1
0
mirror of https://github.com/c64scene-ar/llvm-6502.git synced 2025-01-22 10:33:23 +00:00
2004-08-04 00:19:23 +00:00

605 lines
20 KiB
C++

//===-- Analyzer.cpp - Analysis and Dumping of Bytecode 000000---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the AnalyzerHandler class and PrintBytecodeAnalysis
// function which together comprise the basic functionality of the llmv-abcd
// tool. The AnalyzerHandler collects information about the bytecode file into
// the BytecodeAnalysis structure. The PrintBytecodeAnalysis function prints
// out the content of that structure.
// @see include/llvm/Bytecode/Analysis.h
//
//===----------------------------------------------------------------------===//
#include "Reader.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Bytecode/BytecodeHandler.h"
#include <iomanip>
#include <sstream>
using namespace llvm;
namespace {
/// @brief Bytecode reading handler for analyzing bytecode.
class AnalyzerHandler : public BytecodeHandler {
BytecodeAnalysis& bca; ///< The structure in which data is recorded
std::ostringstream dump; ///< A convenience for dumping data.
/// @brief Keeps track of current function
BytecodeAnalysis::BytecodeFunctionInfo* currFunc;
Module* M; ///< Keeps track of current module
/// @name Constructor
/// @{
public:
/// The only way to construct an AnalyzerHandler. All that is needed is a
/// reference to the BytecodeAnalysis structure where the output will be
/// placed.
AnalyzerHandler(BytecodeAnalysis& TheBca)
: bca(TheBca)
, dump()
, currFunc(0)
{ }
/// @}
/// @name BytecodeHandler Implementations
/// @{
public:
virtual void handleError(const std::string& str ) {
dump << "ERROR: " << str << "\n";
bca.BytecodeDump = dump.str() ;
}
virtual void handleStart( Module* Mod, unsigned theSize ) {
M = Mod;
dump << "Bytecode {\n";
bca.byteSize = theSize;
bca.ModuleId.clear();
bca.numBlocks = 0;
bca.numTypes = 0;
bca.numValues = 0;
bca.numFunctions = 0;
bca.numConstants = 0;
bca.numGlobalVars = 0;
bca.numInstructions = 0;
bca.numBasicBlocks = 0;
bca.numOperands = 0;
bca.numCmpctnTables = 0;
bca.numSymTab = 0;
bca.maxTypeSlot = 0;
bca.maxValueSlot = 0;
bca.numAlignment = 0;
bca.fileDensity = 0.0;
bca.globalsDensity = 0.0;
bca.functionDensity = 0.0;
bca.instructionSize = 0;
bca.longInstructions = 0;
bca.vbrCount32 = 0;
bca.vbrCount64 = 0;
bca.vbrCompBytes = 0;
bca.vbrExpdBytes = 0;
bca.FunctionInfo.clear();
bca.BytecodeDump.clear();
bca.BlockSizes[BytecodeFormat::Module] = 0;
bca.BlockSizes[BytecodeFormat::Function] = 0;
bca.BlockSizes[BytecodeFormat::ConstantPool] = 0;
bca.BlockSizes[BytecodeFormat::SymbolTable] = 0;
bca.BlockSizes[BytecodeFormat::ModuleGlobalInfo] = 0;
bca.BlockSizes[BytecodeFormat::GlobalTypePlane] = 0;
bca.BlockSizes[BytecodeFormat::BasicBlock] = 0;
bca.BlockSizes[BytecodeFormat::InstructionList] = 0;
bca.BlockSizes[BytecodeFormat::CompactionTable] = 0;
}
virtual void handleFinish() {
dump << "} End Bytecode\n";
bca.BytecodeDump = dump.str() ;
bca.fileDensity = double(bca.byteSize) / double( bca.numTypes + bca.numValues );
double globalSize = 0.0;
globalSize += double(bca.BlockSizes[BytecodeFormat::ConstantPool]);
globalSize += double(bca.BlockSizes[BytecodeFormat::ModuleGlobalInfo]);
globalSize += double(bca.BlockSizes[BytecodeFormat::GlobalTypePlane]);
