mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-26 23:32:58 +00:00
7023b85187
We should be talking about the number of source elements, not the number of destination elements, given we know at this point that the source and dest element numbers are not the same. While we're at it, avoid writing to std::vector::end()... Bug found with random testing and a lot of coffee. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220051 91177308-0d34-0410-b5e6-96231b3b80d8
8845 lines
340 KiB
C++
8845 lines
340 KiB
C++
//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the AArch64TargetLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64ISelLowering.h"
|
|
#include "AArch64MachineFunctionInfo.h"
|
|
#include "AArch64PerfectShuffle.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "AArch64TargetMachine.h"
|
|
#include "AArch64TargetObjectFile.h"
|
|
#include "MCTargetDesc/AArch64AddressingModes.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "aarch64-lower"
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
STATISTIC(NumShiftInserts, "Number of vector shift inserts");
|
|
|
|
namespace {
|
|
enum AlignMode {
|
|
StrictAlign,
|
|
NoStrictAlign
|
|
};
|
|
}
|
|
|
|
static cl::opt<AlignMode>
|
|
Align(cl::desc("Load/store alignment support"),
|
|
cl::Hidden, cl::init(NoStrictAlign),
|
|
cl::values(
|
|
clEnumValN(StrictAlign, "aarch64-strict-align",
|
|
"Disallow all unaligned memory accesses"),
|
|
clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
|
|
"Allow unaligned memory accesses"),
|
|
clEnumValEnd));
|
|
|
|
// Place holder until extr generation is tested fully.
|
|
static cl::opt<bool>
|
|
EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
|
|
cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
|
|
cl::desc("Allow AArch64 SLI/SRI formation"),
|
|
cl::init(false));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 Lowering public interface.
|
|
//===----------------------------------------------------------------------===//
|
|
static TargetLoweringObjectFile *createTLOF(const Triple &TT) {
|
|
if (TT.isOSBinFormatMachO())
|
|
return new AArch64_MachoTargetObjectFile();
|
|
|
|
return new AArch64_ELFTargetObjectFile();
|
|
}
|
|
|
|
AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM)
|
|
: TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) {
|
|
Subtarget = &TM.getSubtarget<AArch64Subtarget>();
|
|
|
|
// AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
|
|
// we have to make something up. Arbitrarily, choose ZeroOrOne.
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
// When comparing vectors the result sets the different elements in the
|
|
// vector to all-one or all-zero.
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
|
|
addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
|
|
|
|
if (Subtarget->hasFPARMv8()) {
|
|
addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
|
|
addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
|
|
addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
|
|
addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
|
|
}
|
|
|
|
if (Subtarget->hasNEON()) {
|
|
addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
|
|
addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
|
|
// Someone set us up the NEON.
|
|
addDRTypeForNEON(MVT::v2f32);
|
|
addDRTypeForNEON(MVT::v8i8);
|
|
addDRTypeForNEON(MVT::v4i16);
|
|
addDRTypeForNEON(MVT::v2i32);
|
|
addDRTypeForNEON(MVT::v1i64);
|
|
addDRTypeForNEON(MVT::v1f64);
|
|
addDRTypeForNEON(MVT::v4f16);
|
|
|
|
addQRTypeForNEON(MVT::v4f32);
|
|
addQRTypeForNEON(MVT::v2f64);
|
|
addQRTypeForNEON(MVT::v16i8);
|
|
addQRTypeForNEON(MVT::v8i16);
|
|
addQRTypeForNEON(MVT::v4i32);
|
|
addQRTypeForNEON(MVT::v2i64);
|
|
addQRTypeForNEON(MVT::v8f16);
|
|
}
|
|
|
|
// Compute derived properties from the register classes
|
|
computeRegisterProperties();
|
|
|
|
// Provide all sorts of operation actions
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::i64, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f64, Custom);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::FREM, MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f80, Expand);
|
|
|
|
// Custom lowering hooks are needed for XOR
|
|
// to fold it into CSINC/CSINV.
|
|
setOperationAction(ISD::XOR, MVT::i32, Custom);
|
|
setOperationAction(ISD::XOR, MVT::i64, Custom);
|
|
|
|
// Virtually no operation on f128 is legal, but LLVM can't expand them when
|
|
// there's a valid register class, so we need custom operations in most cases.
|
|
setOperationAction(ISD::FABS, MVT::f128, Expand);
|
|
setOperationAction(ISD::FADD, MVT::f128, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f128, Expand);
|
|
setOperationAction(ISD::FDIV, MVT::f128, Custom);
|
|
setOperationAction(ISD::FMA, MVT::f128, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::f128, Custom);
|
|
setOperationAction(ISD::FNEG, MVT::f128, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f128, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f128, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::f128, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::f128, Custom);
|
|
setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::f128, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f128, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f128, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
|
|
|
|
// Lowering for many of the conversions is actually specified by the non-f128
|
|
// type. The LowerXXX function will be trivial when f128 isn't involved.
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
|
|
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
|
|
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
|
|
|
|
// Variable arguments.
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Custom);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
// Variable-sized objects.
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
|
|
|
|
// Exception handling.
|
|
// FIXME: These are guesses. Has this been defined yet?
|
|
setExceptionPointerRegister(AArch64::X0);
|
|
setExceptionSelectorRegister(AArch64::X1);
|
|
|
|
// Constant pool entries
|
|
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
|
|
|
|
// BlockAddress
|
|
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
|
|
|
|
// Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
|
|
setOperationAction(ISD::ADDC, MVT::i32, Custom);
|
|
setOperationAction(ISD::ADDE, MVT::i32, Custom);
|
|
setOperationAction(ISD::SUBC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SUBE, MVT::i32, Custom);
|
|
setOperationAction(ISD::ADDC, MVT::i64, Custom);
|
|
setOperationAction(ISD::ADDE, MVT::i64, Custom);
|
|
setOperationAction(ISD::SUBC, MVT::i64, Custom);
|
|
setOperationAction(ISD::SUBE, MVT::i64, Custom);
|
|
|
|
// AArch64 lacks both left-rotate and popcount instructions.
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i64, Expand);
|
|
|
|
// AArch64 doesn't have {U|S}MUL_LOHI.
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
|
|
|
|
|
|
// Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
|
|
// counterparts, which AArch64 supports directly.
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
|
|
|
// Custom lower Add/Sub/Mul with overflow.
|
|
setOperationAction(ISD::SADDO, MVT::i32, Custom);
|
|
setOperationAction(ISD::SADDO, MVT::i64, Custom);
|
|
setOperationAction(ISD::UADDO, MVT::i32, Custom);
|
|
setOperationAction(ISD::UADDO, MVT::i64, Custom);
|
|
setOperationAction(ISD::SSUBO, MVT::i32, Custom);
|
|
setOperationAction(ISD::SSUBO, MVT::i64, Custom);
|
|
setOperationAction(ISD::USUBO, MVT::i32, Custom);
|
|
setOperationAction(ISD::USUBO, MVT::i64, Custom);
|
|
setOperationAction(ISD::SMULO, MVT::i32, Custom);
|
|
setOperationAction(ISD::SMULO, MVT::i64, Custom);
|
|
setOperationAction(ISD::UMULO, MVT::i32, Custom);
|
|
setOperationAction(ISD::UMULO, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::FSIN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
|
|
// f16 is storage-only, so we promote operations to f32 if we know this is
|
|
// valid, and ignore them otherwise. The operations not mentioned here will
|
|
// fail to select, but this is not a major problem as no source language
|
|
// should be emitting native f16 operations yet.
|
|
setOperationAction(ISD::FADD, MVT::f16, Promote);
|
|
setOperationAction(ISD::FDIV, MVT::f16, Promote);
|
|
setOperationAction(ISD::FMUL, MVT::f16, Promote);
|
|
setOperationAction(ISD::FSUB, MVT::f16, Promote);
|
|
|
|
// v4f16 is also a storage-only type, so promote it to v4f32 when that is
|
|
// known to be safe.
|
|
setOperationAction(ISD::FADD, MVT::v4f16, Promote);
|
|
setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
|
|
setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
|
|
setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
|
|
setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
|
|
AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
|
|
AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
|
|
AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
|
|
AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
|
|
AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
|
|
AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
|
|
|
|
// Expand all other v4f16 operations.
|
|
// FIXME: We could generate better code by promoting some operations to
|
|
// a pair of v4f32s
|
|
setOperationAction(ISD::FABS, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FMA, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
|
|
|
|
|
|
// v8f16 is also a storage-only type, so expand it.
|
|
setOperationAction(ISD::FABS, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FADD, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FMA, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
|
|
|
|
// AArch64 has implementations of a lot of rounding-like FP operations.
|
|
static MVT RoundingTypes[] = { MVT::f32, MVT::f64};
|
|
for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) {
|
|
MVT Ty = RoundingTypes[I];
|
|
setOperationAction(ISD::FFLOOR, Ty, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
|
|
setOperationAction(ISD::FCEIL, Ty, Legal);
|
|
setOperationAction(ISD::FRINT, Ty, Legal);
|
|
setOperationAction(ISD::FTRUNC, Ty, Legal);
|
|
setOperationAction(ISD::FROUND, Ty, Legal);
|
|
}
|
|
|
|
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
|
|
|
|
if (Subtarget->isTargetMachO()) {
|
|
// For iOS, we don't want to the normal expansion of a libcall to
|
|
// sincos. We want to issue a libcall to __sincos_stret to avoid memory
|
|
// traffic.
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
|
|
} else {
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
}
|
|
|
|
// AArch64 does not have floating-point extending loads, i1 sign-extending
|
|
// load, floating-point truncating stores, or v2i32->v2i16 truncating store.
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
|
|
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f80, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
|
|
setTruncStoreAction(MVT::f128, MVT::f16, Expand);
|
|
|
|
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
|
|
setOperationAction(ISD::BITCAST, MVT::f16, Custom);
|
|
|
|
// Indexed loads and stores are supported.
|
|
for (unsigned im = (unsigned)ISD::PRE_INC;
|
|
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
|
|
setIndexedLoadAction(im, MVT::i8, Legal);
|
|
setIndexedLoadAction(im, MVT::i16, Legal);
|
|
setIndexedLoadAction(im, MVT::i32, Legal);
|
|
setIndexedLoadAction(im, MVT::i64, Legal);
|
|
setIndexedLoadAction(im, MVT::f64, Legal);
|
|
setIndexedLoadAction(im, MVT::f32, Legal);
|
|
setIndexedStoreAction(im, MVT::i8, Legal);
|
|
setIndexedStoreAction(im, MVT::i16, Legal);
|
|
setIndexedStoreAction(im, MVT::i32, Legal);
|
|
setIndexedStoreAction(im, MVT::i64, Legal);
|
|
setIndexedStoreAction(im, MVT::f64, Legal);
|
|
setIndexedStoreAction(im, MVT::f32, Legal);
|
|
}
|
|
|
|
// Trap.
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
// We combine OR nodes for bitfield operations.
|
|
setTargetDAGCombine(ISD::OR);
|
|
|
|
// Vector add and sub nodes may conceal a high-half opportunity.
|
|
// Also, try to fold ADD into CSINC/CSINV..
|
|
setTargetDAGCombine(ISD::ADD);
|
|
setTargetDAGCombine(ISD::SUB);
|
|
|
|
setTargetDAGCombine(ISD::XOR);
|
|
setTargetDAGCombine(ISD::SINT_TO_FP);
|
|
setTargetDAGCombine(ISD::UINT_TO_FP);
|
|
|
|
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
|
|
|
|
setTargetDAGCombine(ISD::ANY_EXTEND);
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
|
setTargetDAGCombine(ISD::BITCAST);
|
|
setTargetDAGCombine(ISD::CONCAT_VECTORS);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
|
|
setTargetDAGCombine(ISD::MUL);
|
|
|
|
setTargetDAGCombine(ISD::SELECT);
|
|
setTargetDAGCombine(ISD::VSELECT);
|
|
|
|
setTargetDAGCombine(ISD::INTRINSIC_VOID);
|
|
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
|
|
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
|
|
|
|
MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
|
|
MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
|
|
MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
|
|
|
|
setStackPointerRegisterToSaveRestore(AArch64::SP);
|
|
|
|
setSchedulingPreference(Sched::Hybrid);
|
|
|
|
// Enable TBZ/TBNZ
|
|
MaskAndBranchFoldingIsLegal = true;
|
|
|
|
setMinFunctionAlignment(2);
|
|
|
|
RequireStrictAlign = (Align == StrictAlign);
|
|
|
|
setHasExtractBitsInsn(true);
|
|
|
|
if (Subtarget->hasNEON()) {
|
|
// FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
|
|
// silliness like this:
|
|
setOperationAction(ISD::FABS, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FADD, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FMA, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
|
|
|
|
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
|
|
|
|
// AArch64 doesn't have a direct vector ->f32 conversion instructions for
|
|
// elements smaller than i32, so promote the input to i32 first.
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
|
|
// Similarly, there is no direct i32 -> f64 vector conversion instruction.
