llvm-6502/lib/Target/CBackend/CBackend.cpp
Sumant Kowshik 9ddc86c6e5 *** empty log message ***
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2552 91177308-0d34-0410-b5e6-96231b3b80d8
2002-05-08 18:09:58 +00:00

1416 lines
42 KiB
C++

//===-- Writer.cpp - Library for writing C files -----------------*- C++ -*--=//
//
// This library implements the functionality defined in llvm/Assembly/CWriter.h
// and CLocalVars.h
//
// TODO : Recursive types.
//===-----------------------------------------------------------------------==//
#include "llvm/Assembly/CWriter.h"
#include "CLocalVars.h"
#include "llvm/SlotCalculator.h"
#include "llvm/Module.h"
#include "llvm/Argument.h"
#include "llvm/Function.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/GlobalVariable.h"
#include "llvm/BasicBlock.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/InstVisitor.h"
#include "Support/StringExtras.h"
#include "Support/STLExtras.h"
#include <algorithm>
#include <strstream>
using std::string;
using std::map;
using std::vector;
using std::ostream;
/* Implementation of the CLocalVars methods */
// Appends a variable to the LocalVars map if it does not already exist
// Also check that the type exists on the map.
void CLocalVars::addLocalVar(const Type *t, const string & var) {
if (!LocalVars.count(t) ||
find(LocalVars[t].begin(), LocalVars[t].end(), var)
== LocalVars[t].end()) {
LocalVars[t].push_back(var);
}
}
/* Writer.cpp */
static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
map<const Type *, string> &TypeNames,
string VariableName, string NameSoFar);
static std::string getConstStrValue(const Constant* CPV);
//
//Getting opcodes in terms of the operator
//
static const char *getOpcodeOperName(const Instruction *I) {
switch (I->getOpcode()) {
// Standard binary operators...
case Instruction::Add: return "+";
case Instruction::Sub: return "-";
case Instruction::Mul: return "*";
case Instruction::Div: return "/";
case Instruction::Rem: return "%";
// Logical operators...
case Instruction::And: return "&";
case Instruction::Or: return "|";
case Instruction::Xor: return "^";
// SetCond operators...
case Instruction::SetEQ: return "==";
case Instruction::SetNE: return "!=";
case Instruction::SetLE: return "<=";
case Instruction::SetGE: return ">=";
case Instruction::SetLT: return "<";
case Instruction::SetGT: return ">";
//ShiftInstruction...
case Instruction::Shl : return "<<";
case Instruction::Shr : return ">>";
default:
cerr << "Invalid operator type!" << I->getOpcode() << "\n";
abort();
}
return 0;
}
// We dont want identifier names with ., space, - in them.
// So we replace them with _
static string makeNameProper(string x) {
string tmp;
for (string::iterator sI = x.begin(), sEnd = x.end(); sI != sEnd; sI++) {
if (*sI == '.')
tmp += '_';
else if (*sI == ' ')
tmp += '_';
else if (*sI == '-')
tmp += "__";
else
tmp += *sI;
}
return tmp;
}
static string getConstantName(const Constant *CPV) {
return CPV->getName();
}
static std::string getConstArrayStrValue(const Constant* CPV) {
std::string Result;
// As a special case, print the array as a string if it is an array of
// ubytes or an array of sbytes with positive values.
//
const Type *ETy = cast<ArrayType>(CPV->getType())->getElementType();
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
if (ETy == Type::SByteTy) {
for (unsigned i = 0; i < CPV->getNumOperands(); ++i)
if (ETy == Type::SByteTy &&
cast<ConstantSInt>(CPV->getOperand(i))->getValue() < 0) {
isString = false;
break;
}
}
if (isString) {
Result = "\"";
for (unsigned i = 0; i < CPV->getNumOperands(); ++i) {
unsigned char C = (ETy == Type::SByteTy) ?
