction.
 | 
						|
  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
 | 
						|
                                   ISDOpcode,
 | 
						|
                                   Op0, Op0IsKill,
 | 
						|
                                   Op1, Op1IsKill);
 | 
						|
  if (ResultReg == 0)
 | 
						|
    // Target-specific code wasn't able to find a machine opcode for
 | 
						|
    // the given ISD opcode and type. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We successfully emitted code for the given LLVM Instruction.
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::SelectGetElementPtr(const User *I) {
 | 
						|
  unsigned N = getRegForValue(I->getOperand(0));
 | 
						|
  if (N == 0)
 | 
						|
    // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool NIsKill = hasTrivialKill(I->getOperand(0));
 | 
						|
 | 
						|
  const Type *Ty = I->getOperand(0)->getType();
 | 
						|
  MVT VT = TLI.getPointerTy();
 | 
						|
  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
 | 
						|
       E = I->op_end(); OI != E; ++OI) {
 | 
						|
    const Value *Idx = *OI;
 | 
						|
    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | 
						|
      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
 | 
						|
      if (Field) {
 | 
						|
        // N = N + Offset
 | 
						|
        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
 | 
						|
        // FIXME: This can be optimized by combining the add with a
 | 
						|
        // subsequent one.
 | 
						|
        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
 | 
						|
        if (N == 0)
 | 
						|
          // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
          return false;
 | 
						|
        NIsKill = true;
 | 
						|
      }
 | 
						|
      Ty = StTy->getElementType(Field);
 | 
						|
    } else {
 | 
						|
      Ty = cast<SequentialType>(Ty)->getElementType();
 | 
						|
 | 
						|
      // If this is a constant subscript, handle it quickly.
 | 
						|
      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | 
						|
        if (CI->isZero()) continue;
 | 
						|
        uint64_t Offs = 
 | 
						|
          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
 | 
						|
        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
 | 
						|
        if (N == 0)
 | 
						|
          // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
          return false;
 | 
						|
        NIsKill = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // N = N + Idx * ElementSize;
 | 
						|
      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
 | 
						|
      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
 | 
						|
      unsigned IdxN = Pair.first;
 | 
						|
      bool IdxNIsKill = Pair.second;
 | 
						|
      if (IdxN == 0)
 | 
						|
        // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (ElementSize != 1) {
 | 
						|
        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
 | 
						|
        if (IdxN == 0)
 | 
						|
          // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
          return false;
 | 
						|
        IdxNIsKill = true;
 | 
						|
      }
 | 
						|
      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
 | 
						|
      if (N == 0)
 | 
						|
        // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We successfully emitted code for the given LLVM Instruction.
 | 
						|
  UpdateValueMap(I, N);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::SelectCall(const User *I) {
 | 
						|
  const Function *F = cast<CallInst>(I)->getCalledFunction();
 | 
						|
  if (!F) return false;
 | 
						|
 | 
						|
  // Handle selected intrinsic function calls.
 | 
						|
  unsigned IID = F->getIntrinsicID();
 | 
						|
  switch (IID) {
 | 
						|
  default: break;
 | 
						|
  case Intrinsic::dbg_declare: {
 | 
						|
    const DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
 | 
						|
    if (!DIVariable(DI->getVariable()).Verify() ||
 | 
						|
        !MF.getMMI().hasDebugInfo())
 | 
						|
      return true;
 | 
						|
 | 
						|
    const Value *Address = DI->getAddress();
 | 
						|
    if (!Address)
 | 
						|
      return true;
 | 
						|
    if (isa<UndefValue>(Address))
 | 
						|
      return true;
 | 
						|
    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
 | 
						|
    // Don't handle byval struct arguments or VLAs, for example.
 | 
						|
    // Note that if we have a byval struct argument, fast ISel is turned off;
 | 
						|
    // those are handled in SelectionDAGBuilder.
 | 
						|
    if (AI) {
 | 
						|
      DenseMap<const AllocaInst*, int>::iterator SI =
 | 
						|
        StaticAllocaMap.find(AI);
 | 
						|
      if (SI == StaticAllocaMap.end()) break; // VLAs.
 | 
						|
      int FI = SI->second;
 | 
						|
      if (!DI->getDebugLoc().isUnknown())
 | 
						|
        MF.getMMI().setVariableDbgInfo(DI->getVariable(), FI, DI->getDebugLoc());
 | 
						|
    } else
 | 
						|
      // Building the map above is target independent.  Generating DBG_VALUE
 | 
						|
      // inline is target dependent; do this now.