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
|
|
|
|
// AArch64 doesn't have MUL.2d:
|
|
setOperationAction(ISD::MUL, MVT::v2i64, Expand);
|
|
// Custom handling for some quad-vector types to detect MULL.
|
|
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
|
|
|
|
setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
|
|
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
|
|
// Likewise, narrowing and extending vector loads/stores aren't handled
|
|
// directly.
|
|
for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
|
|
Expand);
|
|
|
|
setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
|
|
|
|
setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
|
|
|
|
for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
|
|
setTruncStoreAction((MVT::SimpleValueType)VT,
|
|
(MVT::SimpleValueType)InnerVT, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
|
|
}
|
|
|
|
// AArch64 has implementations of a lot of rounding-like FP operations.
|
|
static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 };
|
|
for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) {
|
|
MVT Ty = RoundingVecTypes[I];
|
|
setOperationAction(ISD::FFLOOR, Ty, Legal);
|
|
setOperationAction(ISD::FNEARBYINT, Ty, Legal);
|
|
setOperationAction(ISD::FCEIL, Ty, Legal);
|
|
setOperationAction(ISD::FRINT, Ty, Legal);
|
|
setOperationAction(ISD::FTRUNC, Ty, Legal);
|
|
setOperationAction(ISD::FROUND, Ty, Legal);
|
|
}
|
|
}
|
|
|
|
// Prefer likely predicted branches to selects on out-of-order cores.
|
|
if (Subtarget->isCortexA57())
|
|
PredictableSelectIsExpensive = true;
|
|
}
|
|
|
|
void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
|
|
if (VT == MVT::v2f32 || VT == MVT::v4f16) {
|
|
setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
|
|
AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
|
|
|
|
setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
|
|
AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
|
|
} else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
|
|
setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
|
|
AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
|
|
|
|
setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
|
|
AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
|
|
}
|
|
|
|
// Mark vector float intrinsics as expand.
|
|
if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
|
|
setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
|
|
|
|
setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
|
|
|
|
// CNT supports only B element sizes.
|
|
if (VT != MVT::v8i8 && VT != MVT::v16i8)
|
|
setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
|
|
|
|
setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
|
|
setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
|
|
|
|
setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
|
|
|
|
if (Subtarget->isLittleEndian()) {
|
|
for (unsigned im = (unsigned)ISD::PRE_INC;
|
|
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
|
|
setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
|
|
setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
|
|
addRegisterClass(VT, &AArch64::FPR64RegClass);
|
|
addTypeForNEON(VT, MVT::v2i32);
|
|
}
|
|
|
|
void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
|
|
addRegisterClass(VT, &AArch64::FPR128RegClass);
|
|
addTypeForNEON(VT, MVT::v4i32);
|
|
}
|
|
|
|
EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
|
|
if (!VT.isVector())
|
|
return MVT::i32;
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
/// computeKnownBitsForTargetNode - Determine which of the bits specified in
|
|
/// Mask are known to be either zero or one and return them in the
|
|
/// KnownZero/KnownOne bitsets.
|
|
void AArch64TargetLowering::computeKnownBitsForTargetNode(
|
|
const SDValue Op, APInt &KnownZero, APInt &KnownOne,
|
|
const SelectionDAG &DAG, unsigned Depth) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
break;
|
|
case AArch64ISD::CSEL: {
|
|
APInt KnownZero2, KnownOne2;
|
|
DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
|
|
DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
|
|
KnownZero &= KnownZero2;
|
|
KnownOne &= KnownOne2;
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
|
|
Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
|
|
switch (IntID) {
|
|
default: return;
|
|
case Intrinsic::aarch64_ldaxr:
|
|
case Intrinsic::aarch64_ldxr: {
|
|
unsigned BitWidth = KnownOne.getBitWidth();
|
|
EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
|
|
unsigned MemBits = VT.getScalarType().getSizeInBits();
|
|
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
|
|
return;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
case ISD::INTRINSIC_VOID: {
|
|
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_neon_umaxv:
|
|
case Intrinsic::aarch64_neon_uminv: {
|
|
// Figure out the datatype of the vector operand. The UMINV instruction
|
|
// will zero extend the result, so we can mark as known zero all the
|
|
// bits larger than the element datatype. 32-bit or larget doesn't need
|
|
// this as those are legal types and will be handled by isel directly.
|
|
MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
|
|
unsigned BitWidth = KnownZero.getBitWidth();
|
|
if (VT == MVT::v8i8 || VT == MVT::v16i8) {
|
|
assert(BitWidth >= 8 && "Unexpected width!");
|
|
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
|
|
KnownZero |= Mask;
|
|
} else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
|
|
assert(BitWidth >= 16 && "Unexpected width!");
|
|
APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
|
|
KnownZero |= Mask;
|
|
}
|
|
break;
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
|
|
return MVT::i64;
|
|
}
|
|
|
|
unsigned AArch64TargetLowering::getMaximalGlobalOffset() const {
|
|
// FIXME: On AArch64, this depends on the type.
|
|
// Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
|
|
// and the offset has to be a multiple of the related size in bytes.
|
|
return 4095;
|
|
}
|
|
|
|
FastISel *
|
|
AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) const {
|
|
return AArch64::createFastISel(funcInfo, libInfo);
|
|
}
|
|
|
|
const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default:
|
|
return nullptr;
|
|
case AArch64ISD::CALL: return "AArch64ISD::CALL";
|
|
case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
|
|
case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
|
|
case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
|
|
case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
|
|
case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
|
|
case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
|
|
case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
|
|
case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
|
|
case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
|
|
case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
|
|
case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
|
|
case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL";
|
|
case AArch64ISD::ADC: return "AArch64ISD::ADC";
|
|
case AArch64ISD::SBC: return "AArch64ISD::SBC";
|
|
case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
|
|
case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
|
|
case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
|
|
case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
|
|
case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
|
|
case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
|
|
case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
|
|
case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
|
|
case AArch64ISD::DUP: return "AArch64ISD::DUP";
|
|
case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
|
|
case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
|
|
case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
|
|
case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
|
|
case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
|
|
case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
|
|
case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
|
|
case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
|
|
case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
|
|
case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
|
|
case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
|
|
case AArch64ISD::BICi: return "AArch64ISD::BICi";
|
|
case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
|
|
case AArch64ISD::BSL: return "AArch64ISD::BSL";
|
|
case AArch64ISD::NEG: return "AArch64ISD::NEG";
|
|
case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
|
|
case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
|
|
case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
|
|
case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
|
|
case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
|
|
case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
|
|
case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
|
|
case AArch64ISD::REV16: return "AArch64ISD::REV16";
|
|
case AArch64ISD::REV32: return "AArch64ISD::REV32";
|
|
case AArch64ISD::REV64: return "AArch64ISD::REV64";
|
|
case AArch64ISD::EXT: return "AArch64ISD::EXT";
|
|
case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
|
|
case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
|
|
case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
|
|
case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
|
|
case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
|
|
case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
|
|
case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
|
|
case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
|
|
case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
|
|
case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
|
|
case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
|
|
case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
|
|
case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
|
|
case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
|
|
case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
|
|
case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
|
|
case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
|
|
case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
|
|
case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
|
|
case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
|
|
case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
|
|
case AArch64ISD::NOT: return "AArch64ISD::NOT";
|
|
case AArch64ISD::BIT: return "AArch64ISD::BIT";
|
|
case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
|
|
case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
|
|
case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
|
|
case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
|
|
case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
|
|
case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
|
|
case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
|
|
case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
|
|
case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
|
|
case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
|
|
case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
|
|
case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
|
|
case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
|
|
case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
|
|
case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
|
|
case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
|
|
case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
|
|
case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
|
|
case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
|
|
case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
|
|
case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
|
|
case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
|
|
case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
|
|
case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
|
|
case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
|
|
case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
|
|
case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
|
|
case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
|
|
case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
|
|
case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
|
|
case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
|
|
case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
|
|
case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
|
|
case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
|
|
case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
|
|
case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
|
|
case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
|
|
case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
|
|
case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
// We materialise the F128CSEL pseudo-instruction as some control flow and a
|
|
// phi node:
|
|
|
|
// OrigBB:
|
|
// [... previous instrs leading to comparison ...]
|
|
// b.ne TrueBB
|
|
// b EndBB
|
|
// TrueBB:
|
|
// ; Fallthrough
|
|
// EndBB:
|
|
// Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
|
|
|
|
const TargetInstrInfo *TII =
|
|
getTargetMachine().getSubtargetImpl()->getInstrInfo();
|
|
MachineFunction *MF = MBB->getParent();
|
|
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
MachineFunction::iterator It = MBB;
|
|
++It;
|
|
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
unsigned IfTrueReg = MI->getOperand(1).getReg();
|
|
unsigned IfFalseReg = MI->getOperand(2).getReg();
|
|
unsigned CondCode = MI->getOperand(3).getImm();
|
|
bool NZCVKilled = MI->getOperand(4).isKill();
|
|
|
|
MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, TrueBB);
|
|
MF->insert(It, EndBB);
|
|
|
|
// Transfer rest of current basic-block to EndBB
|
|
EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
|
|
MBB->end());
|
|
EndBB->transferSuccessorsAndUpdatePHIs(MBB);
|
|
|
|
BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
|
|
BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
|
|
MBB->addSuccessor(TrueBB);
|
|
MBB->addSuccessor(EndBB);
|
|
|
|
// TrueBB falls through to the end.
|
|
TrueBB->addSuccessor(EndBB);
|
|
|
|
if (!NZCVKilled) {
|
|
TrueBB->addLiveIn(AArch64::NZCV);
|
|
EndBB->addLiveIn(AArch64::NZCV);
|
|
}
|
|
|
|
BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
|
|
.addReg(IfTrueReg)
|
|
.addMBB(TrueBB)
|
|
.addReg(IfFalseReg)
|
|
.addMBB(MBB);
|
|
|
|
MI->eraseFromParent();
|
|
return EndBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
#ifndef NDEBUG
|
|
MI->dump();
|
|
#endif
|
|
llvm_unreachable("Unexpected instruction for custom inserter!");
|
|
|
|
case AArch64::F128CSEL:
|
|
return EmitF128CSEL(MI, BB);
|
|
|
|
case TargetOpcode::STACKMAP:
|
|
case TargetOpcode::PATCHPOINT:
|
|
return emitPatchPoint(MI, BB);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 Lowering private implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
|
|
/// CC
|
|
static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unknown condition code!");
|
|
case ISD::SETNE:
|
|
return AArch64CC::NE;
|
|
case ISD::SETEQ:
|
|
return AArch64CC::EQ;
|
|
case ISD::SETGT:
|
|
return AArch64CC::GT;
|
|
case ISD::SETGE:
|
|
return AArch64CC::GE;
|
|
case ISD::SETLT:
|
|
return AArch64CC::LT;
|
|
case ISD::SETLE:
|
|
return AArch64CC::LE;
|
|
case ISD::SETUGT:
|
|
return AArch64CC::HI;
|
|
case ISD::SETUGE:
|
|
return AArch64CC::HS;
|
|
case ISD::SETULT:
|
|
return AArch64CC::LO;
|
|
case ISD::SETULE:
|
|
return AArch64CC::LS;
|
|
}
|
|
}
|
|
|
|
/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
|
|
static void changeFPCCToAArch64CC(ISD::CondCode CC,
|
|
AArch64CC::CondCode &CondCode,
|
|
AArch64CC::CondCode &CondCode2) {
|
|
CondCode2 = AArch64CC::AL;
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unknown FP condition!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ:
|
|
CondCode = AArch64CC::EQ;
|
|
break;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT:
|
|
CondCode = AArch64CC::GT;
|
|
break;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE:
|
|
CondCode = AArch64CC::GE;
|
|
break;
|
|
case ISD::SETOLT:
|
|
CondCode = AArch64CC::MI;
|
|
break;
|
|
case ISD::SETOLE:
|
|
CondCode = AArch64CC::LS;
|
|
break;
|
|
case ISD::SETONE:
|
|
CondCode = AArch64CC::MI;
|
|
CondCode2 = AArch64CC::GT;
|
|
break;
|
|
case ISD::SETO:
|
|
CondCode = AArch64CC::VC;
|
|
break;
|
|
case ISD::SETUO:
|
|
CondCode = AArch64CC::VS;
|
|
break;
|
|
case ISD::SETUEQ:
|
|
CondCode = AArch64CC::EQ;
|
|
CondCode2 = AArch64CC::VS;
|
|
break;
|
|
case ISD::SETUGT:
|
|
CondCode = AArch64CC::HI;
|
|
break;
|
|
case ISD::SETUGE:
|
|
CondCode = AArch64CC::PL;
|
|
break;
|
|
case ISD::SETLT:
|
|
case ISD::SETULT:
|
|
CondCode = AArch64CC::LT;
|
|
break;
|
|
case ISD::SETLE:
|
|
case ISD::SETULE:
|
|
CondCode = AArch64CC::LE;
|
|
break;
|
|
case ISD::SETNE:
|
|
case ISD::SETUNE:
|
|
CondCode = AArch64CC::NE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
|
|
/// CC usable with the vector instructions. Fewer operations are available
|
|
/// without a real NZCV register, so we have to use less efficient combinations
|
|
/// to get the same effect.
|
|
static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
|
|
AArch64CC::CondCode &CondCode,
|
|
AArch64CC::CondCode &CondCode2,
|
|
bool &Invert) {
|
|
Invert = false;
|
|
switch (CC) {
|
|
default:
|
|
// Mostly the scalar mappings work fine.
|
|
changeFPCCToAArch64CC(CC, CondCode, CondCode2);
|
|
break;
|
|
case ISD::SETUO:
|
|
Invert = true; // Fallthrough
|
|
case ISD::SETO:
|
|
CondCode = AArch64CC::MI;
|
|
CondCode2 = AArch64CC::GE;
|
|
break;
|
|
case ISD::SETUEQ:
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
// All of the compare-mask comparisons are ordered, but we can switch
|
|
// between the two by a double inversion. E.g. ULE == !OGT.