bca.globalsDensity = globalSize / double( bca.numTypes + bca.numConstants +
bca.numGlobalVars );
bca.functionDensity = double(bca.BlockSizes[BytecodeFormat::Function]) /
double(bca.numFunctions);
if ( bca.progressiveVerify ) {
try {
verifyModule(*M, ThrowExceptionAction);
} catch ( std::string& msg ) {
bca.VerifyInfo += "Verify@Finish: " + msg + "\n";
}
}
}
virtual void handleModuleBegin(const std::string& id) {
dump << " Module " << id << " {\n";
bca.ModuleId = id;
}
virtual void handleModuleEnd(const std::string& id) {
dump << " } End Module " << id << "\n";
if ( bca.progressiveVerify ) {
try {
verifyModule(*M, ThrowExceptionAction);
} catch ( std::string& msg ) {
bca.VerifyInfo += "Verify@EndModule: " + msg + "\n";
}
}
}
virtual void handleVersionInfo(
unsigned char RevisionNum, ///< Byte code revision number
Module::Endianness Endianness, ///< Endianness indicator
Module::PointerSize PointerSize ///< PointerSize indicator
) {
dump << " RevisionNum: " << int(RevisionNum)
<< " Endianness: " << Endianness
<< " PointerSize: " << PointerSize << "\n";
}
virtual void handleModuleGlobalsBegin() {
dump << " BLOCK: ModuleGlobalInfo {\n";
}
virtual void handleGlobalVariable(
const Type* ElemType,
bool isConstant,
GlobalValue::LinkageTypes Linkage,
unsigned SlotNum,
unsigned initSlot
) {
bca.numGlobalVars++;
bca.numValues++;
dump << " GV: "
<< ( initSlot == 0 ? "Uni" : "I" ) << "nitialized, "
<< ( isConstant? "Constant, " : "Variable, ")
<< " Linkage=" << Linkage << " Type="
<< ElemType->getDescription()
<< " Slot=" << SlotNum << " InitSlot=" << initSlot
<< "\n";
}
virtual void handleType( const Type* Ty ) {
bca.numTypes++;
dump << " Type: " << Ty->getDescription() << "\n";
}
virtual void handleFunctionDeclaration(
Function* Func ///< The function
) {
bca.numFunctions++;
bca.numValues++;
dump << " Function Decl: " << Func->getType()->getDescription() << "\n";
}
virtual void handleGlobalInitializer(GlobalVariable* GV, Constant* CV) {
dump << " Initializer: GV=";
GV->print(dump);
dump << " CV=";
CV->print(dump);
dump << "\n";
}
virtual void handleModuleGlobalsEnd() {
dump << " } END BLOCK: ModuleGlobalInfo\n";
if ( bca.progressiveVerify ) {
try {
verifyModule(*M, ThrowExceptionAction);
} catch ( std::string& msg ) {
bca.VerifyInfo += "Verify@EndModuleGlobalInfo: " + msg + "\n";
}
}
}
virtual void handleCompactionTableBegin() {
dump << " BLOCK: CompactionTable {\n";
}
virtual void handleCompactionTablePlane( unsigned Ty, unsigned NumEntries) {
bca.numCmpctnTables++;
dump << " Plane: Ty=" << Ty << " Size=" << NumEntries << "\n";
}
virtual void handleCompactionTableType( unsigned i, unsigned TypSlot,
const Type* Ty ) {
dump << " Type: " << i << " Slot:" << TypSlot
<< " is " << Ty->getDescription() << "\n";
}
virtual void handleCompactionTableValue(unsigned i, unsigned TypSlot,
unsigned ValSlot) {
dump << " Value: " << i << " TypSlot: " << TypSlot
<< " ValSlot:" << ValSlot << "\n";
}
virtual void handleCompactionTableEnd() {
dump << " } END BLOCK: CompactionTable\n";
}
virtual void handleSymbolTableBegin(Function* CF, SymbolTable* ST) {
bca.numSymTab++;
dump << " BLOCK: SymbolTable {\n";
}
virtual void handleSymbolTablePlane(unsigned Ty, unsigned NumEntries,
const Type* Typ) {
dump << " Plane: Ty=" << Ty << " Size=" << NumEntries
<< " Type: " << Typ->getDescription() << "\n";