(unsigned char)cast<ConstantSInt>(CPV->getOperand(i))->getValue() :
(unsigned char)cast<ConstantUInt>(CPV->getOperand(i))->getValue();
if (isprint(C)) {
Result += C;
} else {
Result += '\\';
Result += 'x';
Result += ( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A');
Result += ((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A');
}
}
Result += "\"";
} else {
Result = "{";
if (CPV->getNumOperands()) {
Result += " " + getConstStrValue(cast<Constant>(CPV->getOperand(0)));
for (unsigned i = 1; i < CPV->getNumOperands(); i++)
Result += ", " + getConstStrValue(cast<Constant>(CPV->getOperand(i)));
}
Result += " }";
}
return Result;
}
static std::string getConstStructStrValue(const Constant* CPV) {
std::string Result = "{";
if (CPV->getNumOperands()) {
Result += " " + getConstStrValue(cast<Constant>(CPV->getOperand(0)));
for (unsigned i = 1; i < CPV->getNumOperands(); i++)
Result += ", " + getConstStrValue(cast<Constant>(CPV->getOperand(i)));
}
return Result + " }";
}
// our own getStrValue function for constant initializers
static std::string getConstStrValue(const Constant* CPV) {
// Does not handle null pointers, that needs to be checked explicitly
string tempstr;
if (CPV == ConstantBool::False)
return "0";
else if (CPV == ConstantBool::True)
return "1";
else if (isa<ConstantArray>(CPV)) {
tempstr = getConstArrayStrValue(CPV);
}
else if (isa<ConstantStruct>(CPV)) {
tempstr = getConstStructStrValue(CPV);
}
else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(CPV)) {
tempstr = utostr((long long unsigned int) CUI->getValue());
}
else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CPV)) {
tempstr = itostr(CSI->getValue());
}
else if (ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
tempstr = ftostr(CFP->getValue());
}
if (CPV->getType() == Type::ULongTy)
tempstr += "ull";
else if (CPV->getType() == Type::LongTy)
tempstr += "ll";
else if (CPV->getType() == Type::UIntTy ||
CPV->getType() == Type::UShortTy)
tempstr += "u";
return tempstr;
}
// WriteCOperand - Write the name of the specified value out to the specified
// ostream. This can be useful when you just want to print int %0 not the
// whole instruction that generated it.
//
static void WriteCOperandInternal(ostream &Out, const Value *V,
bool PrintName, SlotCalculator *Table,
string &OperandType) {
int Slot;
if (PrintName && V->hasName()) {
// If V has a name.
Out << "llvm__" << makeNameProper(V->getName()) << "_" <<
(V->getType())->getUniqueID();
return;
}
else if (const Constant *CPV = dyn_cast<const Constant>(V)) {
if (isa<ConstantPointerNull>(CPV)) {
Out << "(" << OperandType << ")0";
}
else
Out << getConstStrValue(CPV);
}
else {
Slot = Table->getValSlot(V);
if (Slot >= 0)
Out << "llvm__tmp_" << Slot << "_" << V->getType()->getUniqueID();
else if (PrintName)
Out << "<badref>";
}
}
// Internal function
// Essentially pass the Type* variable, an empty typestack and this prints
// out the C type
static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
map<const Type *, string> &TypeNames,
string *FunctionInfo) {
// Takin' care of the fact that boolean would be int in C
// and that ushort would be unsigned short etc.
// Base Case
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return "int";
break;
case Type::UByteTyID:
return "unsigned char";
break;
case Type::SByteTyID:
return "signed char";
break;
case Type::UShortTyID:
return "unsigned long long";
break;
case Type::ULongTyID:
return "unsigned long long";
break;
case Type::LongTyID:
return "signed long long";
break;
case Type::UIntTyID:
return "unsigned int";
break;
default :
return Ty->getDescription();
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second;
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
string Result;
string MInfo = "";
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *MTy = cast<const FunctionType>(Ty);
Result = calcTypeName(MTy->getReturnType(), TypeStack, TypeNames, &MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += "(";
*FunctionInfo += " (";
for (FunctionType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
*FunctionInfo += ", ";
MInfo = "";
*FunctionInfo += calcTypeName(*I, TypeStack, TypeNames, &MInfo);
if (MInfo != "")
Result += ") " + MInfo;
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty())
*FunctionInfo += ", ";
*FunctionInfo += "...";
}
*FunctionInfo += ")";
break;
}
case Type::StructTyID: {
string tempstr = "";
const StructType *STy = cast<const StructType>(Ty);
Result = " struct {\n ";
int indx = 0;
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += calcTypeNameVar(*I, TypeStack, TypeNames,
"field" + itostr(indx++), tempstr);
Result += ";\n ";
}
Result += " } ";
break;
}
case Type::PointerTyID:
Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(),
TypeStack, TypeNames, &MInfo);
Result += "*";
break;
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = calcTypeName(ATy->getElementType(), TypeStack, TypeNames, &MInfo);
Result += "*";
break;
}
default:
assert(0 && "Unhandled case in getTypeProps!");
Result = "<error>";
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
// Internal function
// Pass the Type* variable and and the variable name and this prints out the
// variable declaration.
