mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Remove the old functions. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202636 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			655 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			655 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ResourcePriorityQueue.cpp - A DFA-oriented priority queue -*- C++ -*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the ResourcePriorityQueue class, which is a
 | |
| // SchedulingPriorityQueue that prioritizes instructions using DFA state to
 | |
| // reduce the length of the critical path through the basic block
 | |
| // on VLIW platforms.
 | |
| // The scheduler is basically a top-down adaptable list scheduler with DFA
 | |
| // resource tracking added to the cost function.
 | |
| // DFA is queried as a state machine to model "packets/bundles" during
 | |
| // schedule. Currently packets/bundles are discarded at the end of
 | |
| // scheduling, affecting only order of instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "scheduler"
 | |
| #include "llvm/CodeGen/ResourcePriorityQueue.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/SelectionDAGNodes.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> DisableDFASched("disable-dfa-sched", cl::Hidden,
 | |
|   cl::ZeroOrMore, cl::init(false),
 | |
|   cl::desc("Disable use of DFA during scheduling"));
 | |
| 
 | |
| static cl::opt<signed> RegPressureThreshold(
 | |
|   "dfa-sched-reg-pressure-threshold", cl::Hidden, cl::ZeroOrMore, cl::init(5),
 | |
|   cl::desc("Track reg pressure and switch priority to in-depth"));
 | |
| 
 | |
| 
 | |
| ResourcePriorityQueue::ResourcePriorityQueue(SelectionDAGISel *IS) :
 | |
|   Picker(this),
 | |
|  InstrItins(IS->getTargetLowering()->getTargetMachine().getInstrItineraryData())
 | |
| {
 | |
|    TII = IS->getTargetLowering()->getTargetMachine().getInstrInfo();
 | |
|    TRI = IS->getTargetLowering()->getTargetMachine().getRegisterInfo();
 | |
|    TLI = IS->getTargetLowering();
 | |
| 
 | |
|    const TargetMachine &tm = (*IS->MF).getTarget();
 | |
|    ResourcesModel = tm.getInstrInfo()->CreateTargetScheduleState(&tm,NULL);
 | |
|    // This hard requirement could be relaxed, but for now
 | |
|    // do not let it procede.
 | |
|    assert (ResourcesModel && "Unimplemented CreateTargetScheduleState.");
 | |
| 
 | |
|    unsigned NumRC = TRI->getNumRegClasses();
 | |
|    RegLimit.resize(NumRC);
 | |
|    RegPressure.resize(NumRC);
 | |
|    std::fill(RegLimit.begin(), RegLimit.end(), 0);
 | |
|    std::fill(RegPressure.begin(), RegPressure.end(), 0);
 | |
|    for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
 | |
|         E = TRI->regclass_end(); I != E; ++I)
 | |
|      RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, *IS->MF);
 | |
| 
 | |
|    ParallelLiveRanges = 0;
 | |
|    HorizontalVerticalBalance = 0;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ResourcePriorityQueue::numberRCValPredInSU(SUnit *SU, unsigned RCId) {
 | |
|   unsigned NumberDeps = 0;
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl())
 | |
|       continue;
 | |
| 
 | |
|     SUnit *PredSU = I->getSUnit();
 | |
|     const SDNode *ScegN = PredSU->getNode();
 | |
| 
 | |
|     if (!ScegN)
 | |
|       continue;
 | |
| 
 | |
|     // If value is passed to CopyToReg, it is probably
 | |
|     // live outside BB.
 | |
|     switch (ScegN->getOpcode()) {
 | |
|       default:  break;
 | |
|       case ISD::TokenFactor:    break;
 | |
|       case ISD::CopyFromReg:    NumberDeps++;  break;
 | |
|       case ISD::CopyToReg:      break;
 | |
|       case ISD::INLINEASM:      break;
 | |
|     }
 | |
|     if (!ScegN->isMachineOpcode())
 | |
|       continue;
 | |
| 
 | |
|     for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) {
 | |
|       MVT VT = ScegN->getSimpleValueType(i);
 | |
|       if (TLI->isTypeLegal(VT)
 | |
|           && (TLI->getRegClassFor(VT)->getID() == RCId)) {
 | |
|         NumberDeps++;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return NumberDeps;
 | |
| }
 | |
| 
 | |
| unsigned ResourcePriorityQueue::numberRCValSuccInSU(SUnit *SU,
 | |
|                                                     unsigned RCId) {
 | |
|   unsigned NumberDeps = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isCtrl())
 | |
|       continue;
 | |
| 
 | |
|     SUnit *SuccSU = I->getSUnit();
 | |
|     const SDNode *ScegN = SuccSU->getNode();
 | |
|     if (!ScegN)
 | |
|       continue;
 | |
| 
 | |
|     // If value is passed to CopyToReg, it is probably
 | |
|     // live outside BB.