}
virtual void handleSymbolTableType(unsigned i, unsigned slot,
const std::string& name ) {
dump << " Type " << i << " Slot=" << slot
<< " Name: " << name << "\n";
}
virtual void handleSymbolTableValue(unsigned i, unsigned slot,
const std::string& name ) {
dump << " Value " << i << " Slot=" << slot
<< " Name: " << name << "\n";
}
virtual void handleSymbolTableEnd() {
dump << " } END BLOCK: SymbolTable\n";
}
virtual void handleFunctionBegin(Function* Func, unsigned Size) {
dump << " BLOCK: Function {\n";
dump << " Linkage: " << Func->getLinkage() << "\n";
dump << " Type: " << Func->getType()->getDescription() << "\n";
const FunctionType* FType =
cast<FunctionType>(Func->getType()->getElementType());
currFunc = &bca.FunctionInfo[Func];
currFunc->description = FType->getDescription();
currFunc->name = Func->getName();
currFunc->byteSize = Size;
currFunc->numInstructions = 0;
currFunc->numBasicBlocks = 0;
currFunc->numPhis = 0;
currFunc->numOperands = 0;
currFunc->density = 0.0;
currFunc->instructionSize = 0;
currFunc->longInstructions = 0;
currFunc->vbrCount32 = 0;
currFunc->vbrCount64 = 0;
currFunc->vbrCompBytes = 0;
currFunc->vbrExpdBytes = 0;
}
virtual void handleFunctionEnd( Function* Func) {
dump << " } END BLOCK: Function\n";
currFunc->density = double(currFunc->byteSize) /
double(currFunc->numInstructions+currFunc->numBasicBlocks);
if ( bca.progressiveVerify ) {
try {
verifyModule(*M, ThrowExceptionAction);
} catch ( std::string& msg ) {
bca.VerifyInfo += "Verify@EndFunction: " + msg + "\n";
}
}
}
virtual void handleBasicBlockBegin( unsigned blocknum) {
dump << " BLOCK: BasicBlock #" << blocknum << "{\n";
bca.numBasicBlocks++;
bca.numValues++;
if ( currFunc ) currFunc->numBasicBlocks++;
}
virtual bool handleInstruction( unsigned Opcode, const Type* iType,
std::vector<unsigned>& Operands, unsigned Size){
dump << " INST: OpCode="
<< Instruction::getOpcodeName(Opcode) << " Type=\""
<< iType->getDescription() << "\"";
for ( unsigned i = 0; i < Operands.size(); ++i )
dump << " Op(" << i << ")=Slot(" << Operands[i] << ")";
dump << "\n";
bca.numInstructions++;
bca.numValues++;
bca.instructionSize += Size;
if (Size > 4 ) bca.longInstructions++;
bca.numOperands += Operands.size();
if ( currFunc ) {
currFunc->numInstructions++;
currFunc->instructionSize += Size;
if (Size > 4 ) currFunc->longInstructions++;
if ( Opcode == Instruction::PHI ) currFunc->numPhis++;
}
return Instruction::isTerminator(Opcode);
}
virtual void handleBasicBlockEnd(unsigned blocknum) {
dump << " } END BLOCK: BasicBlock #" << blocknum << "{\n";
}
virtual void handleGlobalConstantsBegin() {
dump << " BLOCK: GlobalConstants {\n";
}
virtual void handleConstantExpression( unsigned Opcode,
std::vector<Constant*> ArgVec, Constant* C ) {
dump << " EXPR: " << Instruction::getOpcodeName(Opcode) << "\n";
for ( unsigned i = 0; i < ArgVec.size(); ++i ) {
dump << " Arg#" << i << " "; ArgVec[i]->print(dump); dump << "\n";
}
dump << " Value=";
C->print(dump);
dump << "\n";
bca.numConstants++;
bca.numValues++;
}
virtual void handleConstantValue( Constant * c ) {
dump << " VALUE: ";
c->print(dump);
dump << "\n";
bca.numConstants++;
bca.numValues++;
}
virtual void handleConstantArray( const ArrayType* AT,
std::vector<Constant*>& Elements,
unsigned TypeSlot,
Constant* ArrayVal ) {