 | 
						|
      (void)TargetSelectInstruction(cast<Instruction>(I));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::dbg_value: {
 | 
						|
    // This form of DBG_VALUE is target-independent.
 | 
						|
    const DbgValueInst *DI = cast<DbgValueInst>(I);
 | 
						|
    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
 | 
						|
    const Value *V = DI->getValue();
 | 
						|
    if (!V) {
 | 
						|
      // Currently the optimizer can produce this; insert an undef to
 | 
						|
      // help debugging.  Probably the optimizer should not do this.
 | 
						|
      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
 | 
						|
                                     addMetadata(DI->getVariable());
 | 
						|
    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
      BuildMI(MBB, DL, II).addImm(CI->getZExtValue()).addImm(DI->getOffset()).
 | 
						|
                                     addMetadata(DI->getVariable());
 | 
						|
    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
 | 
						|
      BuildMI(MBB, DL, II).addFPImm(CF).addImm(DI->getOffset()).
 | 
						|
                                     addMetadata(DI->getVariable());
 | 
						|
    } else if (unsigned Reg = lookUpRegForValue(V)) {
 | 
						|
      BuildMI(MBB, DL, II).addReg(Reg, RegState::Debug).addImm(DI->getOffset()).
 | 
						|
                                     addMetadata(DI->getVariable());
 | 
						|
    } else {
 | 
						|
      // We can't yet handle anything else here because it would require
 | 
						|
      // generating code, thus altering codegen because of debug info.
 | 
						|
      // Insert an undef so we can see what we dropped.
 | 
						|
      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
 | 
						|
                                     addMetadata(DI->getVariable());
 | 
						|
    }     
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case Intrinsic::eh_exception: {
 | 
						|
    EVT VT = TLI.getValueType(I->getType());
 | 
						|
    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
 | 
						|
    default: break;
 | 
						|
    case TargetLowering::Expand: {
 | 
						|
      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
 | 
						|
      unsigned Reg = TLI.getExceptionAddressRegister();
 | 
						|
      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
 | 
						|
      unsigned ResultReg = createResultReg(RC);
 | 
						|
      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | 
						|
                                           Reg, RC, RC, DL);
 | 
						|
      assert(InsertedCopy && "Can't copy address registers!");
 | 
						|
      InsertedCopy = InsertedCopy;
 | 
						|
      UpdateValueMap(I, ResultReg);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::eh_selector: {
 | 
						|
    EVT VT = TLI.getValueType(I->getType());
 | 
						|
    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
 | 
						|
    default: break;
 | 
						|
    case TargetLowering::Expand: {
 | 
						|
      if (MBB->isLandingPad())
 | 
						|
        AddCatchInfo(*cast<CallInst>(I), &MF.getMMI(), MBB);
 | 
						|
      else {
 | 
						|
#ifndef NDEBUG
 | 
						|
        CatchInfoLost.insert(cast<CallInst>(I));
 | 
						|
#endif
 | 
						|
        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
 | 
						|
        unsigned Reg = TLI.getExceptionSelectorRegister();
 | 
						|
        if (Reg) MBB->addLiveIn(Reg);
 | 
						|
      }
 | 
						|
 | 
						|
      unsigned Reg = TLI.getExceptionSelectorRegister();
 | 
						|
      EVT SrcVT = TLI.getPointerTy();
 | 
						|
      const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
 | 
						|
      unsigned ResultReg = createResultReg(RC);
 | 
						|
      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
 | 
						|
                                           RC, RC, DL);
 | 
						|
      assert(InsertedCopy && "Can't copy address registers!");
 | 
						|
      InsertedCopy = InsertedCopy;
 | 
						|
 | 
						|
      bool ResultRegIsKill = hasTrivialKill(I);
 | 
						|
 | 
						|
      // Cast the register to the type of the selector.
 | 
						|
      if (SrcVT.bitsGT(MVT::i32))
 | 
						|
        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
 | 
						|
                               ResultReg, ResultRegIsKill);
 | 
						|
      else if (SrcVT.bitsLT(MVT::i32))
 | 
						|
        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
 | 
						|
                               ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
 | 
						|
      if (ResultReg == 0)
 | 
						|
        // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
        return false;
 | 
						|
 | 
						|
      UpdateValueMap(I, ResultReg);
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  // An arbitrary call. Bail.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::SelectCast(const User *I, unsigned Opcode) {
 | 
						|
  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | 
						|
  EVT DstVT = TLI.getValueType(I->getType());
 | 
						|
    
 | 
						|
  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
 | 
						|
      DstVT == MVT::Other || !DstVT.isSimple())
 | 
						|
    // Unhandled type. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  // Check if the destination type is legal. Or as a special case,
 | 
						|
  // it may be i1 if we're doing a truncate because that's
 | 
						|
  // easy and somewhat common.