 | |
|     switch (ScegN->getOpcode()) {
 | |
|       default:  break;
 | |
|       case ISD::TokenFactor:    break;
 | |
|       case ISD::CopyFromReg:    break;
 | |
|       case ISD::CopyToReg:      NumberDeps++;  break;
 | |
|       case ISD::INLINEASM:      break;
 | |
|     }
 | |
|     if (!ScegN->isMachineOpcode())
 | |
|       continue;
 | |
| 
 | |
|     for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) {
 | |
|       const SDValue &Op = ScegN->getOperand(i);
 | |
|       MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
 | |
|       if (TLI->isTypeLegal(VT)
 | |
|           && (TLI->getRegClassFor(VT)->getID() == RCId)) {
 | |
|         NumberDeps++;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return NumberDeps;
 | |
| }
 | |
| 
 | |
| static unsigned numberCtrlDepsInSU(SUnit *SU) {
 | |
|   unsigned NumberDeps = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I)
 | |
|     if (I->isCtrl())
 | |
|       NumberDeps++;
 | |
| 
 | |
|   return NumberDeps;
 | |
| }
 | |
| 
 | |
| static unsigned numberCtrlPredInSU(SUnit *SU) {
 | |
|   unsigned NumberDeps = 0;
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I)
 | |
|     if (I->isCtrl())
 | |
|       NumberDeps++;
 | |
| 
 | |
|   return NumberDeps;
 | |
| }
 | |
| 
 | |
| ///
 | |
| /// Initialize nodes.
 | |
| ///
 | |
| void ResourcePriorityQueue::initNodes(std::vector<SUnit> &sunits) {
 | |
|   SUnits = &sunits;
 | |
|   NumNodesSolelyBlocking.resize(SUnits->size(), 0);
 | |
| 
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
 | |
|     SUnit *SU = &(*SUnits)[i];
 | |
|     initNumRegDefsLeft(SU);
 | |
|     SU->NodeQueueId = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This heuristic is used if DFA scheduling is not desired
 | |
| /// for some VLIW platform.
 | |
| bool resource_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
 | |
|   // The isScheduleHigh flag allows nodes with wraparound dependencies that
 | |
|   // cannot easily be modeled as edges with latencies to be scheduled as
 | |
|   // soon as possible in a top-down schedule.
 | |
|   if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
 | |
|     return false;
 | |
| 
 | |
|   if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
 | |
|     return true;
 | |
| 
 | |
|   unsigned LHSNum = LHS->NodeNum;
 | |
|   unsigned RHSNum = RHS->NodeNum;
 | |
| 
 | |
|   // The most important heuristic is scheduling the critical path.
 | |
|   unsigned LHSLatency = PQ->getLatency(LHSNum);
 | |
|   unsigned RHSLatency = PQ->getLatency(RHSNum);
 | |
|   if (LHSLatency < RHSLatency) return true;
 | |
|   if (LHSLatency > RHSLatency) return false;
 | |
| 
 | |
|   // After that, if two nodes have identical latencies, look to see if one will
 | |
|   // unblock more other nodes than the other.
 | |
|   unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
 | |
|   unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
 | |
|   if (LHSBlocked < RHSBlocked) return true;
 | |
|   if (LHSBlocked > RHSBlocked) return false;
 | |
| 
 | |
|   // Finally, just to provide a stable ordering, use the node number as a
 | |
|   // deciding factor.
 | |
|   return LHSNum < RHSNum;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
 | |
| /// of SU, return it, otherwise return null.
 | |
| SUnit *ResourcePriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
 | |
|   SUnit *OnlyAvailablePred = 0;
 | |
|   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     SUnit &Pred = *I->getSUnit();
 | |
|     if (!Pred.isScheduled) {
 | |
|       // We found an available, but not scheduled, predecessor.  If it's the
 | |
|       // only one we have found, keep track of it... otherwise give up.
 | |
|       if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
 | |
|         return 0;
 | |
|       OnlyAvailablePred = &Pred;
 | |
|     }
 | |
|   }
 | |
|   return OnlyAvailablePred;
 | |
| }
 | |
| 
 | |
| void ResourcePriorityQueue::push(SUnit *SU) {
 | |
|   // Look at all of the successors of this node.  Count the number of nodes that
 | |
|   // this node is the sole unscheduled node for.
