mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148174 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			787 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			787 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
 | 
						|
// of MachineInstrs.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "sched-instrs"
 | 
						|
#include "ScheduleDAGInstrs.h"
 | 
						|
#include "llvm/Operator.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/MC/MCInstrItineraries.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
 | 
						|
                                     const MachineLoopInfo &mli,
 | 
						|
                                     const MachineDominatorTree &mdt,
 | 
						|
                                     bool IsPostRAFlag)
 | 
						|
  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
 | 
						|
    InstrItins(mf.getTarget().getInstrItineraryData()), IsPostRA(IsPostRAFlag),
 | 
						|
    UnitLatencies(false), Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
 | 
						|
    LoopRegs(MLI, MDT), FirstDbgValue(0) {
 | 
						|
  DbgValues.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// Run - perform scheduling.
 | 
						|
///
 | 
						|
void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
 | 
						|
                            MachineBasicBlock::iterator begin,
 | 
						|
                            MachineBasicBlock::iterator end,
 | 
						|
                            unsigned endcount) {
 | 
						|
  BB = bb;
 | 
						|
  Begin = begin;
 | 
						|
  InsertPosIndex = endcount;
 | 
						|
 | 
						|
  // Check to see if the scheduler cares about latencies.
 | 
						|
  UnitLatencies = ForceUnitLatencies();
 | 
						|
 | 
						|
  ScheduleDAG::Run(bb, end);
 | 
						|
}
 | 
						|
 | 
						|
/// getUnderlyingObjectFromInt - This is the function that does the work of
 | 
						|
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
 | 
						|
static const Value *getUnderlyingObjectFromInt(const Value *V) {
 | 
						|
  do {
 | 
						|
    if (const Operator *U = dyn_cast<Operator>(V)) {
 | 
						|
      // If we find a ptrtoint, we can transfer control back to the
 | 
						|
      // regular getUnderlyingObjectFromInt.
 | 
						|
      if (U->getOpcode() == Instruction::PtrToInt)
 | 
						|
        return U->getOperand(0);
 | 
						|
      // If we find an add of a constant or a multiplied value, it's
 | 
						|
      // likely that the other operand will lead us to the base
 | 
						|
      // object. We don't have to worry about the case where the
 | 
						|
      // object address is somehow being computed by the multiply,
 | 
						|
      // because our callers only care when the result is an
 | 
						|
      // identifibale object.
 | 
						|
      if (U->getOpcode() != Instruction::Add ||
 | 
						|
          (!isa<ConstantInt>(U->getOperand(1)) &&
 | 
						|
           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
 | 
						|
        return V;
 | 
						|
      V = U->getOperand(0);
 | 
						|
    } else {
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
 | 
						|
  } while (1);
 | 
						|
}
 | 
						|
 | 
						|
/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
 | 
						|
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
 | 
						|
static const Value *getUnderlyingObject(const Value *V) {
 | 
						|
  // First just call Value::getUnderlyingObject to let it do what it does.
 | 
						|
  do {
 | 
						|
    V = GetUnderlyingObject(V);
 | 
						|
    // If it found an inttoptr, use special code to continue climing.
 | 
						|
    if (Operator::getOpcode(V) != Instruction::IntToPtr)
 | 
						|
      break;
 | 
						|
    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
 | 
						|
    // If that succeeded in finding a pointer, continue the search.
 | 
						|
    if (!O->getType()->isPointerTy())
 | 
						|
      break;
 | 
						|
    V = O;
 | 
						|
  } while (1);
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// getUnderlyingObjectForInstr - If this machine instr has memory reference
 | 
						|
/// information and it can be tracked to a normal reference to a known
 | 
						|
/// object, return the Value for that object. Otherwise return null.
 | 
						|
static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
 | 
						|
                                                const MachineFrameInfo *MFI,
 | 
						|
                                                bool &MayAlias) {
 | 
						|
  MayAlias = true;
 | 
						|
  if (!MI->hasOneMemOperand() ||
 | 
						|
      !(*MI->memoperands_begin())->getValue() ||
 | 
						|
      (*MI->memoperands_begin())->isVolatile())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  const Value *V = (*MI->memoperands_begin())->getValue();
 | 
						|
  if (!V)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  V = getUnderlyingObject(V);
 | 
						|
  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
 | 
						|
    // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | 
						|
    // because the code that uses this function has no way to cope with
 | 
						|
    // such aliases.