dump << " ARRAY: " << AT->getDescription()
<< " TypeSlot=" << TypeSlot << "\n";
for ( unsigned i = 0; i < Elements.size(); ++i ) {
dump << " #" << i;
Elements[i]->print(dump);
dump << "\n";
}
dump << " Value=";
ArrayVal->print(dump);
dump << "\n";
bca.numConstants++;
bca.numValues++;
}
virtual void handleConstantStruct(
const StructType* ST,
std::vector<Constant*>& Elements,
Constant* StructVal)
{
dump << " STRUC: " << ST->getDescription() << "\n";
for ( unsigned i = 0; i < Elements.size(); ++i ) {
dump << " #" << i << " "; Elements[i]->print(dump); dump << "\n";
}
dump << " Value=";
StructVal->print(dump);
dump << "\n";
bca.numConstants++;
bca.numValues++;
}
virtual void handleConstantPointer( const PointerType* PT,
unsigned Slot, GlobalValue* GV ) {
dump << " PNTR: " << PT->getDescription()
<< " Slot=" << Slot << " GlobalValue=";
GV->print(dump);
dump << "\n";
bca.numConstants++;
bca.numValues++;
}
virtual void handleConstantString( const ConstantArray* CA ) {
dump << " STRNG: ";
CA->print(dump);
dump << "\n";
bca.numConstants++;
bca.numValues++;
}
virtual void handleGlobalConstantsEnd() {
dump << " } END BLOCK: GlobalConstants\n";
if ( bca.progressiveVerify ) {
try {
verifyModule(*M, ThrowExceptionAction);
} catch ( std::string& msg ) {
bca.VerifyInfo += "Verify@EndGlobalConstants: " + msg + "\n";
}
}
}
virtual void handleAlignment(unsigned numBytes) {
bca.numAlignment += numBytes;
}
virtual void handleBlock(
unsigned BType, const unsigned char* StartPtr, unsigned Size) {
bca.numBlocks++;
bca.BlockSizes[llvm::BytecodeFormat::FileBlockIDs(BType)] += Size;
}
virtual void handleVBR32(unsigned Size ) {
bca.vbrCount32++;
bca.vbrCompBytes += Size;
bca.vbrExpdBytes += sizeof(uint32_t);
if (currFunc) {
currFunc->vbrCount32++;
currFunc->vbrCompBytes += Size;
currFunc->vbrExpdBytes += sizeof(uint32_t);
}
}
virtual void handleVBR64(unsigned Size ) {
bca.vbrCount64++;
bca.vbrCompBytes += Size;
bca.vbrExpdBytes += sizeof(uint64_t);
if ( currFunc ) {
currFunc->vbrCount64++;
currFunc->vbrCompBytes += Size;
currFunc->vbrExpdBytes += sizeof(uint64_t);
}
}
};
/// @brief Utility for printing a titled unsigned value with
/// an aligned colon.
inline static void print(std::ostream& Out, const char*title,
unsigned val, bool nl = true ) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << val << "\n";
}
/// @brief Utility for printing a titled double value with an
/// aligned colon
inline static void print(std::ostream&Out, const char*title,
double val ) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << std::setprecision(6) << val << "\n" ;
}
/// @brief Utility for printing a titled double value with a
/// percentage and aligned colon.
inline static void print(std::ostream&Out, const char*title,
double top, double bot ) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << std::setprecision(6) << top
<< " (" << std::left << std::setw(0) << std::setprecision(4)
<< (top/bot)*100.0 << "%)\n";
}
/// @brief Utility for printing a titled string value with
/// an aligned colon.
inline static void print(std::ostream&Out, const char*title,
std::string val, bool nl = true) {
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::left << val << (nl ? "\n" : "");
}
}
namespace llvm {
/// This function prints the contents of rhe BytecodeAnalysis structure in
/// a human legible form.
