llvm-6502/lib/Target/SparcV9/RegAlloc/LiveRangeInfo.cpp
Chris Lattner 9d4ed15c9e Adjust to new interfaces
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5314 91177308-0d34-0410-b5e6-96231b3b80d8
2003-01-15 21:14:01 +00:00

342 lines
12 KiB
C++

//===-- LiveRangeInfo.cpp -------------------------------------------------===//
//
// Live range construction for coloring-based register allocation for LLVM.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveRangeInfo.h"
#include "RegAllocCommon.h"
#include "RegClass.h"
#include "llvm/CodeGen/IGNode.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Function.h"
#include "Support/SetOperations.h"
using std::cerr;
unsigned LiveRange::getRegClassID() const { return getRegClass()->getID(); }
LiveRangeInfo::LiveRangeInfo(const Function *F, const TargetMachine &tm,
std::vector<RegClass *> &RCL)
: Meth(F), TM(tm), RegClassList(RCL), MRI(tm.getRegInfo()) { }
LiveRangeInfo::~LiveRangeInfo() {
for (LiveRangeMapType::iterator MI = LiveRangeMap.begin();
MI != LiveRangeMap.end(); ++MI) {
if (MI->first && MI->second) {
LiveRange *LR = MI->second;
// we need to be careful in deleting LiveRanges in LiveRangeMap
// since two/more Values in the live range map can point to the same
// live range. We have to make the other entries NULL when we delete
// a live range.
for (LiveRange::iterator LI = LR->begin(); LI != LR->end(); ++LI)
LiveRangeMap[*LI] = 0;
delete LR;
}
}
}
//---------------------------------------------------------------------------
// union two live ranges into one. The 2nd LR is deleted. Used for coalescing.
// Note: the caller must make sure that L1 and L2 are distinct and both
// LRs don't have suggested colors
//---------------------------------------------------------------------------
void LiveRangeInfo::unionAndUpdateLRs(LiveRange *L1, LiveRange *L2) {
assert(L1 != L2 && (!L1->hasSuggestedColor() || !L2->hasSuggestedColor()));
set_union(*L1, *L2); // add elements of L2 to L1
for(ValueSet::iterator L2It = L2->begin(); L2It != L2->end(); ++L2It) {
//assert(( L1->getTypeID() == L2->getTypeID()) && "Merge:Different types");
L1->insert(*L2It); // add the var in L2 to L1
LiveRangeMap[*L2It] = L1; // now the elements in L2 should map
//to L1
}
// Now if LROfDef(L1) has a suggested color, it will remain.
// But, if LROfUse(L2) has a suggested color, the new range
// must have the same color.
if(L2->hasSuggestedColor())
L1->setSuggestedColor(L2->getSuggestedColor());
if (L2->isCallInterference())
L1->setCallInterference();
// add the spill costs
L1->addSpillCost(L2->getSpillCost());
delete L2; // delete L2 as it is no longer needed
}
//---------------------------------------------------------------------------
// Method for creating a single live range for a definition.
// The definition must be represented by a virtual register (a Value).
// Note: this function does *not* check that no live range exists for def.
//---------------------------------------------------------------------------
LiveRange*
LiveRangeInfo::createNewLiveRange(const Value* Def, bool isCC /* = false*/)
{
LiveRange* DefRange = new LiveRange(); // Create a new live range,
DefRange->insert(Def); // add Def to it,
LiveRangeMap[Def] = DefRange; // and update the map.
// set the register class of the new live range
DefRange->setRegClass(RegClassList[MRI.getRegClassIDOfType(Def->getType(),
isCC)]);
if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
cerr << " Creating a LR for def ";
if (isCC) cerr << " (CC Register!)";
cerr << " : " << RAV(Def) << "\n";
}
return DefRange;
}
LiveRange*
LiveRangeInfo::createOrAddToLiveRange(const Value* Def, bool isCC /* = false*/)
{
LiveRange *DefRange = LiveRangeMap[Def];
// check if the LR is already there (because of multiple defs)
if (!DefRange) {
DefRange = createNewLiveRange(Def, isCC);
} else { // live range already exists
DefRange->insert(Def); // add the operand to the range
LiveRangeMap[Def] = DefRange; // make operand point to merged set
if (DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << " Added to existing LR for def: " << RAV(Def) << "\n";
}
return DefRange;
}
//---------------------------------------------------------------------------
// Method for constructing all live ranges in a function. It creates live
// ranges for all values defined in the instruction stream. Also, it
// creates live ranges for all incoming arguments of the function.