 | 
						|
    if (PSV->isAliased(MFI))
 | 
						|
      return 0;
 | 
						|
 | 
						|
    MayAlias = PSV->mayAlias(MFI);
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isIdentifiedObject(V))
 | 
						|
    return V;
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
 | 
						|
  LoopRegs.Deps.clear();
 | 
						|
  if (MachineLoop *ML = MLI.getLoopFor(BB))
 | 
						|
    if (BB == ML->getLoopLatch())
 | 
						|
      LoopRegs.VisitLoop(ML);
 | 
						|
}
 | 
						|
 | 
						|
/// AddSchedBarrierDeps - Add dependencies from instructions in the current
 | 
						|
/// list of instructions being scheduled to scheduling barrier by adding
 | 
						|
/// the exit SU to the register defs and use list. This is because we want to
 | 
						|
/// make sure instructions which define registers that are either used by
 | 
						|
/// the terminator or are live-out are properly scheduled. This is
 | 
						|
/// especially important when the definition latency of the return value(s)
 | 
						|
/// are too high to be hidden by the branch or when the liveout registers
 | 
						|
/// used by instructions in the fallthrough block.
 | 
						|
void ScheduleDAGInstrs::AddSchedBarrierDeps() {
 | 
						|
  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
 | 
						|
  ExitSU.setInstr(ExitMI);
 | 
						|
  bool AllDepKnown = ExitMI &&
 | 
						|
    (ExitMI->isCall() || ExitMI->isBarrier());
 | 
						|
  if (ExitMI && AllDepKnown) {
 | 
						|
    // If it's a call or a barrier, add dependencies on the defs and uses of
 | 
						|
    // instruction.
 | 
						|
    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
 | 
						|
      const MachineOperand &MO = ExitMI->getOperand(i);
 | 
						|
      if (!MO.isReg() || MO.isDef()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg == 0) continue;
 | 
						|
 | 
						|
      if (TRI->isPhysicalRegister(Reg))
 | 
						|
        Uses[Reg].push_back(&ExitSU);
 | 
						|
      else
 | 
						|
        assert(!IsPostRA && "Virtual register encountered after regalloc.");
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // For others, e.g. fallthrough, conditional branch, assume the exit
 | 
						|
    // uses all the registers that are livein to the successor blocks.
 | 
						|
    SmallSet<unsigned, 8> Seen;
 | 
						|
    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | 
						|
           SE = BB->succ_end(); SI != SE; ++SI)
 | 
						|
      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | 
						|
             E = (*SI)->livein_end(); I != E; ++I) {
 | 
						|
        unsigned Reg = *I;
 | 
						|
        if (Seen.insert(Reg))
 | 
						|
          Uses[Reg].push_back(&ExitSU);
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
 | 
						|
/// this SUnit to following instructions in the same scheduling region that
 | 
						|
/// depend the physical register referenced at OperIdx.
 | 
						|
void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  const MachineInstr *MI = SU->getInstr();
 | 
						|
  const MachineOperand &MO = MI->getOperand(OperIdx);
 | 
						|
  unsigned Reg = MO.getReg();
 | 
						|
 | 
						|
  // Ask the target if address-backscheduling is desirable, and if so how much.
 | 
						|
  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | 
						|
  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
 | 
						|
 | 
						|
  // Optionally add output and anti dependencies. For anti
 | 
						|
  // dependencies we use a latency of 0 because for a multi-issue
 | 
						|
  // target we want to allow the defining instruction to issue
 | 
						|
  // in the same cycle as the using instruction.
 | 
						|
  // TODO: Using a latency of 1 here for output dependencies assumes
 | 
						|
  //       there's no cost for reusing registers.