 | |
|   unsigned NumNodesBlocking = 0;
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I)
 | |
|     if (getSingleUnscheduledPred(I->getSUnit()) == SU)
 | |
|       ++NumNodesBlocking;
 | |
| 
 | |
|   NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
 | |
|   Queue.push_back(SU);
 | |
| }
 | |
| 
 | |
| /// Check if scheduling of this SU is possible
 | |
| /// in the current packet.
 | |
| bool ResourcePriorityQueue::isResourceAvailable(SUnit *SU) {
 | |
|   if (!SU || !SU->getNode())
 | |
|     return false;
 | |
| 
 | |
|   // If this is a compound instruction,
 | |
|   // it is likely to be a call. Do not delay it.
 | |
|   if (SU->getNode()->getGluedNode())
 | |
|     return true;
 | |
| 
 | |
|   // First see if the pipeline could receive this instruction
 | |
|   // in the current cycle.
 | |
|   if (SU->getNode()->isMachineOpcode())
 | |
|     switch (SU->getNode()->getMachineOpcode()) {
 | |
|     default:
 | |
|       if (!ResourcesModel->canReserveResources(&TII->get(
 | |
|           SU->getNode()->getMachineOpcode())))
 | |
|            return false;
 | |
|     case TargetOpcode::EXTRACT_SUBREG:
 | |
|     case TargetOpcode::INSERT_SUBREG:
 | |
|     case TargetOpcode::SUBREG_TO_REG:
 | |
|     case TargetOpcode::REG_SEQUENCE:
 | |
|     case TargetOpcode::IMPLICIT_DEF:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|   // Now see if there are no other dependencies
 | |
|   // to instructions alredy in the packet.
 | |
|   for (unsigned i = 0, e = Packet.size(); i != e; ++i)
 | |
|     for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
 | |
|          E = Packet[i]->Succs.end(); I != E; ++I) {
 | |
|       // Since we do not add pseudos to packets, might as well
 | |
|       // ignor order deps.
 | |
|       if (I->isCtrl())
 | |
|         continue;
 | |
| 
 | |
|       if (I->getSUnit() == SU)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Keep track of available resources.
 | |
| void ResourcePriorityQueue::reserveResources(SUnit *SU) {
 | |
|   // If this SU does not fit in the packet
 | |
|   // start a new one.
 | |
|   if (!isResourceAvailable(SU) || SU->getNode()->getGluedNode()) {
 | |
|     ResourcesModel->clearResources();
 | |
|     Packet.clear();
 | |
|   }
 | |
| 
 | |
|   if (SU->getNode() && SU->getNode()->isMachineOpcode()) {
 | |
|     switch (SU->getNode()->getMachineOpcode()) {
 | |
|     default:
 | |
|       ResourcesModel->reserveResources(&TII->get(
 | |
|         SU->getNode()->getMachineOpcode()));
 | |
|       break;
 | |
|     case TargetOpcode::EXTRACT_SUBREG:
 | |
|     case TargetOpcode::INSERT_SUBREG:
 | |
|     case TargetOpcode::SUBREG_TO_REG:
 | |
|     case TargetOpcode::REG_SEQUENCE:
 | |
|     case TargetOpcode::IMPLICIT_DEF:
 | |
|       break;
 | |
|     }
 | |
|     Packet.push_back(SU);
 | |
|   }
 | |
|   // Forcefully end packet for PseudoOps.
 | |
|   else {
 | |
|     ResourcesModel->clearResources();
 | |
|     Packet.clear();
 | |
|   }
 | |
| 
 | |
|   // If packet is now full, reset the state so in the next cycle
 | |
|   // we start fresh.
 | |
|   if (Packet.size() >= InstrItins->SchedModel->IssueWidth) {
 | |
|     ResourcesModel->clearResources();
 | |
|     Packet.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| signed ResourcePriorityQueue::rawRegPressureDelta(SUnit *SU, unsigned RCId) {
 | |
|   signed RegBalance    = 0;
 | |
| 
 | |
|   if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode())
 | |
|     return RegBalance;
 | |
| 
 | |
|   // Gen estimate.