// This is different from calcTypeName because if you need to declare an array
// the size of the array would appear after the variable name itself
// For eg. int a[10];
static string calcTypeNameVar(const Type *Ty, vector<const Type *> &TypeStack,
map<const Type *, string> &TypeNames,
string VariableName, string NameSoFar) {
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return "int " + NameSoFar + VariableName;
break;
case Type::UByteTyID:
return "unsigned char " + NameSoFar + VariableName;
break;
case Type::SByteTyID:
return "signed char " + NameSoFar + VariableName;
break;
case Type::UShortTyID:
return "unsigned long long " + NameSoFar + VariableName;
break;
case Type::ULongTyID:
return "unsigned long long " + NameSoFar + VariableName;
break;
case Type::LongTyID:
return "signed long long " + NameSoFar + VariableName;
break;
case Type::UIntTyID:
return "unsigned int " + NameSoFar + VariableName;
break;
default :
return Ty->getDescription() + " " + NameSoFar + VariableName;
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second + " " + NameSoFar + VariableName;
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot) + " " + NameSoFar + VariableName;
// Here's the upreference
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
string Result;
string tempstr = "";
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
string MInfo = "";
const FunctionType *MTy = cast<const FunctionType>(Ty);
Result += calcTypeName(MTy->getReturnType(), TypeStack, TypeNames, &MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += " " + NameSoFar + VariableName;
Result += " (";
for (FunctionType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
Result += ", ";
MInfo = "";
Result += calcTypeName(*I, TypeStack, TypeNames, &MInfo);
if (MInfo != "")
Result += ") " + MInfo;
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty())
Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = cast<const StructType>(Ty);
Result = " struct {\n ";
int indx = 0;
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += calcTypeNameVar(*I, TypeStack, TypeNames,
"field" + itostr(indx++), "");
Result += ";\n ";
}
Result += " }";
Result += " " + NameSoFar + VariableName;
break;
}
case Type::PointerTyID: {
Result = calcTypeNameVar(cast<const PointerType>(Ty)->getElementType(),
TypeStack, TypeNames, tempstr,
"(*" + NameSoFar + VariableName + ")");
break;
}
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = calcTypeNameVar(ATy->getElementType(), TypeStack, TypeNames,
tempstr, NameSoFar + VariableName + "[" +
itostr(NumElements) + "]");
break;
}
default:
assert(0 && "Unhandled case in getTypeProps!");
Result = "<error>";
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
// printTypeVarInt - The internal guts of printing out a type that has a
// potentially named portion and the variable associated with the type.
static ostream &printTypeVarInt(ostream &Out, const Type *Ty,
map<const Type *, string> &TypeNames,
string VariableName) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
// Booleans have to be specially handled to be printed as ints with values
// 0 or 1;
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return Out << "int " << VariableName;
break;
case Type::UByteTyID:
return Out << "unsigned char " << VariableName;
break;
case Type::SByteTyID:
return Out << "signed char " << VariableName;
break;
case Type::UShortTyID:
return Out << "unsigned long long " << VariableName;
break;
case Type::ULongTyID:
return Out << "unsigned long long " << VariableName;
break;
case Type::LongTyID:
return Out << "signed long long " << VariableName;
break;
case Type::UIntTyID:
return Out << "unsigned int " << VariableName;
break;
default :
return Out << Ty->getDescription() << " " << VariableName;
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second << " " << VariableName;
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
vector<const Type *> TypeStack;
string TypeNameVar, tempstr = "";
TypeNameVar = calcTypeNameVar(Ty, TypeStack, TypeNames, VariableName,
tempstr);
return Out << TypeNameVar;
// TODO: Check what happens to caching
// TypeNames.insert(std::make_pair(Ty, TypeName));
//Cache type name for later use
}
// Internal guts of printing a type name
static ostream &printTypeInt(ostream &Out, const Type *Ty,
map<const Type *, string> &TypeNames) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
// Booleans have to be specially handled to be printed as ints with values
// 0 or 1;
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return Out << "int";
break;
case Type::UByteTyID:
return Out << "unsigned char";
break;
case Type::SByteTyID:
return Out << "signed char";
break;
case Type::UShortTyID:
return Out << "unsigned long long";
break;
case Type::ULongTyID:
return Out << "unsigned long long";
break;
case Type::LongTyID:
return Out << "signed long long";
break;
case Type::UIntTyID:
return Out << "unsigned int";
break;
default :
return Out << Ty->getDescription();
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second;
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
vector<const Type *> TypeStack;
string MInfo = "";
string TypeName = calcTypeName(Ty, TypeStack, TypeNames, &MInfo);
// TypeNames.insert(std::make_pair(Ty, TypeName));
//Cache type name for later use
if (MInfo != "")
return Out << TypeName << ")" << MInfo;
else
return Out << TypeName;
}
namespace {
//Internal CWriter class mimics AssemblyWriter.