 | 
						|
  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
 | 
						|
  for (const unsigned *Alias = TRI->getOverlaps(Reg); *Alias; ++Alias) {
 | 
						|
    std::vector<SUnit *> &DefList = Defs[*Alias];
 | 
						|
    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
 | 
						|
      SUnit *DefSU = DefList[i];
 | 
						|
      if (DefSU == &ExitSU)
 | 
						|
        continue;
 | 
						|
      if (DefSU != SU &&
 | 
						|
          (Kind != SDep::Output || !MO.isDead() ||
 | 
						|
           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
 | 
						|
        if (Kind == SDep::Anti)
 | 
						|
          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
 | 
						|
        else {
 | 
						|
          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
 | 
						|
                                                 DefSU->getInstr());
 | 
						|
          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Retrieve the UseList to add data dependencies and update uses.
 | 
						|
  std::vector<SUnit *> &UseList = Uses[Reg];
 | 
						|
  if (MO.isDef()) {
 | 
						|
    // Update DefList. Defs are pushed in the order they are visited and
 | 
						|
    // never reordered.
 | 
						|
    std::vector<SUnit *> &DefList = Defs[Reg];
 | 
						|
 | 
						|
    // Add any data dependencies.
 | 
						|
    unsigned DataLatency = SU->Latency;
 | 
						|
    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
 | 
						|
      SUnit *UseSU = UseList[i];
 | 
						|
      if (UseSU == SU)
 | 
						|
        continue;
 | 
						|
      unsigned LDataLatency = DataLatency;
 | 
						|
      // Optionally add in a special extra latency for nodes that
 | 
						|
      // feed addresses.
 | 
						|
      // TODO: Do this for register aliases too.
 | 
						|
      // TODO: Perhaps we should get rid of
 | 
						|
      // SpecialAddressLatency and just move this into
 | 
						|
      // adjustSchedDependency for the targets that care about it.
 | 
						|
      if (SpecialAddressLatency != 0 && !UnitLatencies &&
 | 
						|
          UseSU != &ExitSU) {
 | 
						|
        MachineInstr *UseMI = UseSU->getInstr();
 | 
						|
        const MCInstrDesc &UseMCID = UseMI->getDesc();
 | 
						|
        int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
 | 
						|
        assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
 | 
						|
        if (RegUseIndex >= 0 &&
 | 
						|
            (UseMI->mayLoad() || UseMI->mayStore()) &&
 | 
						|
            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
 | 
						|
            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
 | 
						|
          LDataLatency += SpecialAddressLatency;
 | 
						|
      }
 | 
						|
      // Adjust the dependence latency using operand def/use
 | 
						|
      // information (if any), and then allow the target to
 | 
						|
      // perform its own adjustments.
 | 
						|
      const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
 | 
						|
      if (!UnitLatencies) {
 | 
						|
        ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
 | 
						|
        ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
 | 
						|
      }
 | 
						|
      UseSU->addPred(dep);
 | 
						|
    }
 | 
						|
    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | 
						|
      std::vector<SUnit *> &UseList = Uses[*Alias];
 | 
						|
      for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
 | 
						|
        SUnit *UseSU = UseList[i];
 | 
						|
        if (UseSU == SU)
 | 
						|
          continue;
 | 
						|
        const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
 | 
						|
        if (!UnitLatencies) {
 | 
						|
          ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
 | 
						|
          ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
 | 
						|
        }
 | 
						|
        UseSU->addPred(dep);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If a def is going to wrap back around to the top of the loop,
 | 
						|
    // backschedule it.
 | 
						|
    if (!UnitLatencies && DefList.empty()) {
 | 
						|
      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
 | 
						|
      if (I != LoopRegs.Deps.end()) {
 | 
						|
        const MachineOperand *UseMO = I->second.first;
 | 
						|
        unsigned Count = I->second.second;
 | 
						|
        const MachineInstr *UseMI = UseMO->getParent();
 | 
						|
        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
 | 
						|
        const MCInstrDesc &UseMCID = UseMI->getDesc();
 | 
						|
        // TODO: If we knew the total depth of the region here, we could
 | 
						|
        // handle the case where the whole loop is inside the region but
 | 
						|
        // is large enough that the isScheduleHigh trick isn't needed.
 | 
						|
        if (UseMOIdx < UseMCID.getNumOperands()) {
 | 
						|
          // Currently, we only support scheduling regions consisting of
 | 
						|
          // single basic blocks. Check to see if the instruction is in
 | 
						|
          // the same region by checking to see if it has the same parent.