//---------------------------------------------------------------------------
void LiveRangeInfo::constructLiveRanges() {
if (DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << "Constructing Live Ranges ...\n";
// first find the live ranges for all incoming args of the function since
// those LRs start from the start of the function
for (Function::const_aiterator AI = Meth->abegin(); AI != Meth->aend(); ++AI)
createNewLiveRange(AI, /*isCC*/ false);
// Now suggest hardware registers for these function args
MRI.suggestRegs4MethodArgs(Meth, *this);
// Now create LRs for machine instructions. A new LR will be created
// only for defs in the machine instr since, we assume that all Values are
// defined before they are used. However, there can be multiple defs for
// the same Value in machine instructions.
//
// Also, find CALL and RETURN instructions, which need extra work.
//
MachineFunction &MF = MachineFunction::get(Meth);
for (MachineFunction::iterator BBI = MF.begin(); BBI != MF.end(); ++BBI) {
MachineBasicBlock &MBB = *BBI;
// iterate over all the machine instructions in BB
for(MachineBasicBlock::iterator MInstIterator = MBB.begin();
MInstIterator != MBB.end(); ++MInstIterator) {
MachineInstr *MInst = *MInstIterator;
// If the machine instruction is a call/return instruction, add it to
// CallRetInstrList for processing its args, ret value, and ret addr.
//
if(TM.getInstrInfo().isReturn(MInst->getOpCode()) ||
TM.getInstrInfo().isCall(MInst->getOpCode()))
CallRetInstrList.push_back(MInst);
// iterate over explicit MI operands and create a new LR
// for each operand that is defined by the instruction
for (MachineInstr::val_op_iterator OpI = MInst->begin(),
OpE = MInst->end(); OpI != OpE; ++OpI)
if (OpI.isDef()) {
const Value *Def = *OpI;
bool isCC = (OpI.getMachineOperand().getType()
== MachineOperand::MO_CCRegister);
createOrAddToLiveRange(Def, isCC);
}
// iterate over implicit MI operands and create a new LR
// for each operand that is defined by the instruction
for (unsigned i = 0; i < MInst->getNumImplicitRefs(); ++i)
if (MInst->implicitRefIsDefined(i)) {
const Value *Def = MInst->getImplicitRef(i);
createOrAddToLiveRange(Def, /*isCC*/ false);
}
} // for all machine instructions in the BB
} // for all BBs in function
// Now we have to suggest clors for call and return arg live ranges.
// Also, if there are implicit defs (e.g., retun value of a call inst)
// they must be added to the live range list
//
suggestRegs4CallRets();
if( DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << "Initial Live Ranges constructed!\n";
}
//---------------------------------------------------------------------------
// If some live ranges must be colored with specific hardware registers
// (e.g., for outgoing call args), suggesting of colors for such live
// ranges is done using target specific function. Those functions are called
// from this function. The target specific methods must:
// 1) suggest colors for call and return args.
// 2) create new LRs for implicit defs in machine instructions
//---------------------------------------------------------------------------
void LiveRangeInfo::suggestRegs4CallRets() {
std::vector<MachineInstr*>::iterator It = CallRetInstrList.begin();
for( ; It != CallRetInstrList.end(); ++It) {
MachineInstr *MInst = *It;
MachineOpCode OpCode = MInst->getOpCode();
if ((TM.getInstrInfo()).isReturn(OpCode))
MRI.suggestReg4RetValue(MInst, *this);
else if ((TM.getInstrInfo()).isCall(OpCode))
MRI.suggestRegs4CallArgs(MInst, *this);
else
assert( 0 && "Non call/ret instr in CallRetInstrList" );
}
}
//--------------------------------------------------------------------------
// The following method coalesces live ranges when possible. This method
// must be called after the interference graph has been constructed.