 | 
						|
  if (!TLI.isTypeLegal(DstVT))
 | 
						|
    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
 | 
						|
      // Unhandled type. Halt "fast" selection and bail.
 | 
						|
      return false;
 | 
						|
 | 
						|
  // Check if the source operand is legal. Or as a special case,
 | 
						|
  // it may be i1 if we're doing zero-extension because that's
 | 
						|
  // easy and somewhat common.
 | 
						|
  if (!TLI.isTypeLegal(SrcVT))
 | 
						|
    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
 | 
						|
      // Unhandled type. Halt "fast" selection and bail.
 | 
						|
      return false;
 | 
						|
 | 
						|
  unsigned InputReg = getRegForValue(I->getOperand(0));
 | 
						|
  if (!InputReg)
 | 
						|
    // Unhandled operand.  Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
 | 
						|
 | 
						|
  // If the operand is i1, arrange for the high bits in the register to be zero.
 | 
						|
  if (SrcVT == MVT::i1) {
 | 
						|
   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
 | 
						|
   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg, InputRegIsKill);
 | 
						|
   if (!InputReg)
 | 
						|
     return false;
 | 
						|
   InputRegIsKill = true;
 | 
						|
  }
 | 
						|
  // If the result is i1, truncate to the target's type for i1 first.
 | 
						|
  if (DstVT == MVT::i1)
 | 
						|
    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
 | 
						|
 | 
						|
  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
 | 
						|
                                  DstVT.getSimpleVT(),
 | 
						|
                                  Opcode,
 | 
						|
                                  InputReg, InputRegIsKill);
 | 
						|
  if (!ResultReg)
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool FastISel::SelectBitCast(const User *I) {
 | 
						|
  // If the bitcast doesn't change the type, just use the operand value.
 | 
						|
  if (I->getType() == I->getOperand(0)->getType()) {
 | 
						|
    unsigned Reg = getRegForValue(I->getOperand(0));
 | 
						|
    if (Reg == 0)
 | 
						|
      return false;
 | 
						|
    UpdateValueMap(I, Reg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
 | 
						|
  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | 
						|
  EVT DstVT = TLI.getValueType(I->getType());
 | 
						|
  
 | 
						|
  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
 | 
						|
      DstVT == MVT::Other || !DstVT.isSimple() ||
 | 
						|
      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
 | 
						|
    // Unhandled type. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  unsigned Op0 = getRegForValue(I->getOperand(0));
 | 
						|
  if (Op0 == 0)
 | 
						|
    // Unhandled operand. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
 | 
						|
  
 | 
						|
  // First, try to perform the bitcast by inserting a reg-reg copy.
 | 
						|
  unsigned ResultReg = 0;
 | 
						|
  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
 | 
						|
    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
 | 
						|
    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
 | 
						|
    ResultReg = createResultReg(DstClass);
 | 
						|
    
 | 
						|
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | 
						|
                                         Op0, DstClass, SrcClass, DL);
 | 
						|
    if (!InsertedCopy)
 | 
						|
      ResultReg = 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
 | 
						|
  if (!ResultReg)
 | 
						|
    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
 | 
						|
                           ISD::BIT_CONVERT, Op0, Op0IsKill);
 | 
						|
  
 | 
						|
  if (!ResultReg)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
FastISel::SelectInstruction(const Instruction *I) {
 | 
						|
  // Just before the terminator instruction, insert instructions to
 | 
						|
  // feed PHI nodes in successor blocks.
 | 
						|
  if (isa<TerminatorInst>(I))
 | 
						|
    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
 | 
						|
      return false;
 | 
						|
 | 
						|
  DL = I->getDebugLoc();
 | 
						|
 | 
						|
  // First, try doing target-independent selection.
 | 
						|
  if (SelectOperator(I, I->getOpcode())) {
 | 
						|
    DL = DebugLoc();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Next, try calling the target to attempt to handle the instruction.
 | 
						|
  if (TargetSelectInstruction(I)) {
 | 
						|
    DL = DebugLoc();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  DL = DebugLoc();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// FastEmitBranch - Emit an unconditional branch to the given block,
 | 
						|
/// unless it is the immediate (fall-through) successor, and update
 | 
						|
/// the CFG.