 | 
						|
          if (UseMI->getParent() != MI->getParent()) {
 | 
						|
            unsigned Latency = SU->Latency;
 | 
						|
            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
 | 
						|
              Latency += SpecialAddressLatency;
 | 
						|
            // This is a wild guess as to the portion of the latency which
 | 
						|
            // will be overlapped by work done outside the current
 | 
						|
            // scheduling region.
 | 
						|
            Latency -= std::min(Latency, Count);
 | 
						|
            // Add the artificial edge.
 | 
						|
            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
 | 
						|
                                /*Reg=*/0, /*isNormalMemory=*/false,
 | 
						|
                                /*isMustAlias=*/false,
 | 
						|
                                /*isArtificial=*/true));
 | 
						|
          } else if (SpecialAddressLatency > 0 &&
 | 
						|
                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
 | 
						|
            // The entire loop body is within the current scheduling region
 | 
						|
            // and the latency of this operation is assumed to be greater
 | 
						|
            // than the latency of the loop.
 | 
						|
            // TODO: Recursively mark data-edge predecessors as
 | 
						|
            //       isScheduleHigh too.
 | 
						|
            SU->isScheduleHigh = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        LoopRegs.Deps.erase(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    UseList.clear();
 | 
						|
    if (!MO.isDead())
 | 
						|
      DefList.clear();
 | 
						|
 | 
						|
    // Calls will not be reordered because of chain dependencies (see
 | 
						|
    // below). Since call operands are dead, calls may continue to be added
 | 
						|
    // to the DefList making dependence checking quadratic in the size of
 | 
						|
    // the block. Instead, we leave only one call at the back of the
 | 
						|
    // DefList.
 | 
						|
    if (SU->isCall) {
 | 
						|
      while (!DefList.empty() && DefList.back()->isCall)
 | 
						|
        DefList.pop_back();
 | 
						|
    }
 | 
						|
    DefList.push_back(SU);
 | 
						|
  } else {
 | 
						|
    UseList.push_back(SU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// addVRegDefDeps - Add register output and data dependencies from this SUnit
 | 
						|
/// to instructions that occur later in the same scheduling region if they read
 | 
						|
/// from or write to the virtual register defined at OperIdx.
 | 
						|
///
 | 
						|
/// TODO: Hoist loop induction variable increments. This has to be
 | 
						|
/// reevaluated. Generally, IV scheduling should be done before coalescing.
 | 
						|
void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  const MachineInstr *MI = SU->getInstr();
 | 
						|
  unsigned Reg = MI->getOperand(OperIdx).getReg();
 | 
						|
 | 
						|
  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
 | 
						|
 | 
						|
  // Add output dependence to the next nearest def of this vreg.
 | 
						|
  //
 | 
						|
  // Unless this definition is dead, the output dependence should be
 | 
						|
  // transitively redundant with antidependencies from this definition's
 | 
						|
  // uses. We're conservative for now until we have a way to guarantee the uses
 | 
						|
  // are not eliminated sometime during scheduling. The output dependence edge
 | 
						|
  // is also useful if output latency exceeds def-use latency.
 | 
						|
  SUnit *DefSU = VRegDefs[Reg];
 | 
						|
  if (DefSU && DefSU != SU && DefSU != &ExitSU) {
 | 
						|
    unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
 | 
						|
                                                DefSU->getInstr());
 | 
						|
    DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
 | 
						|
  }
 | 
						|
  VRegDefs[Reg] = SU;
 | 
						|
 | 
						|
  // Add data dependence to any uses of this vreg before the next nearest def.
 | 
						|
  //
 | 
						|
  // TODO: Handle ExitSU properly.
 | 
						|
  //
 | 
						|
  // TODO: Data dependence could be handled more efficiently at the use-side.
 | 
						|
  std::vector<SUnit*> &UseList = VRegUses[Reg];
 | 
						|
  for (std::vector<SUnit*>::const_iterator UI = UseList.begin(),
 | 
						|
         UE = UseList.end(); UI != UE; ++UI) {
 | 
						|
    SUnit *UseSU = *UI;
 | 
						|
    if (UseSU == SU) continue;
 | 
						|
 | 
						|
    // TODO: Handle "special" address latencies cleanly.