 | |
|   for (unsigned i = 0, e = SU->getNode()->getNumValues(); i != e; ++i) {
 | |
|       MVT VT = SU->getNode()->getSimpleValueType(i);
 | |
|       if (TLI->isTypeLegal(VT)
 | |
|           && TLI->getRegClassFor(VT)
 | |
|           && TLI->getRegClassFor(VT)->getID() == RCId)
 | |
|         RegBalance += numberRCValSuccInSU(SU, RCId);
 | |
|   }
 | |
|   // Kill estimate.
 | |
|   for (unsigned i = 0, e = SU->getNode()->getNumOperands(); i != e; ++i) {
 | |
|       const SDValue &Op = SU->getNode()->getOperand(i);
 | |
|       MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
 | |
|       if (isa<ConstantSDNode>(Op.getNode()))
 | |
|         continue;
 | |
| 
 | |
|       if (TLI->isTypeLegal(VT) && TLI->getRegClassFor(VT)
 | |
|           && TLI->getRegClassFor(VT)->getID() == RCId)
 | |
|         RegBalance -= numberRCValPredInSU(SU, RCId);
 | |
|   }
 | |
|   return RegBalance;
 | |
| }
 | |
| 
 | |
| /// Estimates change in reg pressure from this SU.
 | |
| /// It is achieved by trivial tracking of defined
 | |
| /// and used vregs in dependent instructions.
 | |
| /// The RawPressure flag makes this function to ignore
 | |
| /// existing reg file sizes, and report raw def/use
 | |
| /// balance.
 | |
| signed ResourcePriorityQueue::regPressureDelta(SUnit *SU, bool RawPressure) {
 | |
|   signed RegBalance    = 0;
 | |
| 
 | |
|   if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode())
 | |
|     return RegBalance;
 | |
| 
 | |
|   if (RawPressure) {
 | |
|     for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
 | |
|              E = TRI->regclass_end(); I != E; ++I) {
 | |
|       const TargetRegisterClass *RC = *I;
 | |
|       RegBalance += rawRegPressureDelta(SU, RC->getID());
 | |
|     }
 | |
|   }
 | |
|   else {
 | |
|     for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
 | |
|          E = TRI->regclass_end(); I != E; ++I) {
 | |
|       const TargetRegisterClass *RC = *I;
 | |
|       if ((RegPressure[RC->getID()] +
 | |
|            rawRegPressureDelta(SU, RC->getID()) > 0) &&
 | |
|           (RegPressure[RC->getID()] +
 | |
|            rawRegPressureDelta(SU, RC->getID())  >= RegLimit[RC->getID()]))
 | |
|         RegBalance += rawRegPressureDelta(SU, RC->getID());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return RegBalance;
 | |
| }
 | |
| 
 | |
| // Constants used to denote relative importance of
 | |
| // heuristic components for cost computation.
 | |
| static const unsigned PriorityOne = 200;
 | |
| static const unsigned PriorityTwo = 50;
 | |
| static const unsigned PriorityThree = 15;
 | |
| static const unsigned PriorityFour = 5;
 | |
| static const unsigned ScaleOne = 20;
 | |
| static const unsigned ScaleTwo = 10;
 | |
| static const unsigned ScaleThree = 5;
 | |
| static const unsigned FactorOne = 2;
 | |
| 
 | |
| /// Returns single number reflecting benefit of scheduling SU
 | |
| /// in the current cycle.
 | |
| signed ResourcePriorityQueue::SUSchedulingCost(SUnit *SU) {
 | |
|   // Initial trivial priority.
 | |
|   signed ResCount = 1;
 | |
| 
 | |
|   // Do not waste time on a node that is already scheduled.
 | |
|   if (SU->isScheduled)
 | |
|     return ResCount;
 | |
| 
 | |
|   // Forced priority is high.
 | |
|   if (SU->isScheduleHigh)
 | |
|     ResCount += PriorityOne;
 | |
| 
 | |
|   // Adaptable scheduling
 | |
|   // A small, but very parallel
 | |
|   // region, where reg pressure is an issue.
 | |
|   if (HorizontalVerticalBalance > RegPressureThreshold) {
 | |
|     // Critical path first
 | |
|     ResCount += (SU->getHeight() * ScaleTwo);
 | |
|     // If resources are available for it, multiply the
 | |
|     // chance of scheduling.
 | |
|     if (isResourceAvailable(SU))
 | |
|       ResCount <<= FactorOne;
 | |
| 
 | |
|     // Consider change to reg pressure from scheduling
 | |
|     // this SU.
 | |
|     ResCount -= (regPressureDelta(SU,true) * ScaleOne);
 | |
|   }
 | |
|   // Default heuristic, greeady and
 | |
|   // critical path driven.