class CWriter {
ostream& Out;
SlotCalculator &Table;
const Module *TheModule;
map<const Type *, string> TypeNames;
public:
inline CWriter(ostream &o, SlotCalculator &Tab, const Module *M)
: Out(o), Table(Tab), TheModule(M) {
}
inline void write(const Module *M) { printModule(M); }
ostream& printTypeVar(const Type *Ty, string VariableName, ostream &Out);
ostream& printType(const Type *Ty, ostream &Out);
void writeOperand(const Value *Operand, bool PrintType,ostream &Out,
bool PrintName = true);
private :
void printModule(const Module *M);
void printSymbolTable(const SymbolTable &ST);
void printConstant(const Constant *CPV);
void printGlobal(const GlobalVariable *GV);
void printFunctionDecl(const Function *M); //for printing just the method
// declaration
void printFunctionArgument(const Argument *MA);
void printFunction(const Function *);
void outputFunction(const Function *, CLocalVars &);
void outputBasicBlock(const BasicBlock *);
};
/* END class CWriter */
/* CLASS InstLocalVarsVisitor */
class InstLocalVarsVisitor : public InstVisitor<InstLocalVarsVisitor> {
SlotCalculator& Table;
void handleTerminator(TerminatorInst *tI,int indx);
public:
CLocalVars CLV;
InstLocalVarsVisitor(SlotCalculator& table) : Table(table) {
}
void visitInstruction(Instruction *I) {
string tempostr;
if (I && I->hasName() && !isa<PHINode>(I)) {
tempostr = "llvm__" + makeNameProper(I->getName()) + "_" +
itostr((int)I->getType()->getUniqueID());
CLV.addLocalVar(I->getType(), tempostr);
} else if (I) {
int Slot = Table.getValSlot(I);
//if (Slot < 0) then it is a instruction with no
// value (like return void )
if ((Slot >= 0) && !isa<PHINode>(I)) {
tempostr = "llvm__tmp_";
tempostr += itostr(Slot) + "_" +
itostr((int)I->getType()->getUniqueID());
CLV.addLocalVar(I->getType(), tempostr);
}
}
}
void visitBranchInst(BranchInst *I) {
TerminatorInst *tI = cast<TerminatorInst>(I);
if (I->getNumOperands() > 1) {
handleTerminator(tI, 0);
handleTerminator(tI, 1);
}
else {
handleTerminator(tI, 0);
}
}
};
/* CLASS CInstPrintVisitor */
class CInstPrintVisitor: public InstVisitor<CInstPrintVisitor> {
CWriter& CW;
SlotCalculator& Table;
ostream &Out;
const Value *Operand;
void outputLValue(Instruction *);
void printPhiFromNextBlock(TerminatorInst *tI, int indx);
public:
CInstPrintVisitor (CWriter &cw, SlotCalculator& table, ostream& o)
: CW(cw), Table(table), Out(o) {
}
void visitCastInst(CastInst *I);
void visitCallInst(CallInst *I);
void visitShr(ShiftInst *I);
void visitShl(ShiftInst *I);
void visitReturnInst(ReturnInst *I);
void visitBranchInst(BranchInst *I);
void visitSwitchInst(SwitchInst *I);
void visitInvokeInst(InvokeInst *I) ;
void visitMallocInst(MallocInst *I);
void visitAllocaInst(AllocaInst *I);
void visitFreeInst(FreeInst *I);
void visitLoadInst(LoadInst *I);
void visitStoreInst(StoreInst *I);
void visitGetElementPtrInst(GetElementPtrInst *I);
void visitPHINode(PHINode *I);
void visitUnaryOperator (UnaryOperator *I);
void visitBinaryOperator(BinaryOperator *I);
};
}
void InstLocalVarsVisitor::handleTerminator(TerminatorInst *tI,int indx) {
BasicBlock *bb = tI->getSuccessor(indx);
BasicBlock::const_iterator insIt = bb->begin();
while (insIt != bb->end()) {
if (const PHINode *pI = dyn_cast<const PHINode>(*insIt)) {
//Its a phinode!
//Calculate the incoming index for this
int incindex = pI->getBasicBlockIndex(tI->getParent());
if (incindex != -1)
if (pI && pI->hasName()) {
string tempostr;
tempostr = "llvm__" + makeNameProper(pI->getName()) + "_" +
itostr((int)pI->getType()->getUniqueID());
CLV.addLocalVar(pI->getType(), tempostr) ;
} else {
string tempostr;
int Slot = Table.getValSlot(pI);
if (Slot >= 0) {
tempostr = "llvm__tmp_" + itostr(Slot) + "_"
+ itostr((int)pI->getType()->getUniqueID());
CLV.addLocalVar(pI->getType(), tempostr);
}
}
}
else break;
insIt++;
}
}
/* Implementation of CInstPrintVisitor */
void CInstPrintVisitor::outputLValue(Instruction *I) {
if (I && I->hasName() && !isa<PHINode>(I)) {
Out << "llvm__" << makeNameProper(I->getName()) << "_"
<< I->getType()->getUniqueID() << " = ";
} else {
int Slot = Table.getValSlot(I);
//if (Slot < 0) then it is a instruction with no value (like return void )
if ((Slot >= 0) && !isa<PHINode>(I))
Out << "llvm__tmp_" << Slot << "_" << I->getType()->getUniqueID()
<< " = ";
}
}
void CInstPrintVisitor::printPhiFromNextBlock(TerminatorInst *tI, int indx) {
BasicBlock *bb = tI->getSuccessor(indx);
BasicBlock::const_iterator insIt = bb->begin();
while (insIt != bb->end()) {
if (const PHINode *pI = dyn_cast<const PHINode>(*insIt)) {
//Its a phinode!