 | 
						|
    const SDep& dep = SDep(SU, SDep::Data, SU->Latency, Reg);
 | 
						|
    if (!UnitLatencies) {
 | 
						|
      // Adjust the dependence latency using operand def/use information, then
 | 
						|
      // allow the target to perform its own adjustments.
 | 
						|
      ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
 | 
						|
      ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
 | 
						|
    }
 | 
						|
    UseSU->addPred(dep);
 | 
						|
  }
 | 
						|
  UseList.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// addVRegUseDeps - Add register antidependencies from this SUnit to
 | 
						|
/// instructions that occur later in the same scheduling region if they
 | 
						|
/// write the virtual register referenced at OperIdx.
 | 
						|
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  unsigned Reg = SU->getInstr()->getOperand(OperIdx).getReg();
 | 
						|
 | 
						|
  // Add antidependence to the following def of the vreg it uses.
 | 
						|
  SUnit *DefSU = VRegDefs[Reg];
 | 
						|
  if (DefSU && DefSU != SU)
 | 
						|
    DefSU->addPred(SDep(SU, SDep::Anti, 0, Reg));
 | 
						|
 | 
						|
  // Add this SUnit to the use list of the vreg it uses.
 | 
						|
  //
 | 
						|
  // TODO: pinch the DAG before we see too many uses to avoid quadratic
 | 
						|
  // behavior. Limiting the scheduling window can accomplish the same thing.
 | 
						|
  VRegUses[Reg].push_back(SU);
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
 | 
						|
  // We'll be allocating one SUnit for each instruction, plus one for
 | 
						|
  // the region exit node.
 | 
						|
  SUnits.reserve(BB->size());
 | 
						|
 | 
						|
  // We build scheduling units by walking a block's instruction list from bottom
 | 
						|
  // to top.
 | 
						|
 | 
						|
  // Remember where a generic side-effecting instruction is as we procede.
 | 
						|
  SUnit *BarrierChain = 0, *AliasChain = 0;
 | 
						|
 | 
						|
  // Memory references to specific known memory locations are tracked
 | 
						|
  // so that they can be given more precise dependencies. We track
 | 
						|
  // separately the known memory locations that may alias and those
 | 
						|
  // that are known not to alias
 | 
						|
  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
 | 
						|
  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
 | 
						|
 | 
						|
  // Remove any stale debug info; sometimes BuildSchedGraph is called again
 | 
						|
  // without emitting the info from the previous call.
 | 
						|
  DbgValues.clear();
 | 
						|
  FirstDbgValue = NULL;
 | 
						|
 | 
						|
  // Model data dependencies between instructions being scheduled and the
 | 
						|
  // ExitSU.
 | 
						|
  AddSchedBarrierDeps();
 | 
						|
 | 
						|
  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
 | 
						|
    assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
 | 
						|
  }
 | 
						|
 | 
						|
  // Reinitialize the large VReg vectors, while reusing the memory.
 | 
						|
  //
 | 
						|
  // Note: this can be an expensive part of DAG building. We may want to be more
 | 
						|
  // clever. Reevaluate after VRegUses goes away.
 | 
						|
  assert(VRegDefs.size() == 0 && VRegUses.size() == 0 &&
 | 
						|
         "Only BuildSchedGraph should access VRegDefs/Uses");
 | 
						|
  VRegDefs.resize(MF.getRegInfo().getNumVirtRegs());
 | 
						|
  VRegUses.resize(MF.getRegInfo().getNumVirtRegs());
 | 
						|
 | 
						|
  // Walk the list of instructions, from bottom moving up.
 | 
						|
  MachineInstr *PrevMI = NULL;
 | 
						|
  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
 | 
						|
       MII != MIE; --MII) {
 | 
						|
    MachineInstr *MI = prior(MII);
 | 
						|
    if (MI && PrevMI) {
 | 
						|
      DbgValues.push_back(std::make_pair(PrevMI, MI));
 | 
						|
      PrevMI = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (MI->isDebugValue()) {
 | 
						|
      PrevMI = MI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(!MI->isTerminator() && !MI->isLabel() &&
 | 
						|
           "Cannot schedule terminators or labels!");
 | 
						|
    // Create the SUnit for this MI.