 | |
|   else {
 | |
|     // Critical path first.
 | |
|     ResCount += (SU->getHeight() * ScaleTwo);
 | |
|     // Now see how many instructions is blocked by this SU.
 | |
|     ResCount += (NumNodesSolelyBlocking[SU->NodeNum] * ScaleTwo);
 | |
|     // If resources are available for it, multiply the
 | |
|     // chance of scheduling.
 | |
|     if (isResourceAvailable(SU))
 | |
|       ResCount <<= FactorOne;
 | |
| 
 | |
|     ResCount -= (regPressureDelta(SU) * ScaleTwo);
 | |
|   }
 | |
| 
 | |
|   // These are platform specific things.
 | |
|   // Will need to go into the back end
 | |
|   // and accessed from here via a hook.
 | |
|   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
 | |
|     if (N->isMachineOpcode()) {
 | |
|       const MCInstrDesc &TID = TII->get(N->getMachineOpcode());
 | |
|       if (TID.isCall())
 | |
|         ResCount += (PriorityTwo + (ScaleThree*N->getNumValues()));
 | |
|     }
 | |
|     else
 | |
|       switch (N->getOpcode()) {
 | |
|       default:  break;
 | |
|       case ISD::TokenFactor:
 | |
|       case ISD::CopyFromReg:
 | |
|       case ISD::CopyToReg:
 | |
|         ResCount += PriorityFour;
 | |
|         break;
 | |
| 
 | |
|       case ISD::INLINEASM:
 | |
|         ResCount += PriorityThree;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   return ResCount;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Main resource tracking point.
 | |
| void ResourcePriorityQueue::scheduledNode(SUnit *SU) {
 | |
|   // Use NULL entry as an event marker to reset
 | |
|   // the DFA state.
 | |
|   if (!SU) {
 | |
|     ResourcesModel->clearResources();
 | |
|     Packet.clear();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const SDNode *ScegN = SU->getNode();
 | |
|   // Update reg pressure tracking.
 | |
|   // First update current node.
 | |
|   if (ScegN->isMachineOpcode()) {
 | |
|     // Estimate generated regs.
 | |
|     for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) {
 | |
|       MVT VT = ScegN->getSimpleValueType(i);
 | |
| 
 | |
|       if (TLI->isTypeLegal(VT)) {
 | |
|         const TargetRegisterClass *RC = TLI->getRegClassFor(VT);
 | |
|         if (RC)
 | |
|           RegPressure[RC->getID()] += numberRCValSuccInSU(SU, RC->getID());
 | |
|       }
 | |
|     }
 | |
|     // Estimate killed regs.
 | |
|     for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) {
 | |
|       const SDValue &Op = ScegN->getOperand(i);
 | |
|       MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
 | |
| 
 | |
|       if (TLI->isTypeLegal(VT)) {
 | |
|         const TargetRegisterClass *RC = TLI->getRegClassFor(VT);
 | |
|         if (RC) {
 | |
|           if (RegPressure[RC->getID()] >
 | |
|             (numberRCValPredInSU(SU, RC->getID())))
 | |
|             RegPressure[RC->getID()] -= numberRCValPredInSU(SU, RC->getID());
 | |
|           else RegPressure[RC->getID()] = 0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|                               I != E; ++I) {
 | |
|       if (I->isCtrl() || (I->getSUnit()->NumRegDefsLeft == 0))
 | |
|         continue;
 | |
|       --I->getSUnit()->NumRegDefsLeft;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reserve resources for this SU.
 | |
|   reserveResources(SU);
 | |
| 
 | |
|   // Adjust number of parallel live ranges.
 | |
|   // Heuristic is simple - node with no data successors reduces
 | |
|   // number of live ranges. All others, increase it.
 | |
|   unsigned NumberNonControlDeps = 0;
 | |
| 
 | |
|   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|                                   I != E; ++I) {
 | |
|     adjustPriorityOfUnscheduledPreds(I->getSUnit());
 | |
|     if (!I->isCtrl())
 | |
|       NumberNonControlDeps++;
 | |
|   }
 | |
| 
 | |
|   if (!NumberNonControlDeps) {
 | |
|     if (ParallelLiveRanges >= SU->NumPreds)
 | |
|       ParallelLiveRanges -= SU->NumPreds;
 | |
|     else
 | |
|       ParallelLiveRanges = 0;
 | |
| 
 | |
|   }
 | |
|   else
 | |
|     ParallelLiveRanges += SU->NumRegDefsLeft;
 | |
| 
 | |
|   // Track parallel live chains.