//Calculate the incoming index for this
int incindex = pI->getBasicBlockIndex(tI->getParent());
if (incindex != -1)
{
//now we have to do the printing
if (pI && pI->hasName()) {
Out << "llvm__" << makeNameProper(pI->getName()) << "_"
<< pI->getType()->getUniqueID() << " = ";
} else {
int Slot = Table.getValSlot(pI);
if (Slot >= 0)
Out << "llvm__tmp_" << Slot << "_"
<< pI->getType()->getUniqueID() << " = ";
}
CW.writeOperand(pI->getIncomingValue(incindex),false, Out);
Out << ";\n";
}
}
else break;
insIt++;
}
}
// Implement all "other" instructions, except for PHINode
void CInstPrintVisitor::visitCastInst(CastInst *I) {
outputLValue(I);
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
Out << "(";
CW.printType(I->getType(), Out);
Out << ")";
CW.writeOperand(Operand, false, Out);
Out << ";\n";
}
void CInstPrintVisitor::visitCallInst(CallInst *I) {
outputLValue(I);
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
const PointerType *PTy = dyn_cast<PointerType>(Operand->getType());
const FunctionType *MTy = PTy
? dyn_cast<FunctionType>(PTy->getElementType()):0;
const Type *RetTy = MTy ? MTy->getReturnType() : 0;
// If possible, print out the short form of the call instruction, but we can
// only do this if the first argument is a pointer to a nonvararg method,
// and if the value returned is not a pointer to a method.
//
if (RetTy && !MTy->isVarArg() &&
(!isa<PointerType>(RetTy)||
!isa<FunctionType>(cast<PointerType>(RetTy)))){
Out << " ";
Out << makeNameProper(Operand->getName());
} else {
Out << makeNameProper(Operand->getName());
}
Out << "(";
if (I->getNumOperands() > 1)
CW.writeOperand(I->getOperand(1), false, Out);
for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; ++op) {
Out << ",";
CW.writeOperand(I->getOperand(op), false, Out);
}
Out << " );\n";
}
void CInstPrintVisitor::visitShr(ShiftInst *I) {
outputLValue(I);
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
Out << "(";
CW.writeOperand(Operand, false, Out);
Out << " >> ";
Out << "(";
CW.writeOperand(I->getOperand(1), false, Out);
Out << "));\n";
}
void CInstPrintVisitor::visitShl(ShiftInst *I) {
outputLValue(I);
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
Out << "(";
CW.writeOperand(Operand, false, Out);
Out << " << ";
Out << "(";
CW.writeOperand(I->getOperand(1), false, Out);
Out << "));\n";
}
// Specific Instruction type classes... note that all of the casts are
// neccesary because we use the instruction classes as opaque types...
//
void CInstPrintVisitor::visitReturnInst(ReturnInst *I) {
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
Out << "return ";
if (Operand)
CW.writeOperand(Operand,false, Out);
Out << ";\n";
}
void CInstPrintVisitor::visitBranchInst(BranchInst *I) {
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
TerminatorInst *tI = cast<TerminatorInst>(I);
if (I->getNumOperands() > 1) {
Out << "if (";
CW.writeOperand(I->getOperand(2),false, Out);
Out << ") {\n";
printPhiFromNextBlock(tI,0);
Out << " goto ";
CW.writeOperand(Operand,false, Out);
Out << ";\n";
Out << "}" << "else {\n";
printPhiFromNextBlock(tI,1);
Out << " goto ";
CW.writeOperand(I->getOperand(1),false, Out);
Out << ";\n";
Out << "}\n";
} else {
printPhiFromNextBlock(tI,0);
Out << " goto ";
CW.writeOperand(Operand, false, Out);
Out << ";\n";
}
Out << "\n";
}
void CInstPrintVisitor::visitSwitchInst(SwitchInst *I) {
Out << "\n";
}
void CInstPrintVisitor::visitInvokeInst(InvokeInst *I) {
Out << "\n";
}
void CInstPrintVisitor::visitMallocInst(MallocInst *I) {
outputLValue(I);
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
string tempstr = "";
Out << "(";
CW.printType(cast<const PointerType>(I->getType())->getElementType(), Out);
Out << "*) malloc(sizeof(";
CW.printTypeVar(cast<const PointerType>(I->getType())->getElementType(),
tempstr, Out);
Out << ")";
if (I->getNumOperands()) {
Out << " * " ;
CW.writeOperand(Operand, false, Out);
}
Out << ");";
}
void CInstPrintVisitor::visitAllocaInst(AllocaInst *I) {
outputLValue(I);
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
string tempstr = "";
Out << "(";
CW.printTypeVar(I->getType(), tempstr, Out);
Out << ") alloca(sizeof(";
CW.printTypeVar(cast<const PointerType>(I->getType())->getElementType(),
tempstr, Out);
Out << ")";
if (I->getNumOperands()) {
Out << " * " ;
CW.writeOperand(Operand, false, Out);
}
Out << ");\n";
}
void CInstPrintVisitor::visitFreeInst(FreeInst *I) {
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
Out << "free(";
CW.writeOperand(Operand, false, Out);
Out << ");\n";
}
void CInstPrintVisitor::visitLoadInst(LoadInst *I) {
outputLValue(I);
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
if (I->getNumOperands() <= 1) {
Out << "*";
CW.writeOperand(Operand,false, Out);
}
else {
//Check if it is an array type or struct type ptr!