/* Algorithm:
for each BB in function
for each machine instruction (inst)
for each definition (def) in inst
for each operand (op) of inst that is a use
if the def and op are of the same register type
if the def and op do not interfere //i.e., not simultaneously live
if (degree(LR of def) + degree(LR of op)) <= # avail regs
if both LRs do not have suggested colors
merge2IGNodes(def, op) // i.e., merge 2 LRs
*/
//---------------------------------------------------------------------------
void LiveRangeInfo::coalesceLRs()
{
if(DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << "\nCoalescing LRs ...\n";
MachineFunction &MF = MachineFunction::get(Meth);
for (MachineFunction::iterator BBI = MF.begin(); BBI != MF.end(); ++BBI) {
MachineBasicBlock &MBB = *BBI;
// iterate over all the machine instructions in BB
for(MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII){
const MachineInstr *MI = *MII;
if( DEBUG_RA >= RA_DEBUG_LiveRanges) {
cerr << " *Iterating over machine instr ";
MI->dump();
cerr << "\n";
}
// iterate over MI operands to find defs
for(MachineInstr::const_val_op_iterator DefI = MI->begin(),
DefE = MI->end(); DefI != DefE; ++DefI) {
if (DefI.isDef()) { // iff this operand is a def
LiveRange *LROfDef = getLiveRangeForValue( *DefI );
RegClass *RCOfDef = LROfDef->getRegClass();
MachineInstr::const_val_op_iterator UseI = MI->begin(),
UseE = MI->end();
for( ; UseI != UseE; ++UseI) { // for all uses
LiveRange *LROfUse = getLiveRangeForValue( *UseI );
if (!LROfUse) { // if LR of use is not found
//don't warn about labels
if (!isa<BasicBlock>(*UseI) && DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << " !! Warning: No LR for use " << RAV(*UseI) << "\n";
continue; // ignore and continue
}
if (LROfUse == LROfDef) // nothing to merge if they are same
continue;
if (MRI.getRegType(LROfDef) == MRI.getRegType(LROfUse)) {
// If the two RegTypes are the same
if (!RCOfDef->getInterference(LROfDef, LROfUse) ) {
unsigned CombinedDegree =
LROfDef->getUserIGNode()->getNumOfNeighbors() +
LROfUse->getUserIGNode()->getNumOfNeighbors();
if (CombinedDegree > RCOfDef->getNumOfAvailRegs()) {
// get more precise estimate of combined degree
CombinedDegree = LROfDef->getUserIGNode()->
getCombinedDegree(LROfUse->getUserIGNode());
}
if (CombinedDegree <= RCOfDef->getNumOfAvailRegs()) {
// if both LRs do not have suggested colors
if (!(LROfDef->hasSuggestedColor() &&
LROfUse->hasSuggestedColor())) {
RCOfDef->mergeIGNodesOfLRs(LROfDef, LROfUse);
unionAndUpdateLRs(LROfDef, LROfUse);
}
} // if combined degree is less than # of regs
} // if def and use do not interfere
}// if reg classes are the same
} // for all uses
} // if def
} // for all defs
} // for all machine instructions
} // for all BBs
if (DEBUG_RA >= RA_DEBUG_LiveRanges)
cerr << "\nCoalescing Done!\n";
}
/*--------------------------- Debug code for printing ---------------*/
void LiveRangeInfo::printLiveRanges() {
LiveRangeMapType::iterator HMI = LiveRangeMap.begin(); // hash map iterator
cerr << "\nPrinting Live Ranges from Hash Map:\n";
for( ; HMI != LiveRangeMap.end(); ++HMI) {
if (HMI->first && HMI->second) {
cerr << " Value* " << RAV(HMI->first) << "\t: ";
if (IGNode* igNode = HMI->second->getUserIGNode())
cerr << "LR# " << igNode->getIndex();
else
cerr << "LR# " << "<no-IGNode>";
cerr << "\t:Values = "; printSet(*HMI->second); cerr << "\n";
}
}
}