 | 
						|
void
 | 
						|
FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
 | 
						|
  if (MBB->isLayoutSuccessor(MSucc)) {
 | 
						|
    // The unconditional fall-through case, which needs no instructions.
 | 
						|
  } else {
 | 
						|
    // The unconditional branch case.
 | 
						|
    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>(), DL);
 | 
						|
  }
 | 
						|
  MBB->addSuccessor(MSucc);
 | 
						|
}
 | 
						|
 | 
						|
/// SelectFNeg - Emit an FNeg operation.
 | 
						|
///
 | 
						|
bool
 | 
						|
FastISel::SelectFNeg(const User *I) {
 | 
						|
  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
 | 
						|
  if (OpReg == 0) return false;
 | 
						|
 | 
						|
  bool OpRegIsKill = hasTrivialKill(I);
 | 
						|
 | 
						|
  // If the target has ISD::FNEG, use it.
 | 
						|
  EVT VT = TLI.getValueType(I->getType());
 | 
						|
  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
 | 
						|
                                  ISD::FNEG, OpReg, OpRegIsKill);
 | 
						|
  if (ResultReg != 0) {
 | 
						|
    UpdateValueMap(I, ResultReg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Bitcast the value to integer, twiddle the sign bit with xor,
 | 
						|
  // and then bitcast it back to floating-point.
 | 
						|
  if (VT.getSizeInBits() > 64) return false;
 | 
						|
  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
 | 
						|
  if (!TLI.isTypeLegal(IntVT))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
 | 
						|
                               ISD::BIT_CONVERT, OpReg, OpRegIsKill);
 | 
						|
  if (IntReg == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
 | 
						|
                                       IntReg, /*Kill=*/true,
 | 
						|
                                       UINT64_C(1) << (VT.getSizeInBits()-1),
 | 
						|
                                       IntVT.getSimpleVT());
 | 
						|
  if (IntResultReg == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
 | 
						|
                         ISD::BIT_CONVERT, IntResultReg, /*Kill=*/true);
 | 
						|
  if (ResultReg == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  UpdateValueMap(I, ResultReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
FastISel::SelectOperator(const User *I, unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Add:
 | 
						|
    return SelectBinaryOp(I, ISD::ADD);
 | 
						|
  case Instruction::FAdd:
 | 
						|
    return SelectBinaryOp(I, ISD::FADD);
 | 
						|
  case Instruction::Sub:
 | 
						|
    return SelectBinaryOp(I, ISD::SUB);
 | 
						|
  case Instruction::FSub:
 | 
						|
    // FNeg is currently represented in LLVM IR as a special case of FSub.
 | 
						|
    if (BinaryOperator::isFNeg(I))
 | 
						|
      return SelectFNeg(I);
 | 
						|
    return SelectBinaryOp(I, ISD::FSUB);
 | 
						|
  case Instruction::Mul:
 | 
						|
    return SelectBinaryOp(I, ISD::MUL);
 | 
						|
  case Instruction::FMul:
 | 
						|
    return SelectBinaryOp(I, ISD::FMUL);
 | 
						|
  case Instruction::SDiv:
 | 
						|
    return SelectBinaryOp(I, ISD::SDIV);
 | 
						|
  case Instruction::UDiv:
 | 
						|
    return SelectBinaryOp(I, ISD::UDIV);
 | 
						|
  case Instruction::FDiv:
 | 
						|
    return SelectBinaryOp(I, ISD::FDIV);
 | 
						|
  case Instruction::SRem:
 | 
						|
    return SelectBinaryOp(I, ISD::SREM);
 | 
						|
  case Instruction::URem:
 | 
						|
    return SelectBinaryOp(I, ISD::UREM);
 | 
						|
  case Instruction::FRem:
 | 
						|
    return SelectBinaryOp(I, ISD::FREM);
 | 
						|
  case Instruction::Shl:
 | 
						|
    return SelectBinaryOp(I, ISD::SHL);
 | 
						|
  case Instruction::LShr:
 | 
						|
    return SelectBinaryOp(I, ISD::SRL);
 | 
						|
  case Instruction::AShr:
 | 
						|
    return SelectBinaryOp(I, ISD::SRA);
 | 
						|
  case Instruction::And:
 | 
						|
    return SelectBinaryOp(I, ISD::AND);
 | 
						|
  case Instruction::Or:
 | 
						|
    return SelectBinaryOp(I, ISD::OR);
 | 
						|
  case Instruction::Xor:
 | 
						|
    return SelectBinaryOp(I, ISD::XOR);
 | 
						|
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    return SelectGetElementPtr(I);
 | 
						|
 | 
						|
  case Instruction::Br: {
 | 
						|
    const BranchInst *BI = cast<BranchInst>(I);
 | 
						|
 | 
						|
    if (BI->isUnconditional()) {
 | 
						|
      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
 | 
						|
      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
 | 
						|
      FastEmitBranch(MSucc, BI->getDebugLoc());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Conditional branches are not handed yet.
