mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94048 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			219 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			219 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- OptimalEdgeProfiling.cpp - Insert counters for opt. edge profiling -===//
 | 
						|
//
 | 
						|
//                      The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass instruments the specified program with counters for edge profiling.
 | 
						|
// Edge profiling can give a reasonable approximation of the hot paths through a
 | 
						|
// program, and is used for a wide variety of program transformations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
#define DEBUG_TYPE "insert-optimal-edge-profiling"
 | 
						|
#include "ProfilingUtils.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Analysis/Passes.h"
 | 
						|
#include "llvm/Analysis/ProfileInfo.h"
 | 
						|
#include "llvm/Analysis/ProfileInfoLoader.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Instrumentation.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "MaximumSpanningTree.h"
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumEdgesInserted, "The # of edges inserted.");
 | 
						|
 | 
						|
namespace {
 | 
						|
  class OptimalEdgeProfiler : public ModulePass {
 | 
						|
    bool runOnModule(Module &M);
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    OptimalEdgeProfiler() : ModulePass(&ID) {}
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequiredID(ProfileEstimatorPassID);
 | 
						|
      AU.addRequired<ProfileInfo>();
 | 
						|
    }
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "Optimal Edge Profiler";
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char OptimalEdgeProfiler::ID = 0;
 | 
						|
static RegisterPass<OptimalEdgeProfiler>
 | 
						|
X("insert-optimal-edge-profiling", 
 | 
						|
  "Insert optimal instrumentation for edge profiling");
 | 
						|
 | 
						|
ModulePass *llvm::createOptimalEdgeProfilerPass() {
 | 
						|
  return new OptimalEdgeProfiler();
 | 
						|
}
 | 
						|
 | 
						|
inline static void printEdgeCounter(ProfileInfo::Edge e,
 | 
						|
                                    BasicBlock* b,
 | 
						|
                                    unsigned i) {
 | 
						|
  DEBUG(dbgs() << "--Edge Counter for " << (e) << " in " \
 | 
						|
               << ((b)?(b)->getNameStr():"0") << " (# " << (i) << ")\n");
 | 
						|
}
 | 
						|
 | 
						|
bool OptimalEdgeProfiler::runOnModule(Module &M) {
 | 
						|
  Function *Main = M.getFunction("main");
 | 
						|
  if (Main == 0) {
 | 
						|
    errs() << "WARNING: cannot insert edge profiling into a module"
 | 
						|
           << " with no main function!\n";
 | 
						|
    return false;  // No main, no instrumentation!
 | 
						|
  }
 | 
						|
 | 
						|
  // NumEdges counts all the edges that may be instrumented. Later on its
 | 
						|
  // decided which edges to actually instrument, to achieve optimal profiling.
 | 
						|
  // For the entry block a virtual edge (0,entry) is reserved, for each block
 | 
						|
  // with no successors an edge (BB,0) is reserved. These edges are necessary
 | 
						|
  // to calculate a truly optimal maximum spanning tree and thus an optimal
 | 
						|
  // instrumentation.
 | 
						|
  unsigned NumEdges = 0;
 | 
						|
 | 
						|
  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | 
						|
    if (F->isDeclaration()) continue;
 | 
						|
    // Reserve space for (0,entry) edge.
 | 
						|
    ++NumEdges;
 | 
						|
    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | 
						|
      // Keep track of which blocks need to be instrumented.  We don't want to
 | 
						|
      // instrument blocks that are added as the result of breaking critical
 | 
						|
      // edges!
 | 
						|
      if (BB->getTerminator()->getNumSuccessors() == 0) {
 | 
						|
        // Reserve space for (BB,0) edge.
 | 
						|
        ++NumEdges;
 | 
						|
      } else {
 | 
						|
        NumEdges += BB->getTerminator()->getNumSuccessors();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // In the profiling output a counter for each edge is reserved, but only few
 | 
						|
  // are used. This is done to be able to read back in the profile without
 | 
						|
  // calulating the maximum spanning tree again, instead each edge counter that
 | 
						|
  // is not used is initialised with -1 to signal that this edge counter has to
 | 
						|
  // be calculated from other edge counters on reading the profile info back
 | 
						|
  // in.
 | 
						|
 | 
						|
  const Type *Int32 = Type::getInt32Ty(M.getContext());
 | 
						|
  const ArrayType *ATy = ArrayType::get(Int32, NumEdges);
 | 
						|
  GlobalVariable *Counters =
 | 
						|
    new GlobalVariable(M, ATy, false, GlobalValue::InternalLinkage,
 | 
						|
                       Constant::getNullValue(ATy), "OptEdgeProfCounters");
 | 
						|
  NumEdgesInserted = 0;
 | 
						|
 | 
						|
  std::vector<Constant*> Initializer(NumEdges);
 | 
						|
  Constant* Zero = ConstantInt::get(Int32, 0);
 | 
						|
  Constant* Uncounted = ConstantInt::get(Int32, ProfileInfoLoader::Uncounted);
 | 
						|
 | 
						|
  // Instrument all of the edges not in MST...
 | 
						|
  unsigned i = 0;
 | 
						|
  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | 
						|
    if (F->isDeclaration()) continue;
 | 
						|
    DEBUG(dbgs()<<"Working on "<<F->getNameStr()<<"\n");
 | 
						|
 | 
						|
    // Calculate a Maximum Spanning Tree with the edge weights determined by
 | 
						|
    // ProfileEstimator. ProfileEstimator also assign weights to the virtual
 | 
						|
    // edges (0,entry) and (BB,0) (for blocks with no successors) and this
 | 
						|
    // edges also participate in the maximum spanning tree calculation. 