int arrtype = 1;
const PointerType *PTy = dyn_cast<PointerType>(I->getType());
if (cast<const PointerType>(Operand->getType())->getElementType()->getPrimitiveID() == Type::StructTyID)
arrtype = 0;
if (arrtype && isa<GlobalValue>(Operand))
Out << "(&";
CW.writeOperand(Operand,false, Out);
for (unsigned i = 1, E = I->getNumOperands(); i != E; ++i) {
if (i == 1) {
if (arrtype || !isa<GlobalValue>(Operand)) {
Out << "[";
CW.writeOperand(I->getOperand(i), false, Out);
Out << "]";
}
if (isa<GlobalValue>(Operand) && arrtype)
Out << ")";
}
else {
if (arrtype == 1) Out << "[";
else
Out << ".field";
CW.writeOperand(I->getOperand(i), false, Out);
if (arrtype == 1) Out << "]";
}
}
}
Out << ";\n";
}
void CInstPrintVisitor::visitStoreInst(StoreInst *I) {
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
if (I->getNumOperands() <= 2) {
Out << "*";
CW.writeOperand(I->getOperand(1), false, Out);
}
else {
//Check if it is an array type or struct type ptr!
int arrtype = 1;
if (cast<const PointerType>(I->getOperand(1)->getType())->getElementType()->getPrimitiveID() == Type::StructTyID)
arrtype = 0;
if (isa<GlobalValue>(I->getOperand(1)) && arrtype)
Out << "(&";
CW.writeOperand(I->getOperand(1), false, Out);
for (unsigned i = 2, E = I->getNumOperands(); i != E; ++i) {
if (i == 2) {
if (arrtype || !isa<GlobalValue>(I->getOperand(1))) {
Out << "[";
CW.writeOperand(I->getOperand(i), false, Out);
Out << "]";
}
if (isa<GlobalValue>(I->getOperand(1)) && arrtype)
Out << ")";
}
else {
if (arrtype == 1) Out << "[";
else
Out << ".field";
CW.writeOperand(I->getOperand(i), false, Out);
if (arrtype == 1) Out << "]";
}
}
}
Out << " = ";
CW.writeOperand(Operand,false, Out);
Out << ";\n";
}
void CInstPrintVisitor::visitGetElementPtrInst(GetElementPtrInst *I) {
outputLValue(I);
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
Out << " &(";
if (I->getNumOperands() <= 1)
CW.writeOperand(Operand,false, Out);
else {
//Check if it is an array type or struct type ptr!
int arrtype = 1;
if ((cast<const PointerType>(Operand->getType()))->getElementType()->getPrimitiveID() == Type::StructTyID)
arrtype = 0;
if ((isa<GlobalValue>(Operand)) && arrtype)
Out << "(&";
CW.writeOperand(Operand,false, Out);
for (unsigned i = 1, E = I->getNumOperands(); i != E; ++i) {
if (i == 1) {
if (arrtype || !isa<GlobalValue>(Operand)){
Out << "[";
CW.writeOperand(I->getOperand(i), false, Out);
Out << "]";
}
if (isa<GlobalValue>(Operand) && arrtype)
Out << ")";
}
else {
if (arrtype == 1) Out << "[";
else
Out << ".field";
CW.writeOperand(I->getOperand(i), false, Out);
if (arrtype == 1) Out << "]";
}
}
}
Out << ");\n";
}
void CInstPrintVisitor::visitPHINode(PHINode *I) {
}
void CInstPrintVisitor::visitUnaryOperator (UnaryOperator *I) {
if (I->getOpcode() == Instruction::Not) {
outputLValue(I);
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
Out << "!(";
CW.writeOperand(Operand,false, Out);
Out << ");\n";
}
else {
Out << "<bad unary inst>\n";
}
}
void CInstPrintVisitor::visitBinaryOperator(BinaryOperator *I) {
//binary instructions, shift instructions, setCond instructions.