 | 
						|
    // Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::Unreachable:
 | 
						|
    // Nothing to emit.
 | 
						|
    return true;
 | 
						|
 | 
						|
  case Instruction::Alloca:
 | 
						|
    // FunctionLowering has the static-sized case covered.
 | 
						|
    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Dynamic-sized alloca is not handled yet.
 | 
						|
    return false;
 | 
						|
    
 | 
						|
  case Instruction::Call:
 | 
						|
    return SelectCall(I);
 | 
						|
  
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return SelectBitCast(I);
 | 
						|
 | 
						|
  case Instruction::FPToSI:
 | 
						|
    return SelectCast(I, ISD::FP_TO_SINT);
 | 
						|
  case Instruction::ZExt:
 | 
						|
    return SelectCast(I, ISD::ZERO_EXTEND);
 | 
						|
  case Instruction::SExt:
 | 
						|
    return SelectCast(I, ISD::SIGN_EXTEND);
 | 
						|
  case Instruction::Trunc:
 | 
						|
    return SelectCast(I, ISD::TRUNCATE);
 | 
						|
  case Instruction::SIToFP:
 | 
						|
    return SelectCast(I, ISD::SINT_TO_FP);
 | 
						|
 | 
						|
  case Instruction::IntToPtr: // Deliberate fall-through.
 | 
						|
  case Instruction::PtrToInt: {
 | 
						|
    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | 
						|
    EVT DstVT = TLI.getValueType(I->getType());
 | 
						|
    if (DstVT.bitsGT(SrcVT))
 | 
						|
      return SelectCast(I, ISD::ZERO_EXTEND);
 | 
						|
    if (DstVT.bitsLT(SrcVT))
 | 
						|
      return SelectCast(I, ISD::TRUNCATE);
 | 
						|
    unsigned Reg = getRegForValue(I->getOperand(0));
 | 
						|
    if (Reg == 0) return false;
 | 
						|
    UpdateValueMap(I, Reg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::PHI:
 | 
						|
    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
 | 
						|
 | 
						|
  default:
 | 
						|
    // Unhandled instruction. Halt "fast" selection and bail.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
FastISel::FastISel(MachineFunction &mf,
 | 
						|
                   DenseMap<const Value *, unsigned> &vm,
 | 
						|
                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
 | 
						|
                   DenseMap<const AllocaInst *, int> &am,
 | 
						|
                   std::vector<std::pair<MachineInstr*, unsigned> > &pn
 | 
						|
#ifndef NDEBUG
 | 
						|
                   , SmallSet<const Instruction *, 8> &cil
 | 
						|
#endif
 | 
						|
                   )
 | 
						|
  : MBB(0),
 | 
						|
    ValueMap(vm),
 | 
						|
    MBBMap(bm),
 | 
						|
    StaticAllocaMap(am),
 | 
						|
    PHINodesToUpdate(pn),
 | 
						|
#ifndef NDEBUG
 | 
						|
    CatchInfoLost(cil),
 | 
						|
#endif
 | 
						|
    MF(mf),
 | 
						|
    MRI(MF.getRegInfo()),
 | 
						|
    MFI(*MF.getFrameInfo()),
 | 
						|
    MCP(*MF.getConstantPool()),
 | 
						|
    TM(MF.getTarget()),
 | 
						|
    TD(*TM.getTargetData()),
 | 
						|
    TII(*TM.getInstrInfo()),
 | 
						|
    TLI(*TM.getTargetLowering()),
 | 
						|
    TRI(*TM.getRegisterInfo()),
 | 
						|
    IsBottomUp(false) {
 | 
						|
}
 | 
						|
 | 
						|
FastISel::~FastISel() {}
 | 
						|
 | 
						|
unsigned FastISel::FastEmit_(MVT, MVT,
 | 
						|
                             unsigned) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmit_r(MVT, MVT,
 | 
						|
                              unsigned,
 | 
						|
                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmit_rr(MVT, MVT, 
 | 
						|
                               unsigned,
 | 
						|
                               unsigned /*Op0*/, bool /*Op0IsKill*/,
 | 
						|
                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmit_f(MVT, MVT,
 | 
						|
                              unsigned, const ConstantFP * /*FPImm*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmit_ri(MVT, MVT,
 | 
						|
                               unsigned,
 | 
						|
                               unsigned /*Op0*/, bool /*Op0IsKill*/,
 | 
						|
                               uint64_t /*Imm*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmit_rf(MVT, MVT,
 | 
						|
                               unsigned,
 | 
						|
                               unsigned /*Op0*/, bool /*Op0IsKill*/,
 | 
						|
                               const ConstantFP * /*FPImm*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmit_rri(MVT, MVT,
 | 
						|
                                unsigned,
 | 
						|
                                unsigned /*Op0*/, bool /*Op0IsKill*/,
 | 
						|
                                unsigned /*Op1*/, bool /*Op1IsKill*/,
 | 
						|
                                uint64_t /*Imm*/) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
 | 
						|
/// to emit an instruction with an immediate operand using FastEmit_ri.