 | 
						|
    SUnit *SU = NewSUnit(MI);
 | 
						|
    SU->isCall = MI->isCall();
 | 
						|
    SU->isCommutable = MI->isCommutable();
 | 
						|
 | 
						|
    // Assign the Latency field of SU using target-provided information.
 | 
						|
    if (UnitLatencies)
 | 
						|
      SU->Latency = 1;
 | 
						|
    else
 | 
						|
      ComputeLatency(SU);
 | 
						|
 | 
						|
    // Add register-based dependencies (data, anti, and output).
 | 
						|
    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
 | 
						|
      const MachineOperand &MO = MI->getOperand(j);
 | 
						|
      if (!MO.isReg()) continue;
 | 
						|
      unsigned Reg = MO.getReg();
 | 
						|
      if (Reg == 0) continue;
 | 
						|
 | 
						|
      if (TRI->isPhysicalRegister(Reg))
 | 
						|
        addPhysRegDeps(SU, j);
 | 
						|
      else {
 | 
						|
        assert(!IsPostRA && "Virtual register encountered!");
 | 
						|
        if (MO.isDef())
 | 
						|
          addVRegDefDeps(SU, j);
 | 
						|
        else
 | 
						|
          addVRegUseDeps(SU, j);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Add chain dependencies.
 | 
						|
    // Chain dependencies used to enforce memory order should have
 | 
						|
    // latency of 0 (except for true dependency of Store followed by
 | 
						|
    // aliased Load... we estimate that with a single cycle of latency
 | 
						|
    // assuming the hardware will bypass)
 | 
						|
    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
 | 
						|
    // after stack slots are lowered to actual addresses.
 | 
						|
    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
 | 
						|
    // produce more precise dependence information.
 | 
						|
#define STORE_LOAD_LATENCY 1
 | 
						|
    unsigned TrueMemOrderLatency = 0;
 | 
						|
    if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
 | 
						|
        (MI->hasVolatileMemoryRef() &&
 | 
						|
         (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
 | 
						|
      // Be conservative with these and add dependencies on all memory
 | 
						|
      // references, even those that are known to not alias.
 | 
						|
      for (std::map<const Value *, SUnit *>::iterator I =
 | 
						|
             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
 | 
						|
        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
      }
 | 
						|
      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
 | 
						|
             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
 | 
						|
        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | 
						|
          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | 
						|
      }
 | 
						|
      NonAliasMemDefs.clear();
 | 
						|
      NonAliasMemUses.clear();
 | 
						|
      // Add SU to the barrier chain.
 | 
						|
      if (BarrierChain)
 | 
						|
        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
      BarrierChain = SU;
 | 
						|
 | 
						|
      // fall-through
 | 
						|
    new_alias_chain:
 | 
						|
      // Chain all possibly aliasing memory references though SU.
 | 
						|
      if (AliasChain)
 | 
						|
        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
      AliasChain = SU;
 | 
						|
      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | 
						|
        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | 
						|
      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
 | 
						|
           E = AliasMemDefs.end(); I != E; ++I) {
 | 
						|
        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
      }
 | 
						|
      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
 | 
						|
           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
 | 
						|
        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
 | 
						|
          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | 
						|
      }
 | 
						|
      PendingLoads.clear();
 | 
						|
      AliasMemDefs.clear();
 | 
						|
      AliasMemUses.clear();
 | 
						|
    } else if (MI->mayStore()) {
 | 
						|
      bool MayAlias = true;
 | 
						|
      TrueMemOrderLatency = STORE_LOAD_LATENCY;
 | 
						|
      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
 | 
						|
        // A store to a specific PseudoSourceValue. Add precise dependencies.
 | 
						|
        // Record the def in MemDefs, first adding a dep if there is
 | 
						|
        // an existing def.
 | 
						|
        std::map<const Value *, SUnit *>::iterator I =
 | 
						|
          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | 
						|
        std::map<const Value *, SUnit *>::iterator IE =
 | 
						|
          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | 
						|
        if (I != IE) {
 | 
						|
          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
 | 
						|
                                  /*isNormalMemory=*/true));
 | 
						|
          I->second = SU;
 | 
						|
        } else {
 | 
						|
          if (MayAlias)
 | 
						|
            AliasMemDefs[V] = SU;
 | 
						|
          else
 | 
						|
            NonAliasMemDefs[V] = SU;
 | 
						|
        }
 | 
						|
        // Handle the uses in MemUses, if there are any.