 | |
|   HorizontalVerticalBalance += (SU->Succs.size() - numberCtrlDepsInSU(SU));
 | |
|   HorizontalVerticalBalance -= (SU->Preds.size() - numberCtrlPredInSU(SU));
 | |
| }
 | |
| 
 | |
| void ResourcePriorityQueue::initNumRegDefsLeft(SUnit *SU) {
 | |
|   unsigned  NodeNumDefs = 0;
 | |
|   for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
 | |
|     if (N->isMachineOpcode()) {
 | |
|       const MCInstrDesc &TID = TII->get(N->getMachineOpcode());
 | |
|       // No register need be allocated for this.
 | |
|       if (N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
 | |
|         NodeNumDefs = 0;
 | |
|         break;
 | |
|       }
 | |
|       NodeNumDefs = std::min(N->getNumValues(), TID.getNumDefs());
 | |
|     }
 | |
|     else
 | |
|       switch(N->getOpcode()) {
 | |
|         default:     break;
 | |
|         case ISD::CopyFromReg:
 | |
|           NodeNumDefs++;
 | |
|           break;
 | |
|         case ISD::INLINEASM:
 | |
|           NodeNumDefs++;
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|   SU->NumRegDefsLeft = NodeNumDefs;
 | |
| }
 | |
| 
 | |
| /// adjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
 | |
| /// scheduled.  If SU is not itself available, then there is at least one
 | |
| /// predecessor node that has not been scheduled yet.  If SU has exactly ONE
 | |
| /// unscheduled predecessor, we want to increase its priority: it getting
 | |
| /// scheduled will make this node available, so it is better than some other
 | |
| /// node of the same priority that will not make a node available.
 | |
| void ResourcePriorityQueue::adjustPriorityOfUnscheduledPreds(SUnit *SU) {
 | |
|   if (SU->isAvailable) return;  // All preds scheduled.
 | |
| 
 | |
|   SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
 | |
|   if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable)
 | |
|     return;
 | |
| 
 | |
|   // Okay, we found a single predecessor that is available, but not scheduled.
 | |
|   // Since it is available, it must be in the priority queue.  First remove it.
 | |
|   remove(OnlyAvailablePred);
 | |
| 
 | |
|   // Reinsert the node into the priority queue, which recomputes its
 | |
|   // NumNodesSolelyBlocking value.
 | |
|   push(OnlyAvailablePred);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Main access point - returns next instructions
 | |
| /// to be placed in scheduling sequence.
 | |
| SUnit *ResourcePriorityQueue::pop() {
 | |
|   if (empty())
 | |
|     return 0;
 | |
| 
 | |
|   std::vector<SUnit *>::iterator Best = Queue.begin();
 | |
|   if (!DisableDFASched) {
 | |
|     signed BestCost = SUSchedulingCost(*Best);
 | |
|     for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()),
 | |
|            E = Queue.end(); I != E; ++I) {
 | |
| 
 | |
|       if (SUSchedulingCost(*I) > BestCost) {
 | |
|         BestCost = SUSchedulingCost(*I);
 | |
|         Best = I;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Use default TD scheduling mechanism.
 | |
|   else {
 | |
|     for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()),
 | |
|        E = Queue.end(); I != E; ++I)
 | |
|       if (Picker(*Best, *I))
 | |
|         Best = I;
 | |
|   }
 | |
| 
 | |
|   SUnit *V = *Best;
 | |
|   if (Best != std::prev(Queue.end()))
 | |
|     std::swap(*Best, Queue.back());
 | |
| 
 | |
|   Queue.pop_back();
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| 
 | |
| void ResourcePriorityQueue::remove(SUnit *SU) {
 | |
|   assert(!Queue.empty() && "Queue is empty!");
 | |
|   std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU);
 | |
|   if (I != std::prev(Queue.end()))
 | |
|     std::swap(*I, Queue.back());
 | |
| 
 | |
|   Queue.pop_back();
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef NDEBUG
 | |
| void ResourcePriorityQueue::dump(ScheduleDAG *DAG) const {}
 | |
| #else
 | |
| void ResourcePriorityQueue::dump(ScheduleDAG *DAG) const {
 | |
|   ResourcePriorityQueue q = *this;
 | |
|   while (!q.empty()) {
 | |
|     SUnit *su = q.pop();
 | |
|     dbgs() << "Height " << su->getHeight() << ": ";
 | |
|     su->dump(DAG);
 | |
|   }
 | |
| }
 | |
| #endif
 |