 | 
						|
/// If that fails, it materializes the immediate into a register and try
 | 
						|
/// FastEmit_rr instead.
 | 
						|
unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
 | 
						|
                                unsigned Op0, bool Op0IsKill,
 | 
						|
                                uint64_t Imm, MVT ImmType) {
 | 
						|
  // First check if immediate type is legal. If not, we can't use the ri form.
 | 
						|
  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
 | 
						|
  if (ResultReg != 0)
 | 
						|
    return ResultReg;
 | 
						|
  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
 | 
						|
  if (MaterialReg == 0)
 | 
						|
    return 0;
 | 
						|
  return FastEmit_rr(VT, VT, Opcode,
 | 
						|
                     Op0, Op0IsKill,
 | 
						|
                     MaterialReg, /*Kill=*/true);
 | 
						|
}
 | 
						|
 | 
						|
/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
 | 
						|
/// to emit an instruction with a floating-point immediate operand using
 | 
						|
/// FastEmit_rf. If that fails, it materializes the immediate into a register
 | 
						|
/// and try FastEmit_rr instead.
 | 
						|
unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
 | 
						|
                                unsigned Op0, bool Op0IsKill,
 | 
						|
                                const ConstantFP *FPImm, MVT ImmType) {
 | 
						|
  // First check if immediate type is legal. If not, we can't use the rf form.
 | 
						|
  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, Op0IsKill, FPImm);
 | 
						|
  if (ResultReg != 0)
 | 
						|
    return ResultReg;
 | 
						|
 | 
						|
  // Materialize the constant in a register.
 | 
						|
  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
 | 
						|
  if (MaterialReg == 0) {
 | 
						|
    // If the target doesn't have a way to directly enter a floating-point
 | 
						|
    // value into a register, use an alternate approach.
 | 
						|
    // TODO: The current approach only supports floating-point constants
 | 
						|
    // that can be constructed by conversion from integer values. This should
 | 
						|
    // be replaced by code that creates a load from a constant-pool entry,
 | 
						|
    // which will require some target-specific work.