outputLValue(I);
Operand = I->getNumOperands() ? I->getOperand(0) : 0;
if (I->getType()->getPrimitiveID() == Type::PointerTyID) {
Out << "(";
CW.printType(I->getType(), Out);
Out << ")";
}
Out << "(";
if (Operand->getType()->getPrimitiveID() == Type::PointerTyID)
Out << "(long long)";
CW.writeOperand(Operand,false, Out);
Out << getOpcodeOperName(I);
// Need the extra parenthisis if the second operand is < 0
Out << '(';
if (I->getOperand(1)->getType()->getPrimitiveID() == Type::PointerTyID)
Out << "(long long)";
CW.writeOperand(I->getOperand(1),false, Out);
Out << ')';
Out << ");\n";
}
/* END : CInstPrintVisitor implementation */
void CWriter::printModule(const Module *M) {
// printing stdlib inclusion
// Out << "#include <stdlib.h>\n";
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
printSymbolTable(*M->getSymbolTable());
for_each(M->gbegin(), M->gend(),
bind_obj(this, &CWriter::printGlobal));
// First output all the declarations of the methods as C requires Functions
// be declared before they are used.
for_each(M->begin(), M->end(), bind_obj(this,&CWriter::printFunctionDecl));
// declaration of alloca
Out << "void *alloca(unsigned long size);\n";
// Output all of the methods...
for_each(M->begin(), M->end(), bind_obj(this,&CWriter::printFunction));
}
// prints the global constants
void CWriter::printGlobal(const GlobalVariable *GV) {
string tempostr;
if (GV->hasName())
tempostr = "llvm__" + makeNameProper(GV->getName()) + "_" +
itostr((int)GV->getType()->getUniqueID());
if (GV->hasInternalLinkage()) Out << "static ";
printTypeVar(GV->getType()->getElementType(), tempostr, Out);
if (GV->hasInitializer()) {
Out << " = " ;
writeOperand(GV->getInitializer(), false, Out, false);
}
Out << ";\n";
}
// printSymbolTable - Run through symbol table looking for named constants
// if a named constant is found, emit it's declaration...
// Assuming that symbol table has only types and constants.
void CWriter::printSymbolTable(const SymbolTable &ST) {
// GraphT G;
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
// TODO
// Need to run through all the used types in the program
// FindUsedTypes &FUT = new FindUsedTypes();
// const std::set<const Type *> &UsedTypes = FUT.getTypes();
// Filter out the structures printing forward definitions for each of them
// and creating the dependency graph.
// Print forward definitions to all of them
// print the typedefs topologically sorted
// But for now we have
for (; I != End; ++I) {
const Value *V = I->second;
if (const Constant *CPV = dyn_cast<const Constant>(V)) {
printConstant(CPV);
} else if (const Type *Ty = dyn_cast<const Type>(V)) {
string tempostr;
string tempstr = "";
Out << "typedef ";
vector<const Type *> TypeStack;
tempostr = "llvm__" + I->first;
string TypeNameVar = calcTypeNameVar(Ty, TypeStack, TypeNames,
tempostr, tempstr);
Out << TypeNameVar << ";\n";
if (!isa<PointerType>(Ty) ||
!cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
TypeNames.insert(std::make_pair(Ty, "llvm__"+I->first));
}
}
}
}
// printConstant - Print out a constant pool entry...
//
void CWriter::printConstant(const Constant *CPV) {
// TODO
// Dinakar : Don't know what to do with unnamed constants
// should do something about it later.
string tempostr;
if (CPV->hasName()) {
// Print out name...
tempostr = "llvm__" + makeNameProper(CPV->getName()) + "_" +
itostr((int)CPV->getType()->getUniqueID());
} else {
int Slot = Table.getValSlot(CPV); // slot number
if (Slot >= 0)
tempostr = "llvm__tmp_" + itostr(Slot) + "_" +
itostr((int)CPV->getType()->getUniqueID());
else
tempostr = "<badref>";
}
// Print out the constant type...
printTypeVar(CPV->getType(), tempostr, Out);
Out << " = ";
// Write the value out now...
writeOperand(CPV, false, Out, false);
Out << "\n";
}
// printFunctionDecl - Print method declaration
//
void CWriter::printFunctionDecl(const Function *M) {
if (M->hasInternalLinkage()) Out <<"static ";
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
if (!M->isExternal()) {
// Print out the return type and name...
printType(M->getReturnType(), Out);
Out << " " << makeNameProper(M->getName()) << "(";
for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
bind_obj(this, &CWriter::printFunctionArgument));
} else {
// Print out the return type and name...
printType(M->getReturnType(), Out) ;
Out << " " << makeNameProper(M->getName()) << "(";
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
for (FunctionType::ParamTypes::const_iterator I =
MT->getParamTypes().begin(),
E = MT->getParamTypes().end(); I != E; ++I) {
if (I != MT->getParamTypes().begin()) Out << ", ";
printType(*I, Out);
}
}
// Finish printing arguments...
if (MT->isVarArg()) {
if (MT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ");\n";
}
void CWriter::printFunction(const Function *M) {
if (!M->isExternal()) {
// Process each of the basic blocks, gather information and call the
// output methods on the CLocalVars and Function* objects.