 | 
						|
    // The third parameter of MaximumSpanningTree() has the effect that not the
 | 
						|
    // actual MST is returned but the edges _not_ in the MST.
 | 
						|
 | 
						|
    ProfileInfo::EdgeWeights ECs = 
 | 
						|
      getAnalysis<ProfileInfo>(*F).getEdgeWeights(F);
 | 
						|
    std::vector<ProfileInfo::EdgeWeight> EdgeVector(ECs.begin(), ECs.end());
 | 
						|
    MaximumSpanningTree<BasicBlock> MST (EdgeVector);
 | 
						|
    std::stable_sort(MST.begin(),MST.end());
 | 
						|
 | 
						|
    // Check if (0,entry) not in the MST. If not, instrument edge
 | 
						|
    // (IncrementCounterInBlock()) and set the counter initially to zero, if
 | 
						|
    // the edge is in the MST the counter is initialised to -1.
 | 
						|
 | 
						|
    BasicBlock *entry = &(F->getEntryBlock());
 | 
						|
    ProfileInfo::Edge edge = ProfileInfo::getEdge(0,entry);
 | 
						|
    if (!std::binary_search(MST.begin(), MST.end(), edge)) {
 | 
						|
      printEdgeCounter(edge,entry,i);
 | 
						|
      IncrementCounterInBlock(entry, i, Counters); NumEdgesInserted++;
 | 
						|
      Initializer[i++] = (Zero);
 | 
						|
    } else{
 | 
						|
      Initializer[i++] = (Uncounted);
 | 
						|
    }
 | 
						|
 | 
						|
    // InsertedBlocks contains all blocks that were inserted for splitting an
 | 
						|
    // edge, this blocks do not have to be instrumented.
 | 
						|
    DenseSet<BasicBlock*> InsertedBlocks;
 | 
						|
    for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
 | 
						|
      // Check if block was not inserted and thus does not have to be
 | 
						|
      // instrumented.
 | 
						|
      if (InsertedBlocks.count(BB)) continue;
 | 
						|
 | 
						|
      // Okay, we have to add a counter of each outgoing edge not in MST. If
 | 
						|
      // the outgoing edge is not critical don't split it, just insert the
 | 
						|
      // counter in the source or destination of the edge. Also, if the block
 | 
						|
      // has no successors, the virtual edge (BB,0) is processed.
 | 
						|
      TerminatorInst *TI = BB->getTerminator();
 | 
						|
      if (TI->getNumSuccessors() == 0) {
 | 
						|
        ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,0);
 | 
						|
        if (!std::binary_search(MST.begin(), MST.end(), edge)) {
 | 
						|
          printEdgeCounter(edge,BB,i);
 | 
						|
          IncrementCounterInBlock(BB, i, Counters); NumEdgesInserted++;
 | 
						|
          Initializer[i++] = (Zero);
 | 
						|
        } else{
 | 
						|
          Initializer[i++] = (Uncounted);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      for (unsigned s = 0, e = TI->getNumSuccessors(); s != e; ++s) {
 | 
						|
        BasicBlock *Succ = TI->getSuccessor(s);
 | 
						|
        ProfileInfo::Edge edge = ProfileInfo::getEdge(BB,Succ);
 | 
						|
        if (!std::binary_search(MST.begin(), MST.end(), edge)) {
 | 
						|
 | 
						|
          // If the edge is critical, split it.
 | 
						|
          bool wasInserted = SplitCriticalEdge(TI, s, this);
 | 
						|
          Succ = TI->getSuccessor(s);
 | 
						|
          if (wasInserted)
 | 
						|
            InsertedBlocks.insert(Succ);
 | 
						|
 | 
						|
          // Okay, we are guaranteed that the edge is no longer critical.  If
 | 
						|
          // we only have a single successor, insert the counter in this block,
 | 
						|
          // otherwise insert it in the successor block.
 | 
						|
          if (TI->getNumSuccessors() == 1) {
 | 
						|
            // Insert counter at the start of the block
 | 
						|
            printEdgeCounter(edge,BB,i);
 | 
						|
            IncrementCounterInBlock(BB, i, Counters); NumEdgesInserted++;
 | 
						|
          } else {
 | 
						|
            // Insert counter at the start of the block
 | 
						|
            printEdgeCounter(edge,Succ,i);
 | 
						|
            IncrementCounterInBlock(Succ, i, Counters); NumEdgesInserted++;
 | 
						|
          }
 | 
						|
          Initializer[i++] = (Zero);
 | 
						|
        } else {
 | 
						|
          Initializer[i++] = (Uncounted);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the number of edges counted at first was the number of edges we
 | 
						|
  // considered for instrumentation.
 | 
						|
  assert(i==NumEdges && "the number of edges in counting array is wrong");
 | 
						|
 | 
						|
  // Assing the now completely defined initialiser to the array.
 | 
						|
  Constant *init = ConstantArray::get(ATy, Initializer);
 | 
						|
  Counters->setInitializer(init);
 | 
						|
 | 
						|
  // Add the initialization call to main.
 | 
						|
  InsertProfilingInitCall(Main, "llvm_start_opt_edge_profiling", Counters);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 |