|
|
Invert = true;
|
|
changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool isLegalArithImmed(uint64_t C) {
|
|
// Matches AArch64DAGToDAGISel::SelectArithImmed().
|
|
return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
|
|
}
|
|
|
|
static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
|
|
SDLoc dl, SelectionDAG &DAG) {
|
|
EVT VT = LHS.getValueType();
|
|
|
|
if (VT.isFloatingPoint())
|
|
return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
|
|
|
|
// The CMP instruction is just an alias for SUBS, and representing it as
|
|
// SUBS means that it's possible to get CSE with subtract operations.
|
|
// A later phase can perform the optimization of setting the destination
|
|
// register to WZR/XZR if it ends up being unused.
|
|
unsigned Opcode = AArch64ISD::SUBS;
|
|
|
|
if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
|
|
cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
// We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
|
|
// the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
|
|
// can be set differently by this operation. It comes down to whether
|
|
// "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
|
|
// everything is fine. If not then the optimization is wrong. Thus general
|
|
// comparisons are only valid if op2 != 0.
|
|
|
|
// So, finally, the only LLVM-native comparisons that don't mention C and V
|
|
// are SETEQ and SETNE. They're the only ones we can safely use CMN for in
|
|
// the absence of information about op2.
|
|
Opcode = AArch64ISD::ADDS;
|
|
RHS = RHS.getOperand(1);
|
|
} else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
|
|
cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
|
|
!isUnsignedIntSetCC(CC)) {
|
|
// Similarly, (CMP (and X, Y), 0) can be implemented with a TST
|
|
// (a.k.a. ANDS) except that the flags are only guaranteed to work for one
|
|
// of the signed comparisons.
|
|
Opcode = AArch64ISD::ANDS;
|
|
RHS = LHS.getOperand(1);
|
|
LHS = LHS.getOperand(0);
|
|
}
|
|
|
|
return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
|
|
.getValue(1);
|
|
}
|
|
|
|
static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
|
|
SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
|
|
SDValue Cmp;
|
|
AArch64CC::CondCode AArch64CC;
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
|
|
EVT VT = RHS.getValueType();
|
|
uint64_t C = RHSC->getZExtValue();
|
|
if (!isLegalArithImmed(C)) {
|
|
// Constant does not fit, try adjusting it by one?
|
|
switch (CC) {
|
|
default:
|
|
break;
|
|
case ISD::SETLT:
|
|
case ISD::SETGE:
|
|
if ((VT == MVT::i32 && C != 0x80000000 &&
|
|
isLegalArithImmed((uint32_t)(C - 1))) ||
|
|
(VT == MVT::i64 && C != 0x80000000ULL &&
|
|
isLegalArithImmed(C - 1ULL))) {
|
|
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
|
|
C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
|
|
RHS = DAG.getConstant(C, VT);
|
|
}
|
|
break;
|
|
case ISD::SETULT:
|
|
case ISD::SETUGE:
|
|
if ((VT == MVT::i32 && C != 0 &&
|
|
isLegalArithImmed((uint32_t)(C - 1))) ||
|
|
(VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
|
|
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
|
|
C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
|
|
RHS = DAG.getConstant(C, VT);
|
|
}
|
|
break;
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
if ((VT == MVT::i32 && C != 0x7fffffff &&
|
|
isLegalArithImmed((uint32_t)(C + 1))) ||
|
|
(VT == MVT::i64 && C != 0x7ffffffffffffffULL &&
|
|
isLegalArithImmed(C + 1ULL))) {
|
|
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
|
|
C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
|
|
RHS = DAG.getConstant(C, VT);
|
|
}
|
|
break;
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
if ((VT == MVT::i32 && C != 0xffffffff &&
|
|
isLegalArithImmed((uint32_t)(C + 1))) ||
|
|
(VT == MVT::i64 && C != 0xfffffffffffffffULL &&
|
|
isLegalArithImmed(C + 1ULL))) {
|
|
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
|
|
C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
|
|
RHS = DAG.getConstant(C, VT);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
|
|
// For the i8 operand, the largest immediate is 255, so this can be easily
|
|
// encoded in the compare instruction. For the i16 operand, however, the
|
|
// largest immediate cannot be encoded in the compare.
|
|
// Therefore, use a sign extending load and cmn to avoid materializing the -1
|
|
// constant. For example,
|
|
// movz w1, #65535
|
|
// ldrh w0, [x0, #0]
|
|
// cmp w0, w1
|
|
// >
|
|
// ldrsh w0, [x0, #0]
|
|
// cmn w0, #1
|
|
// Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
|
|
// if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
|
|
// both the LHS and RHS are truely zero extended and to make sure the
|
|
// transformation is profitable.
|
|
if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
|
|
if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
|
|
isa<LoadSDNode>(LHS)) {
|
|
if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
|
|
cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
|
|
LHS.getNode()->hasNUsesOfValue(1, 0)) {
|
|
int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
|
|
if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
|
|
SDValue SExt =
|
|
DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
|
|
DAG.getValueType(MVT::i16));
|
|
Cmp = emitComparison(SExt,
|
|
DAG.getConstant(ValueofRHS, RHS.getValueType()),
|
|
CC, dl, DAG);
|
|
AArch64CC = changeIntCCToAArch64CC(CC);
|
|
AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
|
|
return Cmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
|
|
AArch64CC = changeIntCCToAArch64CC(CC);
|
|
AArch64cc = DAG.getConstant(AArch64CC, MVT::i32);
|
|
return Cmp;
|
|
}
|
|
|
|
static std::pair<SDValue, SDValue>
|
|
getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
|
|
assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
|
|
"Unsupported value type");
|
|
SDValue Value, Overflow;
|
|
SDLoc DL(Op);
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
unsigned Opc = 0;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unknown overflow instruction!");
|
|
case ISD::SADDO:
|
|
Opc = AArch64ISD::ADDS;
|
|
CC = AArch64CC::VS;
|
|
break;
|
|
case ISD::UADDO:
|
|
Opc = AArch64ISD::ADDS;
|
|
CC = AArch64CC::HS;
|
|
break;
|
|
case ISD::SSUBO:
|
|
Opc = AArch64ISD::SUBS;
|
|
CC = AArch64CC::VS;
|
|
break;
|
|
case ISD::USUBO:
|
|
Opc = AArch64ISD::SUBS;
|
|
CC = AArch64CC::LO;
|
|
break;
|
|
// Multiply needs a little bit extra work.
|
|
case ISD::SMULO:
|
|
case ISD::UMULO: {
|
|
CC = AArch64CC::NE;
|
|
bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false;
|
|
if (Op.getValueType() == MVT::i32) {
|
|
unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
// For a 32 bit multiply with overflow check we want the instruction
|
|
// selector to generate a widening multiply (SMADDL/UMADDL). For that we
|
|
// need to generate the following pattern:
|
|
// (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
|
|
LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
|
|
RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
|
|
SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
|
|
DAG.getConstant(0, MVT::i64));
|
|
// On AArch64 the upper 32 bits are always zero extended for a 32 bit
|
|
// operation. We need to clear out the upper 32 bits, because we used a
|
|
// widening multiply that wrote all 64 bits. In the end this should be a
|
|
// noop.
|
|
Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
|
|
if (IsSigned) {
|
|
// The signed overflow check requires more than just a simple check for
|
|
// any bit set in the upper 32 bits of the result. These bits could be
|
|
// just the sign bits of a negative number. To perform the overflow
|
|
// check we have to arithmetic shift right the 32nd bit of the result by
|
|
// 31 bits. Then we compare the result to the upper 32 bits.
|
|
SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
|
|
DAG.getConstant(32, MVT::i64));
|
|
UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
|
|
SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
|
|
DAG.getConstant(31, MVT::i64));
|
|
// It is important that LowerBits is last, otherwise the arithmetic
|
|
// shift will not be folded into the compare (SUBS).
|
|
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
|
|
Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
|
|
.getValue(1);
|
|
} else {
|
|
// The overflow check for unsigned multiply is easy. We only need to
|
|
// check if any of the upper 32 bits are set. This can be done with a
|
|
// CMP (shifted register). For that we need to generate the following
|
|
// pattern:
|
|
// (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
|
|
SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
|
|
DAG.getConstant(32, MVT::i64));
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
|
|
Overflow =
|
|
DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
|
|
UpperBits).getValue(1);
|
|
}
|
|
break;
|
|
}
|
|
assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
|
|
// For the 64 bit multiply
|
|
Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
|
|
if (IsSigned) {
|
|
SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
|
|
SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
|
|
DAG.getConstant(63, MVT::i64));
|
|
// It is important that LowerBits is last, otherwise the arithmetic
|
|
// shift will not be folded into the compare (SUBS).
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
|
|
Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
|
|
.getValue(1);
|
|
} else {
|
|
SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
|
|
SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
|
|
Overflow =
|
|
DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64),
|
|
UpperBits).getValue(1);
|
|
}
|
|
break;
|
|
}
|
|
} // switch (...)
|
|
|
|
if (Opc) {
|
|
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
|
|
|
|
// Emit the AArch64 operation with overflow check.
|
|
Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
|
|
Overflow = Value.getValue(1);
|
|
}
|
|
return std::make_pair(Value, Overflow);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
|
|
RTLIB::Libcall Call) const {
|
|
SmallVector<SDValue, 2> Ops;
|
|
for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(Op.getOperand(i));
|
|
|
|
return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
|
|
SDLoc(Op)).first;
|
|
}
|
|
|
|
static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue Sel = Op.getOperand(0);
|
|
SDValue Other = Op.getOperand(1);
|
|
|
|
// If neither operand is a SELECT_CC, give up.
|
|
if (Sel.getOpcode() != ISD::SELECT_CC)
|
|
std::swap(Sel, Other);
|
|
if (Sel.getOpcode() != ISD::SELECT_CC)
|
|
return Op;
|
|
|
|
// The folding we want to perform is:
|
|
// (xor x, (select_cc a, b, cc, 0, -1) )
|
|
// -->
|
|
// (csel x, (xor x, -1), cc ...)
|
|
//
|
|
// The latter will get matched to a CSINV instruction.
|
|
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
|
|
SDValue LHS = Sel.getOperand(0);
|
|
SDValue RHS = Sel.getOperand(1);
|
|
SDValue TVal = Sel.getOperand(2);
|
|
SDValue FVal = Sel.getOperand(3);
|
|
SDLoc dl(Sel);
|
|
|
|
// FIXME: This could be generalized to non-integer comparisons.
|
|
if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
|
|
return Op;
|
|
|
|
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
|
|
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
|
|
|
|
// The the values aren't constants, this isn't the pattern we're looking for.
|
|
if (!CFVal || !CTVal)
|
|
return Op;
|
|
|
|
// We can commute the SELECT_CC by inverting the condition. This
|
|
// might be needed to make this fit into a CSINV pattern.
|
|
if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
}
|
|
|
|
// If the constants line up, perform the transform!
|
|
if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
|
|
SDValue CCVal;
|
|
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
|
|
|
|
FVal = Other;
|
|
TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
|
|
DAG.getConstant(-1ULL, Other.getValueType()));
|
|
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
|
|
CCVal, Cmp);
|
|
}
|
|
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Let legalize expand this if it isn't a legal type yet.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
|
|
|
|
unsigned Opc;
|
|
bool ExtraOp = false;
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Invalid code");
|
|
case ISD::ADDC:
|
|
Opc = AArch64ISD::ADDS;
|
|
break;
|
|
case ISD::SUBC:
|
|
Opc = AArch64ISD::SUBS;
|
|
break;
|
|
case ISD::ADDE:
|
|
Opc = AArch64ISD::ADCS;
|
|
ExtraOp = true;
|
|
break;
|
|
case ISD::SUBE:
|
|
Opc = AArch64ISD::SBCS;
|
|
ExtraOp = true;
|
|
break;
|
|
}
|
|
|
|
if (!ExtraOp)
|
|
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
|
|
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
|
|
Op.getOperand(2));
|
|
}
|
|
|
|
static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
|
|
// Let legalize expand this if it isn't a legal type yet.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
|
|
return SDValue();
|
|
|
|
AArch64CC::CondCode CC;
|
|
// The actual operation that sets the overflow or carry flag.
|
|
SDValue Value, Overflow;
|
|
std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
|
|
|
|
// We use 0 and 1 as false and true values.
|
|
SDValue TVal = DAG.getConstant(1, MVT::i32);
|
|
SDValue FVal = DAG.getConstant(0, MVT::i32);
|
|
|
|
// We use an inverted condition, because the conditional select is inverted
|
|
// too. This will allow it to be selected to a single instruction:
|
|
// CSINC Wd, WZR, WZR, invert(cond).
|
|
SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32);
|
|
Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal,
|
|
CCVal, Overflow);
|
|
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
|
|
return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow);
|
|
}
|
|
|
|
// Prefetch operands are:
|
|
// 1: Address to prefetch
|
|
// 2: bool isWrite
|
|
// 3: int locality (0 = no locality ... 3 = extreme locality)
|
|
// 4: bool isDataCache
|
|
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
|
|
unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
|
|
unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
|
|
|
|
bool IsStream = !Locality;
|
|
// When the locality number is set
|
|
if (Locality) {
|
|
// The front-end should have filtered out the out-of-range values
|
|
assert(Locality <= 3 && "Prefetch locality out-of-range");
|
|
// The locality degree is the opposite of the cache speed.
|
|
// Put the number the other way around.