/// @brief Print BytecodeAnalysis structure to an ostream
void PrintBytecodeAnalysis(BytecodeAnalysis& bca, std::ostream& Out )
{
print(Out, "Bytecode Analysis Of Module", bca.ModuleId);
print(Out, "File Size", bca.byteSize);
print(Out, "Number Of Bytecode Blocks", bca.numBlocks);
print(Out, "Number Of Types", bca.numTypes);
print(Out, "Number Of Values", bca.numValues);
print(Out, "Number Of Constants", bca.numConstants);
print(Out, "Number Of Global Variables", bca.numGlobalVars);
print(Out, "Number Of Functions", bca.numFunctions);
print(Out, "Number Of Basic Blocks", bca.numBasicBlocks);
print(Out, "Number Of Instructions", bca.numInstructions);
print(Out, "Number Of Operands", bca.numOperands);
print(Out, "Number Of Compaction Tables", bca.numCmpctnTables);
print(Out, "Number Of Symbol Tables", bca.numSymTab);
print(Out, "Long Instructions", bca.longInstructions);
print(Out, "Instruction Size", bca.instructionSize);
print(Out, "Average Instruction Size",
double(bca.instructionSize)/double(bca.numInstructions));
print(Out, "Maximum Type Slot Number", bca.maxTypeSlot);
print(Out, "Maximum Value Slot Number", bca.maxValueSlot);
print(Out, "Bytes Thrown To Alignment", double(bca.numAlignment),
double(bca.byteSize));
print(Out, "File Density (bytes/def)", bca.fileDensity);
print(Out, "Globals Density (bytes/def)", bca.globalsDensity);
print(Out, "Function Density (bytes/func)", bca.functionDensity);
print(Out, "Number of VBR 32-bit Integers", bca.vbrCount32);
print(Out, "Number of VBR 64-bit Integers", bca.vbrCount64);
print(Out, "Number of VBR Compressed Bytes", bca.vbrCompBytes);
print(Out, "Number of VBR Expanded Bytes", bca.vbrExpdBytes);
print(Out, "VBR Savings",
double(bca.vbrExpdBytes)-double(bca.vbrCompBytes),
double(bca.vbrExpdBytes));
if ( bca.detailedResults ) {
print(Out, "Module Bytes",
double(bca.BlockSizes[BytecodeFormat::Module]),
double(bca.byteSize));
print(Out, "Function Bytes",
double(bca.BlockSizes[BytecodeFormat::Function]),
double(bca.byteSize));
print(Out, "Constant Pool Bytes",
double(bca.BlockSizes[BytecodeFormat::ConstantPool]),
double(bca.byteSize));
print(Out, "Symbol Table Bytes",
double(bca.BlockSizes[BytecodeFormat::SymbolTable]),
double(bca.byteSize));
print(Out, "Module Global Info Bytes",
double(bca.BlockSizes[BytecodeFormat::ModuleGlobalInfo]),
double(bca.byteSize));
print(Out, "Global Type Plane Bytes",
double(bca.BlockSizes[BytecodeFormat::GlobalTypePlane]),
double(bca.byteSize));
print(Out, "Basic Block Bytes",
double(bca.BlockSizes[BytecodeFormat::BasicBlock]),
double(bca.byteSize));
print(Out, "Instruction List Bytes",
double(bca.BlockSizes[BytecodeFormat::InstructionList]),
double(bca.byteSize));
print(Out, "Compaction Table Bytes",
double(bca.BlockSizes[BytecodeFormat::CompactionTable]),
double(bca.byteSize));
std::map<const Function*,BytecodeAnalysis::BytecodeFunctionInfo>::iterator I =
bca.FunctionInfo.begin();
std::map<const Function*,BytecodeAnalysis::BytecodeFunctionInfo>::iterator E =
bca.FunctionInfo.end();
while ( I != E ) {
Out << std::left << std::setw(0);
Out << "Function: " << I->second.name << "\n";
print(Out, "Type:", I->second.description);
print(Out, "Byte Size", I->second.byteSize);
print(Out, "Instructions", I->second.numInstructions);
print(Out, "Long Instructions", I->second.longInstructions);
print(Out, "Instruction Size", I->second.instructionSize);
print(Out, "Average Instruction Size",
double(I->second.instructionSize)/double(I->second.numInstructions));
print(Out, "Basic Blocks", I->second.numBasicBlocks);
print(Out, "Operand", I->second.numOperands);
print(Out, "Function Density", I->second.density);
print(Out, "Number of VBR 32-bit Integers", I->second.vbrCount32);
print(Out, "Number of VBR 64-bit Integers", I->second.vbrCount64);
print(Out, "Number of VBR Compressed Bytes", I->second.vbrCompBytes);
print(Out, "Number of VBR Expanded Bytes", I->second.vbrExpdBytes);
print(Out, "VBR Savings",
double(I->second.vbrExpdBytes)-double(I->second.vbrCompBytes),
double(I->second.vbrExpdBytes));
++I;
}
}
if ( bca.dumpBytecode )
Out << bca.BytecodeDump;
if ( bca.progressiveVerify )
Out << bca.VerifyInfo;
}
BytecodeHandler* createBytecodeAnalyzerHandler(BytecodeAnalysis& bca)
{
return new AnalyzerHandler(bca);
}
}
// vim: sw=2