 | 
						|
    const APFloat &Flt = FPImm->getValueAPF();
 | 
						|
    EVT IntVT = TLI.getPointerTy();
 | 
						|
 | 
						|
    uint64_t x[2];
 | 
						|
    uint32_t IntBitWidth = IntVT.getSizeInBits();
 | 
						|
    bool isExact;
 | 
						|
    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
 | 
						|
                             APFloat::rmTowardZero, &isExact);
 | 
						|
    if (!isExact)
 | 
						|
      return 0;
 | 
						|
    APInt IntVal(IntBitWidth, 2, x);
 | 
						|
 | 
						|
    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
 | 
						|
                                     ISD::Constant, IntVal.getZExtValue());
 | 
						|
    if (IntegerReg == 0)
 | 
						|
      return 0;
 | 
						|
    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
 | 
						|
                             ISD::SINT_TO_FP, IntegerReg, /*Kill=*/true);
 | 
						|
    if (MaterialReg == 0)
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
  return FastEmit_rr(VT, VT, Opcode,
 | 
						|
                     Op0, Op0IsKill,
 | 
						|
                     MaterialReg, /*Kill=*/true);
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
 | 
						|
  return MRI.createVirtualRegister(RC);
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
 | 
						|
                                 const TargetRegisterClass* RC) {
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  BuildMI(MBB, DL, II, ResultReg);
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
 | 
						|
                                  const TargetRegisterClass *RC,
 | 
						|
                                  unsigned Op0, bool Op0IsKill) {
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(MBB, DL, II, ResultReg).addReg(Op0, Op0IsKill * RegState::Kill);
 | 
						|
  else {
 | 
						|
    BuildMI(MBB, DL, II).addReg(Op0, Op0IsKill * RegState::Kill);
 | 
						|
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | 
						|
                                         II.ImplicitDefs[0], RC, RC, DL);
 | 
						|
    if (!InsertedCopy)
 | 
						|
      ResultReg = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
 | 
						|
                                   const TargetRegisterClass *RC,
 | 
						|
                                   unsigned Op0, bool Op0IsKill,
 | 
						|
                                   unsigned Op1, bool Op1IsKill) {
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(MBB, DL, II, ResultReg)
 | 
						|
      .addReg(Op0, Op0IsKill * RegState::Kill)
 | 
						|
      .addReg(Op1, Op1IsKill * RegState::Kill);
 | 
						|
  else {
 | 
						|
    BuildMI(MBB, DL, II)
 | 
						|
      .addReg(Op0, Op0IsKill * RegState::Kill)
 | 
						|
      .addReg(Op1, Op1IsKill * RegState::Kill);
 | 
						|
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | 
						|
                                         II.ImplicitDefs[0], RC, RC, DL);
 | 
						|
    if (!InsertedCopy)
 | 
						|
      ResultReg = 0;
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
 | 
						|
                                   const TargetRegisterClass *RC,
 | 
						|
                                   unsigned Op0, bool Op0IsKill,
 | 
						|
                                   uint64_t Imm) {
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(MBB, DL, II, ResultReg)
 | 
						|
      .addReg(Op0, Op0IsKill * RegState::Kill)
 | 
						|
      .addImm(Imm);
 | 
						|
  else {
 | 
						|
    BuildMI(MBB, DL, II)
 | 
						|
      .addReg(Op0, Op0IsKill * RegState::Kill)
 | 
						|
      .addImm(Imm);
 | 
						|
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | 
						|
                                         II.ImplicitDefs[0], RC, RC, DL);
 | 
						|
    if (!InsertedCopy)
 | 
						|
      ResultReg = 0;
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
 | 
						|
                                   const TargetRegisterClass *RC,
 | 
						|
                                   unsigned Op0, bool Op0IsKill,
 | 
						|
                                   const ConstantFP *FPImm) {
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(MBB, DL, II, ResultReg)
 | 
						|
      .addReg(Op0, Op0IsKill * RegState::Kill)
 | 
						|
      .addFPImm(FPImm);
 | 
						|
  else {
 | 
						|
    BuildMI(MBB, DL, II)
 | 
						|
      .addReg(Op0, Op0IsKill * RegState::Kill)
 | 
						|
      .addFPImm(FPImm);
 | 
						|
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | 
						|
                                         II.ImplicitDefs[0], RC, RC, DL);
 | 
						|
    if (!InsertedCopy)
 | 
						|
      ResultReg = 0;
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
 | 
						|
                                    const TargetRegisterClass *RC,
 | 
						|
                                    unsigned Op0, bool Op0IsKill,
 | 
						|
                                    unsigned Op1, bool Op1IsKill,
 | 
						|
                                    uint64_t Imm) {
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(MBB, DL, II, ResultReg)
 | 
						|
      .addReg(Op0, Op0IsKill * RegState::Kill)
 | 
						|
      .addReg(Op1, Op1IsKill * RegState::Kill)
 | 
						|
      .addImm(Imm);
 | 
						|
  else {
 | 
						|
    BuildMI(MBB, DL, II)
 | 
						|
      .addReg(Op0, Op0IsKill * RegState::Kill)
 | 
						|
      .addReg(Op1, Op1IsKill * RegState::Kill)
 | 
						|
      .addImm(Imm);
 | 
						|
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | 
						|