|
|
// The encoding starts at 0 for level 1
|
|
Locality = 3 - Locality;
|
|
}
|
|
|
|
// built the mask value encoding the expected behavior.
|
|
unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
|
|
(!IsData << 3) | // IsDataCache bit
|
|
(Locality << 1) | // Cache level bits
|
|
(unsigned)IsStream; // Stream bit
|
|
return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
|
|
|
|
RTLIB::Libcall LC;
|
|
LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
return LowerF128Call(Op, DAG, LC);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (Op.getOperand(0).getValueType() != MVT::f128) {
|
|
// It's legal except when f128 is involved
|
|
return Op;
|
|
}
|
|
|
|
RTLIB::Libcall LC;
|
|
LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
// FP_ROUND node has a second operand indicating whether it is known to be
|
|
// precise. That doesn't take part in the LibCall so we can't directly use
|
|
// LowerF128Call.
|
|
SDValue SrcVal = Op.getOperand(0);
|
|
return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
|
|
/*isSigned*/ false, SDLoc(Op)).first;
|
|
}
|
|
|
|
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
|
|
// Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
|
|
// Any additional optimization in this function should be recorded
|
|
// in the cost tables.
|
|
EVT InVT = Op.getOperand(0).getValueType();
|
|
EVT VT = Op.getValueType();
|
|
|
|
if (VT.getSizeInBits() < InVT.getSizeInBits()) {
|
|
SDLoc dl(Op);
|
|
SDValue Cv =
|
|
DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
|
|
Op.getOperand(0));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
|
|
}
|
|
|
|
if (VT.getSizeInBits() > InVT.getSizeInBits()) {
|
|
SDLoc dl(Op);
|
|
MVT ExtVT =
|
|
MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
|
|
VT.getVectorNumElements());
|
|
SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
|
|
return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
|
|
}
|
|
|
|
// Type changing conversions are illegal.
|
|
return Op;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (Op.getOperand(0).getValueType().isVector())
|
|
return LowerVectorFP_TO_INT(Op, DAG);
|
|
|
|
if (Op.getOperand(0).getValueType() != MVT::f128) {
|
|
// It's legal except when f128 is involved
|
|
return Op;
|
|
}
|
|
|
|
RTLIB::Libcall LC;
|
|
if (Op.getOpcode() == ISD::FP_TO_SINT)
|
|
LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
else
|
|
LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
SmallVector<SDValue, 2> Ops;
|
|
for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(Op.getOperand(i));
|
|
|
|
return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
|
|
SDLoc(Op)).first;
|
|
}
|
|
|
|
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
|
|
// Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
|
|
// Any additional optimization in this function should be recorded
|
|
// in the cost tables.
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
SDValue In = Op.getOperand(0);
|
|
EVT InVT = In.getValueType();
|
|
|
|
if (VT.getSizeInBits() < InVT.getSizeInBits()) {
|
|
MVT CastVT =
|
|
MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
|
|
InVT.getVectorNumElements());
|
|
In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
|
|
return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0));
|
|
}
|
|
|
|
if (VT.getSizeInBits() > InVT.getSizeInBits()) {
|
|
unsigned CastOpc =
|
|
Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
EVT CastVT = VT.changeVectorElementTypeToInteger();
|
|
In = DAG.getNode(CastOpc, dl, CastVT, In);
|
|
return DAG.getNode(Op.getOpcode(), dl, VT, In);
|
|
}
|
|
|
|
return Op;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (Op.getValueType().isVector())
|
|
return LowerVectorINT_TO_FP(Op, DAG);
|
|
|
|
// i128 conversions are libcalls.
|
|
if (Op.getOperand(0).getValueType() == MVT::i128)
|
|
return SDValue();
|
|
|
|
// Other conversions are legal, unless it's to the completely software-based
|
|
// fp128.
|
|
if (Op.getValueType() != MVT::f128)
|
|
return Op;
|
|
|
|
RTLIB::Libcall LC;
|
|
if (Op.getOpcode() == ISD::SINT_TO_FP)
|
|
LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
else
|
|
LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
|
|
|
|
return LowerF128Call(Op, DAG, LC);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// For iOS, we want to call an alternative entry point: __sincos_stret,
|
|
// which returns the values in two S / D registers.
|
|
SDLoc dl(Op);
|
|
SDValue Arg = Op.getOperand(0);
|
|
EVT ArgVT = Arg.getValueType();
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
|
|
Entry.Node = Arg;
|
|
Entry.Ty = ArgTy;
|
|
Entry.isSExt = false;
|
|
Entry.isZExt = false;
|
|
Args.push_back(Entry);
|
|
|
|
const char *LibcallName =
|
|
(ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
|
|
SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
|
|
|
|
StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL);
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
|
|
.setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
|
|
|
|
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
|
return CallResult.first;
|
|
}
|
|
|
|
static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
|
|
if (Op.getValueType() != MVT::f16)
|
|
return SDValue();
|
|
|
|
assert(Op.getOperand(0).getValueType() == MVT::i16);
|
|
SDLoc DL(Op);
|
|
|
|
Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
|
|
Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
|
|
return SDValue(
|
|
DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
|
|
DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
|
|
0);
|
|
}
|
|
|
|
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
|
|
if (OrigVT.getSizeInBits() >= 64)
|
|
return OrigVT;
|
|
|
|
assert(OrigVT.isSimple() && "Expecting a simple value type");
|
|
|
|
MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
|
|
switch (OrigSimpleTy) {
|
|
default: llvm_unreachable("Unexpected Vector Type");
|
|
case MVT::v2i8:
|
|
case MVT::v2i16:
|
|
return MVT::v2i32;
|
|
case MVT::v4i8:
|
|
return MVT::v4i16;
|
|
}
|
|
}
|
|
|
|
static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
|
|
const EVT &OrigTy,
|
|
const EVT &ExtTy,
|
|
unsigned ExtOpcode) {
|
|
// The vector originally had a size of OrigTy. It was then extended to ExtTy.
|
|
// We expect the ExtTy to be 128-bits total. If the OrigTy is less than
|
|
// 64-bits we need to insert a new extension so that it will be 64-bits.
|
|
assert(ExtTy.is128BitVector() && "Unexpected extension size");
|
|
if (OrigTy.getSizeInBits() >= 64)
|
|
return N;
|
|
|
|
// Must extend size to at least 64 bits to be used as an operand for VMULL.
|
|
EVT NewVT = getExtensionTo64Bits(OrigTy);
|
|
|
|
return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
|
|
}
|
|
|
|
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
|
|
bool isSigned) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR)
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
SDNode *Elt = N->getOperand(i).getNode();
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
unsigned HalfSize = EltSize / 2;
|
|
if (isSigned) {
|
|
if (!isIntN(HalfSize, C->getSExtValue()))
|
|
return false;
|
|
} else {
|
|
if (!isUIntN(HalfSize, C->getZExtValue()))
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
|
|
return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
|
|
N->getOperand(0)->getValueType(0),
|
|
N->getValueType(0),
|
|
N->getOpcode());
|
|
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
|
|
EVT VT = N->getValueType(0);
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
MVT TruncVT = MVT::getIntegerVT(EltSize);
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
|
|
const APInt &CInt = C->getAPIntValue();
|
|
// Element types smaller than 32 bits are not legal, so use i32 elements.
|
|
// The values are implicitly truncated so sext vs. zext doesn't matter.
|
|
Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
|
|
}
|
|
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
|
|
MVT::getVectorVT(TruncVT, NumElts), Ops);
|
|
}
|
|
|
|
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::SIGN_EXTEND)
|
|
return true;
|
|
if (isExtendedBUILD_VECTOR(N, DAG, true))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::ZERO_EXTEND)
|
|
return true;
|
|
if (isExtendedBUILD_VECTOR(N, DAG, false))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned Opcode = N->getOpcode();
|
|
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
|
|
SDNode *N0 = N->getOperand(0).getNode();
|
|
SDNode *N1 = N->getOperand(1).getNode();
|
|
return N0->hasOneUse() && N1->hasOneUse() &&
|
|
isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned Opcode = N->getOpcode();
|
|
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
|
|
SDNode *N0 = N->getOperand(0).getNode();
|
|
SDNode *N1 = N->getOperand(1).getNode();
|
|
return N0->hasOneUse() && N1->hasOneUse() &&
|
|
isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
|
|
// Multiplications are only custom-lowered for 128-bit vectors so that
|
|
// VMULL can be detected. Otherwise v2i64 multiplications are not legal.
|
|
EVT VT = Op.getValueType();
|
|
assert(VT.is128BitVector() && VT.isInteger() &&
|
|
"unexpected type for custom-lowering ISD::MUL");
|
|
SDNode *N0 = Op.getOperand(0).getNode();
|
|
SDNode *N1 = Op.getOperand(1).getNode();
|
|
unsigned NewOpc = 0;
|
|
bool isMLA = false;
|
|
bool isN0SExt = isSignExtended(N0, DAG);
|
|
bool isN1SExt = isSignExtended(N1, DAG);
|
|
if (isN0SExt && isN1SExt)
|
|
NewOpc = AArch64ISD::SMULL;
|
|
else {
|
|
bool isN0ZExt = isZeroExtended(N0, DAG);
|
|
bool isN1ZExt = isZeroExtended(N1, DAG);
|
|
if (isN0ZExt && isN1ZExt)
|
|
NewOpc = AArch64ISD::UMULL;
|
|
else if (isN1SExt || isN1ZExt) {
|
|
// Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
|
|
// into (s/zext A * s/zext C) + (s/zext B * s/zext C)
|
|
if (isN1SExt && isAddSubSExt(N0, DAG)) {
|
|
NewOpc = AArch64ISD::SMULL;
|
|
isMLA = true;
|
|
} else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
|
|
NewOpc = AArch64ISD::UMULL;
|
|
isMLA = true;
|
|
} else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
|
|
std::swap(N0, N1);
|
|
NewOpc = AArch64ISD::UMULL;
|
|
isMLA = true;
|
|
}
|
|
}
|
|
|
|
if (!NewOpc) {
|
|
if (VT == MVT::v2i64)
|
|
// Fall through to expand this. It is not legal.
|
|
return SDValue();
|
|
else
|
|
// Other vector multiplications are legal.
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
// Legalize to a S/UMULL instruction
|
|
SDLoc DL(Op);
|
|
SDValue Op0;
|
|
SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
|
|
if (!isMLA) {
|
|
Op0 = skipExtensionForVectorMULL(N0, DAG);
|
|
assert(Op0.getValueType().is64BitVector() &&
|
|
Op1.getValueType().is64BitVector() &&
|
|
"unexpected types for extended operands to VMULL");
|
|
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
|
|
}
|
|
// Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
|
|
// isel lowering to take advantage of no-stall back to back s/umul + s/umla.
|
|
// This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
|
|
SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
|
|
SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
|
|
EVT Op1VT = Op1.getValueType();
|
|
return DAG.getNode(N0->getOpcode(), DL, VT,
|
|
DAG.getNode(NewOpc, DL, VT,
|
|
DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
|
|
DAG.getNode(NewOpc, DL, VT,
|
|
DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("unimplemented operand");
|
|
return SDValue();
|
|
case ISD::BITCAST:
|
|
return LowerBITCAST(Op, DAG);
|
|
case ISD::GlobalAddress:
|
|
return LowerGlobalAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress:
|
|
return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::SETCC:
|
|
return LowerSETCC(Op, DAG);
|
|
case ISD::BR_CC:
|
|
return LowerBR_CC(Op, DAG);
|
|
case ISD::SELECT:
|
|
return LowerSELECT(Op, DAG);
|
|
case ISD::SELECT_CC:
|
|
return LowerSELECT_CC(Op, DAG);
|
|
case ISD::JumpTable:
|
|
return LowerJumpTable(Op, DAG);
|
|
case ISD::ConstantPool:
|
|
return LowerConstantPool(Op, DAG);
|
|
case ISD::BlockAddress:
|
|
return LowerBlockAddress(Op, DAG);
|
|
case ISD::VASTART:
|
|
return LowerVASTART(Op, DAG);
|
|
case ISD::VACOPY:
|
|
return LowerVACOPY(Op, DAG);
|
|
case ISD::VAARG:
|
|
return LowerVAARG(Op, DAG);
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::SUBC:
|
|
case ISD::SUBE:
|
|
return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
|
|
case ISD::SADDO:
|
|
case ISD::UADDO:
|
|
case ISD::SSUBO:
|
|
case ISD::USUBO:
|
|
case ISD::SMULO:
|
|
case ISD::UMULO:
|
|
return LowerXALUO(Op, DAG);
|
|
case ISD::FADD:
|
|
return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
|
|
case ISD::FSUB:
|
|
return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
|
|
case ISD::FMUL:
|
|
return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
|
|
case ISD::FDIV:
|
|
return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
|
|
case ISD::FP_ROUND:
|
|
return LowerFP_ROUND(Op, DAG);
|
|
case ISD::FP_EXTEND:
|
|
return LowerFP_EXTEND(Op, DAG);
|
|
case ISD::FRAMEADDR:
|
|
return LowerFRAMEADDR(Op, DAG);
|
|
case ISD::RETURNADDR:
|
|
return LowerRETURNADDR(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
return LowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
return LowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::BUILD_VECTOR:
|
|
return LowerBUILD_VECTOR(Op, DAG);
|
|
case ISD::VECTOR_SHUFFLE:
|
|
return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
return LowerEXTRACT_SUBVECTOR(Op, DAG);
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
case ISD::SHL:
|
|
return LowerVectorSRA_SRL_SHL(Op, DAG);
|
|
case ISD::SHL_PARTS:
|
|
return LowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRL_PARTS:
|
|
case ISD::SRA_PARTS:
|
|
return LowerShiftRightParts(Op, DAG);
|
|
case ISD::CTPOP:
|
|
return LowerCTPOP(Op, DAG);
|
|
case ISD::FCOPYSIGN:
|
|
return LowerFCOPYSIGN(Op, DAG);
|
|
case ISD::AND:
|
|
return LowerVectorAND(Op, DAG);
|
|
case ISD::OR:
|
|
return LowerVectorOR(Op, DAG);
|
|
case ISD::XOR:
|
|
return LowerXOR(Op, DAG);
|
|
case ISD::PREFETCH:
|
|
return LowerPREFETCH(Op, DAG);
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
return LowerINT_TO_FP(Op, DAG);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
return LowerFP_TO_INT(Op, DAG);
|
|
case ISD::FSINCOS:
|
|
return LowerFSINCOS(Op, DAG);
|
|
case ISD::MUL:
|
|
return LowerMUL(Op, DAG);
|
|
}
|
|
}
|
|
|
|
/// getFunctionAlignment - Return the Log2 alignment of this function.
