mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
aad4ea476e
If we load from a location with range metadata, we can use information about the ranges of the loaded value for optimization purposes. This helps to remove redundant checks and canonicalize checks for other optimization passes. This particular patch checks whether a value is known to be non-zero from the range metadata. Currently, these tests are against InstCombine. In theory, all of these should be InstSimplify since we're not inserting any new instructions. Moving the code may follow in a separate change. Reviewed by: Hal Differential Revision: http://reviews.llvm.org/D5947 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220925 91177308-0d34-0410-b5e6-96231b3b80d8
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//