 | 
						|
        std::map<const Value *, std::vector<SUnit *> >::iterator J =
 | 
						|
          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
 | 
						|
        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
 | 
						|
          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
 | 
						|
        if (J != JE) {
 | 
						|
          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
 | 
						|
            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
 | 
						|
                                       /*Reg=*/0, /*isNormalMemory=*/true));
 | 
						|
          J->second.clear();
 | 
						|
        }
 | 
						|
        if (MayAlias) {
 | 
						|
          // Add dependencies from all the PendingLoads, i.e. loads
 | 
						|
          // with no underlying object.
 | 
						|
          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
 | 
						|
            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
 | 
						|
          // Add dependence on alias chain, if needed.
 | 
						|
          if (AliasChain)
 | 
						|
            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
        }
 | 
						|
        // Add dependence on barrier chain, if needed.
 | 
						|
        if (BarrierChain)
 | 
						|
          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
      } else {
 | 
						|
        // Treat all other stores conservatively.
 | 
						|
        goto new_alias_chain;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!ExitSU.isPred(SU))
 | 
						|
        // Push store's up a bit to avoid them getting in between cmp
 | 
						|
        // and branches.
 | 
						|
        ExitSU.addPred(SDep(SU, SDep::Order, 0,
 | 
						|
                            /*Reg=*/0, /*isNormalMemory=*/false,
 | 
						|
                            /*isMustAlias=*/false,
 | 
						|
                            /*isArtificial=*/true));
 | 
						|
    } else if (MI->mayLoad()) {
 | 
						|
      bool MayAlias = true;
 | 
						|
      TrueMemOrderLatency = 0;
 | 
						|
      if (MI->isInvariantLoad(AA)) {
 | 
						|
        // Invariant load, no chain dependencies needed!
 | 
						|
      } else {
 | 
						|
        if (const Value *V =
 | 
						|
            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
 | 
						|
          // A load from a specific PseudoSourceValue. Add precise dependencies.
 | 
						|
          std::map<const Value *, SUnit *>::iterator I =
 | 
						|
            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
 | 
						|
          std::map<const Value *, SUnit *>::iterator IE =
 | 
						|
            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
 | 
						|
          if (I != IE)
 | 
						|
            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
 | 
						|
                                    /*isNormalMemory=*/true));
 | 
						|
          if (MayAlias)
 | 
						|
            AliasMemUses[V].push_back(SU);
 | 
						|
          else
 | 
						|
            NonAliasMemUses[V].push_back(SU);
 | 
						|
        } else {
 | 
						|
          // A load with no underlying object. Depend on all
 | 
						|
          // potentially aliasing stores.
 | 
						|
          for (std::map<const Value *, SUnit *>::iterator I =
 | 
						|
                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
 | 
						|
            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
 | 
						|
          PendingLoads.push_back(SU);
 | 
						|
          MayAlias = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // Add dependencies on alias and barrier chains, if needed.
 | 
						|
        if (MayAlias && AliasChain)
 | 
						|
          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
        if (BarrierChain)
 | 
						|
          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (PrevMI)
 | 
						|
    FirstDbgValue = PrevMI;
 | 
						|
 | 
						|
  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
 | 
						|
    Defs[i].clear();
 | 
						|
    Uses[i].clear();
 | 
						|
  }
 | 
						|
  VRegDefs.clear();
 | 
						|
  VRegUses.clear();
 | 
						|
  PendingLoads.clear();
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::FinishBlock() {
 | 
						|
  // Nothing to do.
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
 | 
						|
  // Compute the latency for the node.
 | 
						|
  if (!InstrItins || InstrItins->isEmpty()) {
 | 
						|
    SU->Latency = 1;
 | 
						|
 | 
						|
    // Simplistic target-independent heuristic: assume that loads take
 | 
						|
    // extra time.
 | 
						|
    if (SU->getInstr()->mayLoad())
 | 
						|
      SU->Latency += 2;
 | 
						|
  } else {
 | 
						|
    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
 | 
						|
                                              SDep& dep) const {
 | 
						|
  if (!InstrItins || InstrItins->isEmpty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // For a data dependency with a known register...