|
|
unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
|
|
return 2;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64GenCallingConv.inc"
|
|
|
|
/// Selects the correct CCAssignFn for a given CallingConvention value.
|
|
CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
|
|
bool IsVarArg) const {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported calling convention.");
|
|
case CallingConv::WebKit_JS:
|
|
return CC_AArch64_WebKit_JS;
|
|
case CallingConv::C:
|
|
case CallingConv::Fast:
|
|
if (!Subtarget->isTargetDarwin())
|
|
return CC_AArch64_AAPCS;
|
|
return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
|
|
}
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
// At this point, Ins[].VT may already be promoted to i32. To correctly
|
|
// handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
|
|
// i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
|
|
// Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
|
|
// we use a special version of AnalyzeFormalArguments to pass in ValVT and
|
|
// LocVT.
|
|
unsigned NumArgs = Ins.size();
|
|
Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
|
|
unsigned CurArgIdx = 0;
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT ValVT = Ins[i].VT;
|
|
std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx);
|
|
CurArgIdx = Ins[i].OrigArgIndex;
|
|
|
|
// Get type of the original argument.
|
|
EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
|
|
MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
|
|
// If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
|
|
if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
|
|
ValVT = MVT::i8;
|
|
else if (ActualMVT == MVT::i16)
|
|
ValVT = MVT::i16;
|
|
|
|
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
|
|
bool Res =
|
|
AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
|
|
assert(!Res && "Call operand has unhandled type");
|
|
(void)Res;
|
|
}
|
|
assert(ArgLocs.size() == Ins.size());
|
|
SmallVector<SDValue, 16> ArgValues;
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
|
|
if (Ins[i].Flags.isByVal()) {
|
|
// Byval is used for HFAs in the PCS, but the system should work in a
|
|
// non-compliant manner for larger structs.
|
|
EVT PtrTy = getPointerTy();
|
|
int Size = Ins[i].Flags.getByValSize();
|
|
unsigned NumRegs = (Size + 7) / 8;
|
|
|
|
// FIXME: This works on big-endian for composite byvals, which are the common
|
|
// case. It should also work for fundamental types too.
|
|
unsigned FrameIdx =
|
|
MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
|
|
SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
|
|
InVals.push_back(FrameIdxN);
|
|
|
|
continue;
|
|
}
|
|
|
|
if (VA.isRegLoc()) {
|
|
// Arguments stored in registers.
|
|
EVT RegVT = VA.getLocVT();
|
|
|
|
SDValue ArgValue;
|
|
const TargetRegisterClass *RC;
|
|
|
|
if (RegVT == MVT::i32)
|
|
RC = &AArch64::GPR32RegClass;
|
|
else if (RegVT == MVT::i64)
|
|
RC = &AArch64::GPR64RegClass;
|
|
else if (RegVT == MVT::f16)
|
|
RC = &AArch64::FPR16RegClass;
|
|
else if (RegVT == MVT::f32)
|
|
RC = &AArch64::FPR32RegClass;
|
|
else if (RegVT == MVT::f64 || RegVT.is64BitVector())
|
|
RC = &AArch64::FPR64RegClass;
|
|
else if (RegVT == MVT::f128 || RegVT.is128BitVector())
|
|
RC = &AArch64::FPR128RegClass;
|
|
else
|
|
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
|
|
|
|
// Transform the arguments in physical registers into virtual ones.
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
|
|
|
|
// If this is an 8, 16 or 32-bit value, it is really passed promoted
|
|
// to 64 bits. Insert an assert[sz]ext to capture this, then
|
|
// truncate to the right size.
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
case CCValAssign::SExt:
|
|
case CCValAssign::ZExt:
|
|
// SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
|
|
// nodes after our lowering.
|
|
assert(RegVT == Ins[i].VT && "incorrect register location selected");
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
|
|
} else { // VA.isRegLoc()
|
|
assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
|
|
unsigned ArgOffset = VA.getLocMemOffset();
|
|
unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
|
|
|
|
uint32_t BEAlign = 0;
|
|
if (ArgSize < 8 && !Subtarget->isLittleEndian())
|
|
BEAlign = 8 - ArgSize;
|
|
|
|
int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
|
|
|
|
// Create load nodes to retrieve arguments from the stack.
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
SDValue ArgValue;
|
|
|
|
// For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
|
|
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
|
|
MVT MemVT = VA.getValVT();
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
MemVT = VA.getLocVT();
|
|
break;
|
|
case CCValAssign::SExt:
|
|
ExtType = ISD::SEXTLOAD;
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
ExtType = ISD::ZEXTLOAD;
|
|
break;
|
|
case CCValAssign::AExt:
|
|
ExtType = ISD::EXTLOAD;
|
|
break;
|
|
}
|
|
|
|
ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
MemVT, false, false, false, 0);
|
|
|
|
InVals.push_back(ArgValue);
|
|
}
|
|
}
|
|
|
|
// varargs
|
|
if (isVarArg) {
|
|
if (!Subtarget->isTargetDarwin()) {
|
|
// The AAPCS variadic function ABI is identical to the non-variadic
|
|
// one. As a result there may be more arguments in registers and we should
|
|
// save them for future reference.
|
|
saveVarArgRegisters(CCInfo, DAG, DL, Chain);
|
|
}
|
|
|
|
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
|
|
// This will point to the next argument passed via stack.
|
|
unsigned StackOffset = CCInfo.getNextStackOffset();
|
|
// We currently pass all varargs at 8-byte alignment.
|
|
StackOffset = ((StackOffset + 7) & ~7);
|
|
AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
|
|
}
|
|
|
|
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
unsigned StackArgSize = CCInfo.getNextStackOffset();
|
|
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
|
|
if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
|
|
// This is a non-standard ABI so by fiat I say we're allowed to make full
|
|
// use of the stack area to be popped, which must be aligned to 16 bytes in
|
|
// any case:
|
|
StackArgSize = RoundUpToAlignment(StackArgSize, 16);
|
|
|
|
// If we're expected to restore the stack (e.g. fastcc) then we'll be adding
|
|
// a multiple of 16.
|
|
FuncInfo->setArgumentStackToRestore(StackArgSize);
|
|
|
|
// This realignment carries over to the available bytes below. Our own
|
|
// callers will guarantee the space is free by giving an aligned value to
|
|
// CALLSEQ_START.
|
|
}
|
|
// Even if we're not expected to free up the space, it's useful to know how
|
|
// much is there while considering tail calls (because we can reuse it).
|
|
FuncInfo->setBytesInStackArgArea(StackArgSize);
|
|
|
|
return Chain;
|
|
}
|
|
|
|
void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
|
|
SelectionDAG &DAG, SDLoc DL,
|
|
SDValue &Chain) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
|
|
SmallVector<SDValue, 8> MemOps;
|
|
|
|
static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
|
|
AArch64::X3, AArch64::X4, AArch64::X5,
|
|
AArch64::X6, AArch64::X7 };
|
|
static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
|
|
unsigned FirstVariadicGPR =
|
|
CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs);
|
|
|
|
unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
|
|
int GPRIdx = 0;
|
|
if (GPRSaveSize != 0) {
|
|
GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
|
|
|
|
SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
|
|
|
|
for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
|
|
unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
|
|
SDValue Store =
|
|
DAG.getStore(Val.getValue(1), DL, Val, FIN,
|
|
MachinePointerInfo::getStack(i * 8), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
|
|
DAG.getConstant(8, getPointerTy()));
|
|
}
|
|
}
|
|
FuncInfo->setVarArgsGPRIndex(GPRIdx);
|
|
FuncInfo->setVarArgsGPRSize(GPRSaveSize);
|
|
|
|
if (Subtarget->hasFPARMv8()) {
|
|
static const MCPhysReg FPRArgRegs[] = {
|
|
AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
|
|
AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
|
|
static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
|
|
unsigned FirstVariadicFPR =
|
|
CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs);
|
|
|
|
unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
|
|
int FPRIdx = 0;
|
|
if (FPRSaveSize != 0) {
|
|
FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
|
|
|
|
SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
|
|
|
|
for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
|
|
unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
|
|
|
|
SDValue Store =
|
|
DAG.getStore(Val.getValue(1), DL, Val, FIN,
|
|
MachinePointerInfo::getStack(i * 16), false, false, 0);
|
|
MemOps.push_back(Store);
|
|
FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
|
|
DAG.getConstant(16, getPointerTy()));
|
|
}
|
|
}
|
|
FuncInfo->setVarArgsFPRIndex(FPRIdx);
|
|
FuncInfo->setVarArgsFPRSize(FPRSaveSize);
|
|
}
|
|
|
|
if (!MemOps.empty()) {
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
|
|
}
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
SDValue AArch64TargetLowering::LowerCallResult(
|
|
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
|
|
SDValue ThisVal) const {
|
|
CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
|
|
? RetCC_AArch64_WebKit_JS
|
|
: RetCC_AArch64_AAPCS;
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign VA = RVLocs[i];
|
|
|
|
// Pass 'this' value directly from the argument to return value, to avoid
|
|
// reg unit interference
|
|
if (i == 0 && isThisReturn) {
|
|
assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
|
|
"unexpected return calling convention register assignment");
|
|
InVals.push_back(ThisVal);
|
|
continue;
|
|
}
|
|
|
|
SDValue Val =
|
|
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
|
|
Chain = Val.getValue(1);
|
|
InFlag = Val.getValue(2);
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isEligibleForTailCallOptimization(
|
|
SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
|
|
bool isCalleeStructRet, bool isCallerStructRet,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
|
|
// For CallingConv::C this function knows whether the ABI needs
|
|
// changing. That's not true for other conventions so they will have to opt in
|
|
// manually.
|
|
if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
|
|
return false;
|
|
|
|
const MachineFunction &MF = DAG.getMachineFunction();
|
|
const Function *CallerF = MF.getFunction();
|
|
CallingConv::ID CallerCC = CallerF->getCallingConv();
|
|
bool CCMatch = CallerCC == CalleeCC;
|
|
|
|
// Byval parameters hand the function a pointer directly into the stack area
|
|
// we want to reuse during a tail call. Working around this *is* possible (see
|
|
// X86) but less efficient and uglier in LowerCall.
|
|
for (Function::const_arg_iterator i = CallerF->arg_begin(),
|
|
e = CallerF->arg_end();
|
|
i != e; ++i)
|
|
if (i->hasByValAttr())
|
|
return false;
|
|
|
|
if (getTargetMachine().Options.GuaranteedTailCallOpt) {
|
|
if (IsTailCallConvention(CalleeCC) && CCMatch)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Externally-defined functions with weak linkage should not be
|
|
// tail-called on AArch64 when the OS does not support dynamic
|
|
// pre-emption of symbols, as the AAELF spec requires normal calls
|
|
// to undefined weak functions to be replaced with a NOP or jump to the
|
|
// next instruction. The behaviour of branch instructions in this
|
|
// situation (as used for tail calls) is implementation-defined, so we
|
|
// cannot rely on the linker replacing the tail call with a return.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
if (GV->hasExternalWeakLinkage())
|
|
return false;
|
|
}
|
|
|
|
// Now we search for cases where we can use a tail call without changing the
|
|
// ABI. Sibcall is used in some places (particularly gcc) to refer to this
|
|
// concept.
|
|
|
|
// I want anyone implementing a new calling convention to think long and hard
|
|
// about this assert.
|
|
assert((!isVarArg || CalleeCC == CallingConv::C) &&
|
|
"Unexpected variadic calling convention");
|
|
|
|
if (isVarArg && !Outs.empty()) {
|
|
// At least two cases here: if caller is fastcc then we can't have any
|
|
// memory arguments (we'd be expected to clean up the stack afterwards). If
|
|
// caller is C then we could potentially use its argument area.
|
|
|
|
// FIXME: for now we take the most conservative of these in both cases:
|
|
// disallow all variadic memory operands.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
|
|
if (!ArgLocs[i].isRegLoc())
|
|
return false;
|
|
}
|
|
|
|
// If the calling conventions do not match, then we'd better make sure the
|
|
// results are returned in the same way as what the caller expects.