                                         II.ImplicitDefs[0], RC, RC, DL);
 | 
						|
    if (!InsertedCopy)
 | 
						|
      ResultReg = 0;
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
 | 
						|
                                  const TargetRegisterClass *RC,
 | 
						|
                                  uint64_t Imm) {
 | 
						|
  unsigned ResultReg = createResultReg(RC);
 | 
						|
  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | 
						|
  
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
 | 
						|
  else {
 | 
						|
    BuildMI(MBB, DL, II).addImm(Imm);
 | 
						|
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | 
						|
                                         II.ImplicitDefs[0], RC, RC, DL);
 | 
						|
    if (!InsertedCopy)
 | 
						|
      ResultReg = 0;
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
 | 
						|
                                              unsigned Op0, bool Op0IsKill,
 | 
						|
                                              uint32_t Idx) {
 | 
						|
  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
 | 
						|
  
 | 
						|
  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
 | 
						|
  const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG);
 | 
						|
  
 | 
						|
  if (II.getNumDefs() >= 1)
 | 
						|
    BuildMI(MBB, DL, II, ResultReg)
 | 
						|
      .addReg(Op0, Op0IsKill * RegState::Kill)
 | 
						|
      .addImm(Idx);
 | 
						|
  else {
 | 
						|
    BuildMI(MBB, DL, II)
 | 
						|
      .addReg(Op0, Op0IsKill * RegState::Kill)
 | 
						|
      .addImm(Idx);
 | 
						|
    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | 
						|
                                         II.ImplicitDefs[0], RC, RC, DL);
 | 
						|
    if (!InsertedCopy)
 | 
						|
      ResultReg = 0;
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
 | 
						|
/// with all but the least significant bit set to zero.
 | 
						|
unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
 | 
						|
  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
 | 
						|
}
 | 
						|
 | 
						|
/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
 | 
						|
/// Emit code to ensure constants are copied into registers when needed.
 | 
						|
/// Remember the virtual registers that need to be added to the Machine PHI
 | 
						|
/// nodes as input.  We cannot just directly add them, because expansion
 | 
						|
/// might result in multiple MBB's for one BB.  As such, the start of the
 | 
						|
/// BB might correspond to a different MBB than the end.
 | 
						|
bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
 | 
						|
  const TerminatorInst *TI = LLVMBB->getTerminator();
 | 
						|
 | 
						|
  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
 | 
						|
  unsigned OrigNumPHINodesToUpdate = PHINodesToUpdate.size();
 | 
						|
 | 
						|
  // Check successor nodes' PHI nodes that expect a constant to be available
 | 
						|
  // from this block.
 | 
						|
  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
 | 
						|
    const BasicBlock *SuccBB = TI->getSuccessor(succ);
 | 
						|
    if (!isa<PHINode>(SuccBB->begin())) continue;
 | 
						|
    MachineBasicBlock *SuccMBB = MBBMap[SuccBB];
 | 
						|
 | 
						|
    // If this terminator has multiple identical successors (common for
 | 
						|
    // switches), only handle each succ once.
 | 
						|
    if (!SuccsHandled.insert(SuccMBB)) continue;
 | 
						|
 | 
						|
    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
 | 
						|
 | 
						|
    // At this point we know that there is a 1-1 correspondence between LLVM PHI
 | 
						|
    // nodes and Machine PHI nodes, but the incoming operands have not been
 | 
						|
    // emitted yet.
 | 
						|
    for (BasicBlock::const_iterator I = SuccBB->begin();
 | 
						|
         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | 
						|
 | 
						|
      // Ignore dead phi's.
 | 
						|
      if (PN->use_empty()) continue;
 | 
						|
 | 
						|
      // Only handle legal types. Two interesting things to note here. First,
 | 
						|
      // by bailing out early, we may leave behind some dead instructions,
 | 
						|
      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
 | 
						|
      // own moves. Second, this check is necessary becuase FastISel doesn't
 | 
						|
      // use CreateRegForValue to create registers, so it always creates
 | 
						|
      // exactly one register for each non-void instruction.
 | 
						|
      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
 | 
						|
      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
 | 
						|
        // Promote MVT::i1.
 | 
						|
        if (VT == MVT::i1)
 | 
						|
          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
 | 
						|
        else {
 | 
						|
          PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
 | 
						|
 | 
						|
      // Set the DebugLoc for the copy. Prefer the location of the operand
 | 
						|
      // if there is one; use the location of the PHI otherwise.
 | 
						|
      DL = PN->getDebugLoc();
 | 
						|
      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
 | 
						|
        DL = Inst->getDebugLoc();
 | 
						|
 | 
						|
      unsigned Reg = getRegForValue(PHIOp);
 | 
						|
      if (Reg == 0) {
 | 
						|
        PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
 | 
						|
      DL = DebugLoc();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 |