 | 
						|
  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
 | 
						|
    return;
 | 
						|
 | 
						|
  const unsigned Reg = dep.getReg();
 | 
						|
 | 
						|
  // ... find the definition of the register in the defining
 | 
						|
  // instruction
 | 
						|
  MachineInstr *DefMI = Def->getInstr();
 | 
						|
  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
 | 
						|
  if (DefIdx != -1) {
 | 
						|
    const MachineOperand &MO = DefMI->getOperand(DefIdx);
 | 
						|
    if (MO.isReg() && MO.isImplicit() &&
 | 
						|
        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
 | 
						|
      // This is an implicit def, getOperandLatency() won't return the correct
 | 
						|
      // latency. e.g.
 | 
						|
      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
 | 
						|
      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
 | 
						|
      // What we want is to compute latency between def of %D6/%D7 and use of
 | 
						|
      // %Q3 instead.
 | 
						|
      DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
 | 
						|
    }
 | 
						|
    MachineInstr *UseMI = Use->getInstr();
 | 
						|
    // For all uses of the register, calculate the maxmimum latency
 | 
						|
    int Latency = -1;
 | 
						|
    if (UseMI) {
 | 
						|
      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
 | 
						|
        const MachineOperand &MO = UseMI->getOperand(i);
 | 
						|
        if (!MO.isReg() || !MO.isUse())
 | 
						|
          continue;
 | 
						|
        unsigned MOReg = MO.getReg();
 | 
						|
        if (MOReg != Reg)
 | 
						|
          continue;
 | 
						|
 | 
						|
        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
 | 
						|
                                              UseMI, i);
 | 
						|
        Latency = std::max(Latency, UseCycle);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // UseMI is null, then it must be a scheduling barrier.
 | 
						|
      if (!InstrItins || InstrItins->isEmpty())
 | 
						|
        return;
 | 
						|
      unsigned DefClass = DefMI->getDesc().getSchedClass();
 | 
						|
      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we found a latency, then replace the existing dependence latency.
 | 
						|
    if (Latency >= 0)
 | 
						|
      dep.setLatency(Latency);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
 | 
						|
  SU->getInstr()->dump();
 | 
						|
}
 | 
						|
 | 
						|
std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
 | 
						|
  std::string s;
 | 
						|
  raw_string_ostream oss(s);
 | 
						|
  if (SU == &EntrySU)
 | 
						|
    oss << "<entry>";
 | 
						|
  else if (SU == &ExitSU)
 | 
						|
    oss << "<exit>";
 | 
						|
  else
 | 
						|
    SU->getInstr()->print(oss);
 | 
						|
  return oss.str();
 | 
						|
}
 | 
						|
 | 
						|
// EmitSchedule - Emit the machine code in scheduled order.
 | 
						|
MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
 | 
						|
  Begin = InsertPos;
 | 
						|
 | 
						|
  // If first instruction was a DBG_VALUE then put it back.
 | 
						|
  if (FirstDbgValue)
 | 
						|
    BB->splice(InsertPos, BB, FirstDbgValue);
 | 
						|
 | 
						|
  // Then re-insert them according to the given schedule.
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | 
						|
    if (SUnit *SU = Sequence[i])
 | 
						|
      BB->splice(InsertPos, BB, SU->getInstr());
 | 
						|
    else
 | 
						|
      // Null SUnit* is a noop.
 | 
						|
      EmitNoop();
 | 
						|
 | 
						|
    // Update the Begin iterator, as the first instruction in the block
 | 
						|
    // may have been scheduled later.
 | 
						|
    if (i == 0)
 | 
						|
      Begin = prior(InsertPos);
 | 
						|
  }
 | 
						|
 | 
						|
  // Reinsert any remaining debug_values.
 | 
						|
  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
 | 
						|
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
 | 
						|
    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
 | 
						|
    MachineInstr *DbgValue = P.first;
 | 
						|
    MachineBasicBlock::iterator OrigPrivMI = P.second;
 | 
						|
    BB->splice(++OrigPrivMI, BB, DbgValue);
 | 
						|
  }
 | 
						|
  DbgValues.clear();
 | 
						|
  FirstDbgValue = NULL;
 | 
						|
  return BB;
 | 
						|
}
 |