|
|
if (!CCMatch) {
|
|
SmallVector<CCValAssign, 16> RVLocs1;
|
|
CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
|
|
*DAG.getContext());
|
|
CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs2;
|
|
CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
|
|
*DAG.getContext());
|
|
CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
|
|
|
|
if (RVLocs1.size() != RVLocs2.size())
|
|
return false;
|
|
for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
|
|
if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
|
|
return false;
|
|
if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
|
|
return false;
|
|
if (RVLocs1[i].isRegLoc()) {
|
|
if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
|
|
return false;
|
|
} else {
|
|
if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Nothing more to check if the callee is taking no arguments
|
|
if (Outs.empty())
|
|
return true;
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
|
|
|
|
const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
|
|
// If the stack arguments for this call would fit into our own save area then
|
|
// the call can be made tail.
|
|
return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
|
|
SelectionDAG &DAG,
|
|
MachineFrameInfo *MFI,
|
|
int ClobberedFI) const {
|
|
SmallVector<SDValue, 8> ArgChains;
|
|
int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
|
|
int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
|
|
|
|
// Include the original chain at the beginning of the list. When this is
|
|
// used by target LowerCall hooks, this helps legalize find the
|
|
// CALLSEQ_BEGIN node.
|
|
ArgChains.push_back(Chain);
|
|
|
|
// Add a chain value for each stack argument corresponding
|
|
for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
|
|
UE = DAG.getEntryNode().getNode()->use_end();
|
|
U != UE; ++U)
|
|
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
|
|
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
|
|
if (FI->getIndex() < 0) {
|
|
int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
|
|
int64_t InLastByte = InFirstByte;
|
|
InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
|
|
|
|
if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
|
|
(FirstByte <= InFirstByte && InFirstByte <= LastByte))
|
|
ArgChains.push_back(SDValue(L, 1));
|
|
}
|
|
|
|
// Build a tokenfactor for all the chains.
|
|
return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
|
|
}
|
|
|
|
bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
|
|
bool TailCallOpt) const {
|
|
return CallCC == CallingConv::Fast && TailCallOpt;
|
|
}
|
|
|
|
bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
|
|
return CallCC == CallingConv::Fast;
|
|
}
|
|
|
|
/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
|
|
/// and add input and output parameter nodes.
|
|
SDValue
|
|
AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &DL = CLI.DL;
|
|
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
|
|
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
|
|
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &IsTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
|
|
bool IsThisReturn = false;
|
|
|
|
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
|
|
bool IsSibCall = false;
|
|
|
|
if (IsTailCall) {
|
|
// Check if it's really possible to do a tail call.
|
|
IsTailCall = isEligibleForTailCallOptimization(
|
|
Callee, CallConv, IsVarArg, IsStructRet,
|
|
MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
|
|
if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
|
|
report_fatal_error("failed to perform tail call elimination on a call "
|
|
"site marked musttail");
|
|
|
|
// A sibling call is one where we're under the usual C ABI and not planning
|
|
// to change that but can still do a tail call:
|
|
if (!TailCallOpt && IsTailCall)
|
|
IsSibCall = true;
|
|
|
|
if (IsTailCall)
|
|
++NumTailCalls;
|
|
}
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
|
|
if (IsVarArg) {
|
|
// Handle fixed and variable vector arguments differently.
|
|
// Variable vector arguments always go into memory.
|
|
unsigned NumArgs = Outs.size();
|
|
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT ArgVT = Outs[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
|
|
/*IsVarArg=*/ !Outs[i].IsFixed);
|
|
bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
|
|
assert(!Res && "Call operand has unhandled type");
|
|
(void)Res;
|
|
}
|
|
} else {
|
|
// At this point, Outs[].VT may already be promoted to i32. To correctly
|
|
// handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
|
|
// i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
|
|
// Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
|
|
// we use a special version of AnalyzeCallOperands to pass in ValVT and
|
|
// LocVT.
|
|
unsigned NumArgs = Outs.size();
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT ValVT = Outs[i].VT;
|
|
// Get type of the original argument.
|
|
EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
|
|
/*AllowUnknown*/ true);
|
|
MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
// If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
|
|
if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
|
|
ValVT = MVT::i8;
|
|
else if (ActualMVT == MVT::i16)
|
|
ValVT = MVT::i16;
|
|
|
|
CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
|
|
bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
|
|
assert(!Res && "Call operand has unhandled type");
|
|
(void)Res;
|
|
}
|
|
}
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
|
|
if (IsSibCall) {
|
|
// Since we're not changing the ABI to make this a tail call, the memory
|
|
// operands are already available in the caller's incoming argument space.
|
|
NumBytes = 0;
|
|
}
|
|
|
|
// FPDiff is the byte offset of the call's argument area from the callee's.
|
|
// Stores to callee stack arguments will be placed in FixedStackSlots offset
|
|
// by this amount for a tail call. In a sibling call it must be 0 because the
|
|
// caller will deallocate the entire stack and the callee still expects its
|
|
// arguments to begin at SP+0. Completely unused for non-tail calls.
|
|
int FPDiff = 0;
|
|
|
|
if (IsTailCall && !IsSibCall) {
|
|
unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
|
|
|
|
// Since callee will pop argument stack as a tail call, we must keep the
|
|
// popped size 16-byte aligned.
|
|
NumBytes = RoundUpToAlignment(NumBytes, 16);
|
|
|
|
// FPDiff will be negative if this tail call requires more space than we
|
|
// would automatically have in our incoming argument space. Positive if we
|
|
// can actually shrink the stack.
|
|
FPDiff = NumReusableBytes - NumBytes;
|
|
|
|
// The stack pointer must be 16-byte aligned at all times it's used for a
|
|
// memory operation, which in practice means at *all* times and in
|
|
// particular across call boundaries. Therefore our own arguments started at
|
|
// a 16-byte aligned SP and the delta applied for the tail call should
|
|
// satisfy the same constraint.
|
|
assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
|
|
}
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
if (!IsSibCall)
|
|
Chain =
|
|
DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL);
|
|
|
|
SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
|
|
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads.
|
|
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
|
|
++i, ++realArgIdx) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue Arg = OutVals[realArgIdx];
|
|
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
if (Outs[realArgIdx].ArgVT == MVT::i1) {
|
|
// AAPCS requires i1 to be zero-extended to 8-bits by the caller.
|
|
Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
|
|
}
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::FPExt:
|
|
Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
if (VA.isRegLoc()) {
|
|
if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
|
|
assert(VA.getLocVT() == MVT::i64 &&
|
|
"unexpected calling convention register assignment");
|
|
assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
|
|
"unexpected use of 'returned'");
|
|
IsThisReturn = true;
|
|
}
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
} else {
|
|
assert(VA.isMemLoc());
|
|
|
|
SDValue DstAddr;
|
|
MachinePointerInfo DstInfo;
|
|
|
|
// FIXME: This works on big-endian for composite byvals, which are the
|
|
// common case. It should also work for fundamental types too.
|
|
uint32_t BEAlign = 0;
|
|
unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
|
|
: VA.getValVT().getSizeInBits();
|
|
OpSize = (OpSize + 7) / 8;
|
|
if (!Subtarget->isLittleEndian() && !Flags.isByVal()) {
|
|
if (OpSize < 8)
|
|
BEAlign = 8 - OpSize;
|
|
}
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
int32_t Offset = LocMemOffset + BEAlign;
|
|
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
|
|
PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
|
|
|
|
if (IsTailCall) {
|
|
Offset = Offset + FPDiff;
|
|
int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
|
|
|
|
DstAddr = DAG.getFrameIndex(FI, getPointerTy());
|
|
DstInfo = MachinePointerInfo::getFixedStack(FI);
|
|
|
|
// Make sure any stack arguments overlapping with where we're storing
|
|
// are loaded before this eventual operation. Otherwise they'll be
|
|
// clobbered.
|
|
Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
|
|
} else {
|
|
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
|
|
|
|
DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
|
|
DstInfo = MachinePointerInfo::getStack(LocMemOffset);
|
|
}
|
|
|
|
if (Outs[i].Flags.isByVal()) {
|
|
SDValue SizeNode =
|
|
DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64);
|
|
SDValue Cpy = DAG.getMemcpy(
|
|
Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
|
|
/*isVol = */ false,
|
|
/*AlwaysInline = */ false, DstInfo, MachinePointerInfo());
|
|
|
|
MemOpChains.push_back(Cpy);
|
|
} else {
|
|
// Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
|
|
// promoted to a legal register type i32, we should truncate Arg back to
|
|
// i1/i8/i16.
|
|
if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
|
|
VA.getValVT() == MVT::i16)
|
|
Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
|
|
|
|
SDValue Store =
|
|
DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
|
|
MemOpChains.push_back(Store);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
|
|
Subtarget->isTargetMachO()) {
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
bool InternalLinkage = GV->hasInternalLinkage();
|
|
if (InternalLinkage)
|
|
Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
|
|
else {
|
|
Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
|
|
AArch64II::MO_GOT);
|
|
Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
|
|
}
|
|
} else if (ExternalSymbolSDNode *S =
|
|
dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
const char *Sym = S->getSymbol();
|
|
Callee =
|
|
DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
|
|
Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
|
|
}
|
|
} else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
const char *Sym = S->getSymbol();
|
|
Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
|
|
}
|
|
|
|
// We don't usually want to end the call-sequence here because we would tidy
|
|
// the frame up *after* the call, however in the ABI-changing tail-call case
|
|
// we've carefully laid out the parameters so that when sp is reset they'll be
|
|
// in the correct location.
|
|
if (IsTailCall && !IsSibCall) {
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag, DL);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
std::vector<SDValue> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
if (IsTailCall) {
|
|
// Each tail call may have to adjust the stack by a different amount, so
|
|
// this information must travel along with the operation for eventual
|
|
// consumption by emitEpilogue.
|
|
Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
|
|
}
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const uint32_t *Mask;
|
|
const TargetRegisterInfo *TRI =
|
|
getTargetMachine().getSubtargetImpl()->getRegisterInfo();
|
|
const AArch64RegisterInfo *ARI =
|
|
static_cast<const AArch64RegisterInfo *>(TRI);
|
|
if (IsThisReturn) {
|
|
// For 'this' returns, use the X0-preserving mask if applicable
|
|
Mask = ARI->getThisReturnPreservedMask(CallConv);
|
|
if (!Mask) {
|
|
IsThisReturn = false;
|
|
Mask = ARI->getCallPreservedMask(CallConv);
|
|
}
|
|
} else
|
|
Mask = ARI->getCallPreservedMask(CallConv);
|
|
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
// If we're doing a tall call, use a TC_RETURN here rather than an
|
|
// actual call instruction.
|
|
if (IsTailCall)
|
|
return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
|
|
|
|
// Returns a chain and a flag for retval copy to use.
|
|
Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
|
|
? RoundUpToAlignment(NumBytes, 16)
|
|
: 0;
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(CalleePopBytes, true),
|
|
InFlag, DL);
|
|
if (!Ins.empty())
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
|
|
InVals, IsThisReturn,
|
|
IsThisReturn ? OutVals[0] : SDValue());
|
|
}
|
|
|
|
bool AArch64TargetLowering::CanLowerReturn(
|
|
CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
|
|
CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
|
|
? RetCC_AArch64_WebKit_JS
|
|
: RetCC_AArch64_AAPCS;
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
|
|
return CCInfo.CheckReturn(Outs, RetCC);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc DL, SelectionDAG &DAG) const {
|
|
CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
|
|
? RetCC_AArch64_WebKit_JS
|
|
: RetCC_AArch64_AAPCS;
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AnalyzeReturn(Outs, RetCC);
|
|
|
|
// Copy the result values into the output registers.
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
|
|
++i, ++realRVLocIdx) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
SDValue Arg = OutVals[realRVLocIdx];
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
if (Outs[i].ArgVT == MVT::i1) {
|
|
// AAPCS requires i1 to be zero-extended to i8 by the producer of the
|
|
// value. This is strictly redundant on Darwin (which uses "zeroext
|
|
// i1"), but will be optimised out before ISel.
|
|
Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
|
|
}
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the flag if we have it.