// gather local variable information for each basic block
InstLocalVarsVisitor ILV(Table);
ILV.visit((Function *)M);
// Spout out code.
outputFunction(M, ILV.CLV);
}
}
// printFunctionArgument - This member is called for every argument that
// is passed into the method. Simply print it out
//
void CWriter::printFunctionArgument(const Argument *Arg) {
// Insert commas as we go... the first arg doesn't get a comma
string tempostr;
if (Arg != Arg->getParent()->getArgumentList().front()) Out << ", ";
// Output name, if available...
if (Arg->hasName()) {
tempostr = "llvm__" + makeNameProper(Arg->getName()) + "_" +
itostr((int)Arg->getType()->getUniqueID());
} else if (Table.getValSlot(Arg) < 0) {
tempostr = "<badref>";
}
else {
tempostr = "llvm__tmp_" + itostr(Table.getValSlot(Arg)) + "_" +
itostr((int)Arg->getType()->getUniqueID());
}
// Output type...
// printType(Arg->getType(), Out);
// Out << " " << tempostr;
printTypeVar (Arg->getType(), tempostr, Out);
}
void CWriter::outputFunction(const Function *M, CLocalVars& CLV) {
// Currently we have a no-loop-structure implementation
// Seems like its not really necessary.
// Print out the return type and name...
printType(M->getReturnType(), Out) ;
Out << " " << makeNameProper(M->getName()) << "(";
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
if (!M->isExternal()) {
for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
bind_obj(this, &CWriter::printFunctionArgument));
} else {
// Loop over the arguments, printing them...
const FunctionType *MT = cast<const FunctionType>(M->getFunctionType());
for (FunctionType::ParamTypes::const_iterator I =
MT->getParamTypes().begin(),
E = MT->getParamTypes().end(); I != E; ++I) {
if (I != MT->getParamTypes().begin()) Out << ", ";
printType(*I, Out);
}
}
// Finish printing arguments...
if (MT->isVarArg()) {
if (MT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ")\n";
if (!M->isExternal()) {
Out << "{\n";
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
printSymbolTable(*M->getSymbolTable());
// print the local variables
// we assume that every local variable is alloca'ed in the C code.
std::map<const Type*, VarListType> locals;
locals = CLV.LocalVars;
map<const Type*, VarListType>::iterator iter;
for (iter = locals.begin(); iter != locals.end(); iter++) {
VarListType::iterator listiter;
for (listiter = iter->second.begin(); listiter != iter->second.end();
listiter++) {
// printType(iter->first, Out);
// Out << " " << *listiter << ";\n";
printTypeVar(iter->first, *listiter, Out);
Out << ";\n";
}
}
// print the basic blocks
Function::const_iterator iterBB;
for (iterBB = M->begin(); iterBB != M->end(); ++iterBB)
outputBasicBlock(*iterBB);
Out << "}\n";
}
}
void CWriter::outputBasicBlock(const BasicBlock* BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "llvm__" << makeNameProper(BB->getName()) << "_"
<< BB->getType()->getUniqueID() << ":\n";
} else {
int Slot = Table.getValSlot(BB);
Out << "llvm__tmp_";
if (Slot >= 0)
Out << Slot << "_" << BB->getType()->getUniqueID() << ":\n";
// Extra newline seperates out label's
else
Out << "<badref>\n";
}
// Output all of the instructions in the basic block...
// print the basic blocks
CInstPrintVisitor CIPV(*this, Table, Out);
CIPV.visit((BasicBlock *) BB);
}
// printTypeVar - Go to extreme measures to attempt to print out a short,
// symbolic version of a type name.
//
ostream& CWriter::printTypeVar(const Type *Ty, string VariableName,
ostream &Out) {
return printTypeVarInt(Out, Ty, TypeNames, VariableName);
}
// printType - Go to extreme measures to attempt to print out a short, symbolic
// version of a type name.
ostream& CWriter::printType(const Type *Ty, ostream &Out) {
return printTypeInt(Out, Ty, TypeNames);
}
void CWriter::writeOperand(const Value *Operand, bool PrintType,
ostream &Out, bool PrintName = true) {
if (PrintType){
string tempstr = "";
Out << " ";
printType(Operand->getType(), Out);
}
vector<const Type *> TypeStack;
string MInfo = "";
string OperandType = calcTypeName(Operand->getType(), TypeStack, TypeNames,
&MInfo);
if (MInfo != "")
OperandType += ")" + MInfo;
WriteCOperandInternal(Out, Operand, PrintName, &Table, OperandType);
}
//===----------------------------------------------------------------------===//
// External Interface declaration
//===----------------------------------------------------------------------===//
void WriteToC(const Module *C, ostream &Out) {
assert(C && "You can't write a null module!!");
SlotCalculator SlotTable(C, true);
CWriter W(Out, SlotTable, C);
W.write(C);
Out.flush();
}