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Other Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc DL(Op);
|
|
const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = GN->getGlobal();
|
|
unsigned char OpFlags =
|
|
Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
|
|
|
|
assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
|
|
"unexpected offset in global node");
|
|
|
|
// This also catched the large code model case for Darwin.
|
|
if ((OpFlags & AArch64II::MO_GOT) != 0) {
|
|
SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
|
|
// FIXME: Once remat is capable of dealing with instructions with register
|
|
// operands, expand this into two nodes instead of using a wrapper node.
|
|
return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
|
|
}
|
|
|
|
if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
|
|
assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
|
|
"use of MO_CONSTPOOL only supported on small model");
|
|
SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
|
|
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
|
|
unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
|
|
SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
|
|
SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
|
|
SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
/*isVolatile=*/ false,
|
|
/*isNonTemporal=*/ true,
|
|
/*isInvariant=*/ true, 8);
|
|
if (GN->getOffset() != 0)
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
|
|
DAG.getConstant(GN->getOffset(), PtrVT));
|
|
return GlobalAddr;
|
|
}
|
|
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large) {
|
|
const unsigned char MO_NC = AArch64II::MO_NC;
|
|
return DAG.getNode(
|
|
AArch64ISD::WrapperLarge, DL, PtrVT,
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
|
|
} else {
|
|
// Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
|
|
// the only correct model on Darwin.
|
|
SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
OpFlags | AArch64II::MO_PAGE);
|
|
unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
|
|
SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
|
|
|
|
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
|
|
return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
|
|
}
|
|
}
|
|
|
|
/// \brief Convert a TLS address reference into the correct sequence of loads
|
|
/// and calls to compute the variable's address (for Darwin, currently) and
|
|
/// return an SDValue containing the final node.
|
|
|
|
/// Darwin only has one TLS scheme which must be capable of dealing with the
|
|
/// fully general situation, in the worst case. This means:
|
|
/// + "extern __thread" declaration.
|
|
/// + Defined in a possibly unknown dynamic library.
|
|
///
|
|
/// The general system is that each __thread variable has a [3 x i64] descriptor
|
|
/// which contains information used by the runtime to calculate the address. The
|
|
/// only part of this the compiler needs to know about is the first xword, which
|
|
/// contains a function pointer that must be called with the address of the
|
|
/// entire descriptor in "x0".
|
|
///
|
|
/// Since this descriptor may be in a different unit, in general even the
|
|
/// descriptor must be accessed via an indirect load. The "ideal" code sequence
|
|
/// is:
|
|
/// adrp x0, _var@TLVPPAGE
|
|
/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
|
|
/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
|
|
/// ; the function pointer
|
|
/// blr x1 ; Uses descriptor address in x0
|
|
/// ; Address of _var is now in x0.
|
|
///
|
|
/// If the address of _var's descriptor *is* known to the linker, then it can
|
|
/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
|
|
/// a slight efficiency gain.
|
|
SDValue
|
|
AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
|
|
|
|
SDLoc DL(Op);
|
|
MVT PtrVT = getPointerTy();
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
|
|
SDValue TLVPAddr =
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
|
|
SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
|
|
|
|
// The first entry in the descriptor is a function pointer that we must call
|
|
// to obtain the address of the variable.
|
|
SDValue Chain = DAG.getEntryNode();
|
|
SDValue FuncTLVGet =
|
|
DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
|
|
false, true, true, 8);
|
|
Chain = FuncTLVGet.getValue(1);
|
|
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setAdjustsStack(true);
|
|
|
|
// TLS calls preserve all registers except those that absolutely must be
|
|
// trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
|
|
// silly).
|
|
const TargetRegisterInfo *TRI =
|
|
getTargetMachine().getSubtargetImpl()->getRegisterInfo();
|
|
const AArch64RegisterInfo *ARI =
|
|
static_cast<const AArch64RegisterInfo *>(TRI);
|
|
const uint32_t *Mask = ARI->getTLSCallPreservedMask();
|
|
|
|
// Finally, we can make the call. This is just a degenerate version of a
|
|
// normal AArch64 call node: x0 takes the address of the descriptor, and
|
|
// returns the address of the variable in this thread.
|
|
Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
|
|
Chain =
|
|
DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
|
|
Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
|
|
DAG.getRegisterMask(Mask), Chain.getValue(1));
|
|
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
|
|
}
|
|
|
|
/// When accessing thread-local variables under either the general-dynamic or
|
|
/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
|
|
/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
|
|
/// is a function pointer to carry out the resolution. This function takes the
|
|
/// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All
|
|
/// other registers (except LR, NZCV) are preserved.
|
|
///
|
|
/// Thus, the ideal call sequence on AArch64 is:
|
|
///
|
|
/// adrp x0, :tlsdesc:thread_var
|
|
/// ldr x8, [x0, :tlsdesc_lo12:thread_var]
|
|
/// add x0, x0, :tlsdesc_lo12:thread_var
|
|
/// .tlsdesccall thread_var
|
|
/// blr x8
|
|
/// (TPIDR_EL0 offset now in x0).
|
|
///
|
|
/// The ".tlsdesccall" directive instructs the assembler to insert a particular
|
|
/// relocation to help the linker relax this sequence if it turns out to be too
|
|
/// conservative.
|
|
///
|
|
/// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this
|
|
/// is harmless.
|
|
SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr,
|
|
SDValue DescAddr, SDLoc DL,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = getPointerTy();
|
|
|
|
// The function we need to call is simply the first entry in the GOT for this
|
|
// descriptor, load it in preparation.
|
|
SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr);
|
|
|
|
// TLS calls preserve all registers except those that absolutely must be
|
|
// trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
|
|
// silly).
|
|
const TargetRegisterInfo *TRI =
|
|
getTargetMachine().getSubtargetImpl()->getRegisterInfo();
|
|
const AArch64RegisterInfo *ARI =
|
|
static_cast<const AArch64RegisterInfo *>(TRI);
|
|
const uint32_t *Mask = ARI->getTLSCallPreservedMask();
|
|
|
|
// The function takes only one argument: the address of the descriptor itself
|
|
// in X0.
|
|
SDValue Glue, Chain;
|
|
Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// We're now ready to populate the argument list, as with a normal call:
|
|
SmallVector<SDValue, 6> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Func);
|
|
Ops.push_back(SymAddr);
|
|
Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
Ops.push_back(Glue);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops);
|
|
Glue = Chain.getValue(1);
|
|
|
|
return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetELF() && "This function expects an ELF target");
|
|
assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
|
|
"ELF TLS only supported in small memory model");
|
|
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
|
|
TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
|
|
|
|
SDValue TPOff;
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc DL(Op);
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
|
|
SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
|
|
|
|
if (Model == TLSModel::LocalExec) {
|
|
SDValue HiVar = DAG.getTargetGlobalAddress(
|
|
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
|
|
SDValue LoVar = DAG.getTargetGlobalAddress(
|
|
GV, DL, PtrVT, 0,
|
|
AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
|
|
|
|
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
|
|
DAG.getTargetConstant(16, MVT::i32)),
|
|
0);
|
|
TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar,
|
|
DAG.getTargetConstant(0, MVT::i32)),
|
|
0);
|
|
} else if (Model == TLSModel::InitialExec) {
|
|
TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
|
|
TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
|
|
} else if (Model == TLSModel::LocalDynamic) {
|
|
// Local-dynamic accesses proceed in two phases. A general-dynamic TLS
|
|
// descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
|
|
// the beginning of the module's TLS region, followed by a DTPREL offset
|
|
// calculation.
|
|
|
|
// These accesses will need deduplicating if there's more than one.
|
|
AArch64FunctionInfo *MFI =
|
|
DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
|
|
MFI->incNumLocalDynamicTLSAccesses();
|
|
|
|
// Accesses used in this sequence go via the TLS descriptor which lives in
|
|
// the GOT. Prepare an address we can use to handle this.
|
|
SDValue HiDesc = DAG.getTargetExternalSymbol(
|
|
"_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE);
|
|
SDValue LoDesc = DAG.getTargetExternalSymbol(
|
|
"_TLS_MODULE_BASE_", PtrVT,
|
|
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
|
|
// First argument to the descriptor call is the address of the descriptor
|
|
// itself.
|
|
SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
|
|
DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
|
|
|
|
// The call needs a relocation too for linker relaxation. It doesn't make
|
|
// sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
|
|
// the address.
|
|
SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
|
|
AArch64II::MO_TLS);
|
|
|
|
// Now we can calculate the offset from TPIDR_EL0 to this module's
|
|
// thread-local area.
|
|
TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
|
|
|
|
// Now use :dtprel_whatever: operations to calculate this variable's offset
|
|
// in its thread-storage area.
|
|
SDValue HiVar = DAG.getTargetGlobalAddress(
|
|
GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1);
|
|
SDValue LoVar = DAG.getTargetGlobalAddress(
|
|
GV, DL, MVT::i64, 0,
|
|
AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC);
|
|
|
|
SDValue DTPOff =
|
|
SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar,
|
|
DAG.getTargetConstant(16, MVT::i32)),
|
|
0);
|
|
DTPOff =
|
|
SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar,
|
|
DAG.getTargetConstant(0, MVT::i32)),
|
|
0);
|
|
|
|
TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff);
|
|
} else if (Model == TLSModel::GeneralDynamic) {
|
|
// Accesses used in this sequence go via the TLS descriptor which lives in
|
|
// the GOT. Prepare an address we can use to handle this.
|
|
SDValue HiDesc = DAG.getTargetGlobalAddress(
|
|
GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE);
|
|
SDValue LoDesc = DAG.getTargetGlobalAddress(
|
|
GV, DL, PtrVT, 0,
|
|
AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
|
|
// First argument to the descriptor call is the address of the descriptor
|
|
// itself.
|
|
SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc);
|
|
DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc);
|
|
|
|
// The call needs a relocation too for linker relaxation. It doesn't make
|
|
// sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
|
|
// the address.
|
|
SDValue SymAddr =
|
|
DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
|
|
|
|
// Finally we can make a call to calculate the offset from tpidr_el0.
|
|
TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG);
|
|
} else
|
|
llvm_unreachable("Unsupported ELF TLS access model");
|
|
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (Subtarget->isTargetDarwin())
|
|
return LowerDarwinGlobalTLSAddress(Op, DAG);
|
|
else if (Subtarget->isTargetELF())
|
|
return LowerELFGlobalTLSAddress(Op, DAG);
|
|
|
|
llvm_unreachable("Unexpected platform trying to use TLS");
|
|
}
|
|
SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
SDLoc dl(Op);
|
|
|
|
// Handle f128 first, since lowering it will result in comparing the return
|
|
// value of a libcall against zero, which is just what the rest of LowerBR_CC
|
|
// is expecting to deal with.
|
|
if (LHS.getValueType() == MVT::f128) {
|
|
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
|
|
|
|
// If softenSetCCOperands returned a scalar, we need to compare the result
|
|
// against zero to select between true and false values.
|
|
if (!RHS.getNode()) {
|
|
RHS = DAG.getConstant(0, LHS.getValueType());
|
|
CC = ISD::SETNE;
|
|
}
|
|
}
|
|
|
|
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
|
|
// instruction.
|
|
unsigned Opc = LHS.getOpcode();
|
|
if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
|
|
cast<ConstantSDNode>(RHS)->isOne() &&
|
|
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
|
|
Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
|
|
assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
|
|
"Unexpected condition code.");
|
|
// Only lower legal XALUO ops.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
|
|
return SDValue();
|
|
|
|
// The actual operation with overflow check.
|
|
AArch64CC::CondCode OFCC;
|
|
SDValue Value, Overflow;
|
|
std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
|
|
|
|
if (CC == ISD::SETNE)
|
|
OFCC = getInvertedCondCode(OFCC);
|
|
SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
|
|
|
|
return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest,
|
|
CCVal, Overflow);
|
|
}
|
|
|
|
if (LHS.getValueType().isInteger()) {
|
|
assert((LHS.getValueType() == RHS.getValueType()) &&
|
|
(LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
|
|
|
|
// If the RHS of the comparison is zero, we can potentially fold this
|
|
// to a specialized branch.
|
|
const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
|
|
if (RHSC && RHSC->getZExtValue() == 0) {
|
|
if (CC == ISD::SETEQ) {
|
|
// See if we can use a TBZ to fold in an AND as well.
|
|
// TBZ has a smaller branch displacement than CBZ. If the offset is
|
|
// out of bounds, a late MI-layer pass rewrites branches.
|
|
// 403.gcc is an example that hits this case.
|
|
if (LHS.getOpcode() == ISD::AND &&
|
|
isa<ConstantSDNode>(LHS.getOperand(1)) &&
|
|
isPowerOf2_64(LHS.getConstantOperandVal(1))) {
|
|
SDValue Test = LHS.getOperand(0);
|
|
uint64_t Mask = LHS.getConstantOperandVal(1);
|
|
return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
|
|
DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
|
|
}
|
|
|
|
return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
|
|
} else if (CC == ISD::SETNE) {
|
|
// See if we can use a TBZ to fold in an AND as well.
|
|
// TBZ has a smaller branch displacement than CBZ. If the offset is
|
|
// out of bounds, a late MI-layer pass rewrites branches.
|
|
// 403.gcc is an example that hits this case.
|
|
if (LHS.getOpcode() == ISD::AND &&
|
|
isa<ConstantSDNode>(LHS.getOperand(1)) &&
|
|
isPowerOf2_64(LHS.getConstantOperandVal(1))) {
|
|
SDValue Test = LHS.getOperand(0);
|
|
uint64_t Mask = LHS.getConstantOperandVal(1);
|
|
return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
|
|
DAG.getConstant(Log2_64(Mask), MVT::i64), Dest);
|
|
}
|
|
|
|
return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
|
|
} else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
|
|
// Don't combine AND since emitComparison converts the AND to an ANDS
|
|
// (a.k.a. TST) and the test in the test bit and branch instruction
|
|
// becomes redundant. This would also increase register pressure.
|
|
uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
|
|
return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
|
|
DAG.getConstant(Mask, MVT::i64), Dest);
|
|
}
|
|
}
|
|
if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
|
|
LHS.getOpcode() != ISD::AND) {
|
|
// Don't combine AND since emitComparison converts the AND to an ANDS
|
|
// (a.k.a. TST) and the test in the test bit and branch instruction
|
|
// becomes redundant. This would also increase register pressure.
|
|
uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
|
|
return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
|
|
DAG.getConstant(Mask, MVT::i64), Dest);
|
|
}
|
|
|
|
SDValue CCVal;
|
|
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
|
|
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
|
|
Cmp);
|
|
}
|
|
|
|
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
|
|
|
|
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
|
|
// clean. Some of them require two branches to implement.
|
|
SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
|
|
AArch64CC::CondCode CC1, CC2;
|
|
changeFPCCToAArch64CC(CC, CC1, CC2);
|
|
SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
|
|
SDValue BR1 =
|
|
DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
|
|
if (CC2 != AArch64CC::AL) {
|
|
SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
|
|
return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
|
|
Cmp);
|
|
}
|
|
|
|
return BR1;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
|
|
SDValue In1 = Op.getOperand(0);
|
|
SDValue In2 = Op.getOperand(1);
|
|
EVT SrcVT = In2.getValueType();
|
|
if (SrcVT != VT) {
|
|
if (SrcVT == MVT::f32 && VT == MVT::f64)
|
|
In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
|
|
else if (SrcVT == MVT::f64 && VT == MVT::f32)
|
|
In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0));
|
|
else
|
|
// FIXME: Src type is different, bail out for now. Can VT really be a
|
|
// vector type?
|
|
return SDValue();
|
|
}
|
|
|
|
EVT VecVT;
|
|
EVT EltVT;
|
|
SDValue EltMask, VecVal1, VecVal2;
|
|
if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
|
|
EltVT = MVT::i32;
|
|
VecVT = MVT::v4i32;
|
|
EltMask = DAG.getConstant(0x80000000ULL, EltVT);
|
|
|
|
if (!VT.isVector()) {
|
|
VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
|
|
DAG.getUNDEF(VecVT), In1);
|
|
VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
|
|
DAG.getUNDEF(VecVT), In2);
|
|
} else {
|
|
VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
|
|
VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
|
|
}
|
|
} else if (VT == MVT::f64 || VT == MVT::v2f64) {
|
|
EltVT = MVT::i64;
|
|
VecVT = MVT::v2i64;
|
|
|
|
// We want to materialize a mask with the the high bit set, but the AdvSIMD
|
|
// immediate moves cannot materialize that in a single instruction for
|
|
// 64-bit elements. Instead, materialize zero and then negate it.
|
|
EltMask = DAG.getConstant(0, EltVT);
|
|
|
|
if (!VT.isVector()) {
|
|
VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
|
|
DAG.getUNDEF(VecVT), In1);
|
|
VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
|
|
DAG.getUNDEF(VecVT), In2);
|
|
} else {
|
|
VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
|
|
VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
|
|
}
|
|
} else {
|
|
llvm_unreachable("Invalid type for copysign!");
|
|
}
|
|
|
|
std::vector<SDValue> BuildVectorOps;
|
|
for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i)
|
|
BuildVectorOps.push_back(EltMask);
|
|
|
|
SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps);
|
|
|
|
// If we couldn't materialize the mask above, then the mask vector will be
|
|
// the zero vector, and we need to negate it here.
|
|
if (VT == MVT::f64 || VT == MVT::v2f64) {
|
|
BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
|
|
BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
|
|
BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
|
|
}
|
|
|
|
SDValue Sel =
|
|
DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
|
|
|
|
if (VT == MVT::f32)
|
|
return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
|
|
else if (VT == MVT::f64)
|
|
return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
|
|
else
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
|
|
if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute(
|
|
AttributeSet::FunctionIndex, Attribute::NoImplicitFloat))
|
|
return SDValue();
|
|
|
|
// While there is no integer popcount instruction, it can
|
|
// be more efficiently lowered to the following sequence that uses
|
|
// AdvSIMD registers/instructions as long as the copies to/from
|
|
// the AdvSIMD registers are cheap.
|
|
// FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
|
|
// CNT V0.8B, V0.8B // 8xbyte pop-counts
|
|
// ADDV B0, V0.8B // sum 8xbyte pop-counts
|
|
// UMOV X0, V0.B[0] // copy byte result back to integer reg
|
|
SDValue Val = Op.getOperand(0);
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8);
|
|
|
|
SDValue VecVal;
|
|
if (VT == MVT::i32) {
|
|
VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
|
|
VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec,
|
|
VecVal);
|
|
} else {
|
|
VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
|
|
}
|
|
|
|
SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal);
|
|
SDValue UaddLV = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop);
|
|
|
|
if (VT == MVT::i64)
|
|
UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
|
|
return UaddLV;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
if (Op.getValueType().isVector())
|
|
return LowerVSETCC(Op, DAG);
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
SDLoc dl(Op);
|
|
|
|
// We chose ZeroOrOneBooleanContents, so use zero and one.
|
|
EVT VT = Op.getValueType();
|
|
SDValue TVal = DAG.getConstant(1, VT);
|
|
SDValue FVal = DAG.getConstant(0, VT);
|
|
|
|
// Handle f128 first, since one possible outcome is a normal integer
|
|
// comparison which gets picked up by the next if statement.
|
|
if (LHS.getValueType() == MVT::f128) {
|
|
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
|
|
|
|
// If softenSetCCOperands returned a scalar, use it.
|
|
if (!RHS.getNode()) {
|
|
assert(LHS.getValueType() == Op.getValueType() &&
|
|
"Unexpected setcc expansion!");
|
|
return LHS;
|
|
}
|
|
}
|
|
|
|
if (LHS.getValueType().isInteger()) {
|
|
SDValue CCVal;
|
|
SDValue Cmp =
|
|
getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
|
|
|
|
// Note that we inverted the condition above, so we reverse the order of
|
|
// the true and false operands here. This will allow the setcc to be
|
|
// matched to a single CSINC instruction.
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
|
|
}
|
|
|
|
// Now we know we're dealing with FP values.
|
|
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
|
|
|
|
// If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
|
|
// and do the comparison.
|
|
SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
|
|
|
|
AArch64CC::CondCode CC1, CC2;
|
|
changeFPCCToAArch64CC(CC, CC1, CC2);
|
|
if (CC2 == AArch64CC::AL) {
|
|
changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
|
|
SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
|
|
|
|
// Note that we inverted the condition above, so we reverse the order of
|
|
// the true and false operands here. This will allow the setcc to be
|
|
// matched to a single CSINC instruction.
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
|
|
} else {
|
|
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
|
|
// totally clean. Some of them require two CSELs to implement. As is in
|
|
// this case, we emit the first CSEL and then emit a second using the output
|
|
// of the first as the RHS. We're effectively OR'ing the two CC's together.
|
|
|
|
// FIXME: It would be nice if we could match the two CSELs to two CSINCs.
|
|
SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
|
|
SDValue CS1 =
|
|
DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
|
|
|
|
SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
|
|
}
|
|
}
|
|
|
|
/// A SELECT_CC operation is really some kind of max or min if both values being
|
|
/// compared are, in some sense, equal to the results in either case. However,
|
|
/// it is permissible to compare f32 values and produce directly extended f64
|
|
/// values.
|
|
///
|
|
/// Extending the comparison operands would also be allowed, but is less likely
|
|
/// to happen in practice since their use is right here. Note that truncate
|
|
/// operations would *not* be semantically equivalent.
|
|
static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
|
|
if (Cmp == Result)
|
|
return true;
|
|
|
|
ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
|
|
ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
|
|
if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
|
|
Result.getValueType() == MVT::f64) {
|
|
bool Lossy;
|
|
APFloat CmpVal = CCmp->getValueAPF();
|
|
CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
|
|
return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
|
|
}
|
|
|
|
return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDValue CC = Op->getOperand(0);
|
|
SDValue TVal = Op->getOperand(1);
|
|
SDValue FVal = Op->getOperand(2);
|
|
SDLoc DL(Op);
|
|
|
|
unsigned Opc = CC.getOpcode();
|
|
// Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
|
|
// instruction.
|
|
if (CC.getResNo() == 1 &&
|
|
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
|
|
Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
|
|
// Only lower legal XALUO ops.
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0)))
|
|
return SDValue();
|
|
|
|
AArch64CC::CondCode OFCC;
|
|
SDValue Value, Overflow;
|
|
std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG);
|
|
SDValue CCVal = DAG.getConstant(OFCC, MVT::i32);
|
|
|
|
return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
|
|
CCVal, Overflow);
|
|
}
|
|
|
|
if (CC.getOpcode() == ISD::SETCC)
|
|
return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal,
|
|
cast<CondCodeSDNode>(CC.getOperand(2))->get());
|
|
else
|
|
return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal,
|
|
FVal, ISD::SETNE);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDValue TVal = Op.getOperand(2);
|
|
SDValue FVal = Op.getOperand(3);
|
|
SDLoc dl(Op);
|
|
|
|
// Handle f128 first, because it will result in a comparison of some RTLIB
|
|
// call result against zero.
|
|
if (LHS.getValueType() == MVT::f128) {
|
|
softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
|
|
|
|
// If softenSetCCOperands returned a scalar, we need to compare the result
|
|
// against zero to select between true and false values.
|
|
if (!RHS.getNode()) {
|
|
RHS = DAG.getConstant(0, LHS.getValueType());
|
|
CC = ISD::SETNE;
|
|
}
|
|
}
|
|
|
|
// Handle integers first.
|
|
if (LHS.getValueType().isInteger()) {
|
|
assert((LHS.getValueType() == RHS.getValueType()) &&
|
|
(LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
|
|
|
|
unsigned Opcode = AArch64ISD::CSEL;
|
|
|
|
// If both the TVal and the FVal are constants, see if we can swap them in
|
|
// order to for a CSINV or CSINC out of them.
|
|
ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
|
|
ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
|
|
|
|
if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
} else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
} else if (TVal.getOpcode() == ISD::XOR) {
|
|
// If TVal is a NOT we want to swap TVal and FVal so that we can match
|
|
// with a CSINV rather than a CSEL.
|
|
ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
|
|
|
|
if (CVal && CVal->isAllOnesValue()) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
}
|
|
} else if (TVal.getOpcode() == ISD::SUB) {
|
|
// If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
|
|
// that we can match with a CSNEG rather than a CSEL.
|
|
ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
|
|
|
|
if (CVal && CVal->isNullValue()) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
}
|
|
} else if (CTVal && CFVal) {
|
|
const int64_t TrueVal = CTVal->getSExtValue();
|
|
const int64_t FalseVal = CFVal->getSExtValue();
|
|
bool Swap = false;
|
|
|
|
// If both TVal and FVal are constants, see if FVal is the
|
|
// inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
|
|
// instead of a CSEL in that case.
|
|
if (TrueVal == ~FalseVal) {
|
|
Opcode = AArch64ISD::CSINV;
|
|
} else if (TrueVal == -FalseVal) {
|
|
Opcode = AArch64ISD::CSNEG;
|
|
} else if (TVal.getValueType() == MVT::i32) {
|
|
// If our operands are only 32-bit wide, make sure we use 32-bit
|
|
// arithmetic for the check whether we can use CSINC. This ensures that
|
|
// the addition in the check will wrap around properly in case there is
|
|
// an overflow (which would not be the case if we do the check with
|
|
// 64-bit arithmetic).
|
|
const uint32_t TrueVal32 = CTVal->getZExtValue();
|
|
const uint32_t FalseVal32 = CFVal->getZExtValue();
|
|
|
|
if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
|
|
Opcode = AArch64ISD::CSINC;
|
|
|
|
if (TrueVal32 > FalseVal32) {
|
|
Swap = true;
|
|
}
|
|
}
|
|
// 64-bit check whether we can use CSINC.
|
|
} else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
|
|
Opcode = AArch64ISD::CSINC;
|
|
|
|
if (TrueVal > FalseVal) {
|
|
Swap = true;
|
|
}
|
|
}
|
|
|
|
// Swap TVal and FVal if necessary.
|
|
if (Swap) {
|
|
std::swap(TVal, FVal);
|
|
std::swap(CTVal, CFVal);
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
}
|
|
|
|
if (Opcode != AArch64ISD::CSEL) {
|
|
// Drop FVal since we can get its value by simply inverting/negating
|
|
// TVal.
|
|
FVal = TVal;
|
|
}
|
|
}
|
|
|
|
SDValue CCVal;
|
|
SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
|
|
|
|
EVT VT = Op.getValueType();
|
|
return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
|
|
}
|
|
|
|
// Now we know we're dealing with FP values.
|
|
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
|
|
assert(LHS.getValueType() == RHS.getValueType());
|
|
EVT VT = Op.getValueType();
|
|
|
|
// Try to match this select into a max/min operation, which have dedicated
|
|
// opcode in the instruction set.
|
|
// FIXME: This is not correct in the presence of NaNs, so we only enable this
|
|
// in no-NaNs mode.
|
|
if (getTargetMachine().Options.NoNaNsFPMath) {
|
|
SDValue MinMaxLHS = TVal, MinMaxRHS = FVal;
|
|
if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) &&
|
|
selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) {
|
|
CC = ISD::getSetCCSwappedOperands(CC);
|
|
std::swap(MinMaxLHS, MinMaxRHS);
|
|
}
|
|
|
|
if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) &&
|
|
selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) {
|
|
switch (CC) {
|
|
default:
|
|
break;
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
case ISD::SETOGT:
|
|
case ISD::SETOGE:
|
|
return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS);
|
|
break;
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
case ISD::SETOLT:
|
|
case ISD::SETOLE:
|
|
return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
|
|
// and do the comparison.
|
|
SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
|
|
|
|
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
|
|
// clean. Some of them require two CSELs to implement.
|
|
AArch64CC::CondCode CC1, CC2;
|
|
changeFPCCToAArch64CC(CC, CC1, CC2);
|
|
SDValue CC1Val = DAG.getConstant(CC1, MVT::i32);
|
|
SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
|
|
|
|
// If we need a second CSEL, emit it, using the output of the first as the
|
|
// RHS. We're effectively OR'ing the two CC's together.
|
|
if (CC2 != AArch64CC::AL) {
|
|
SDValue CC2Val = DAG.getConstant(CC2, MVT::i32);
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
|
|
}
|
|
|
|
// Otherwise, return the output of the first CSEL.
|
|
return CS1;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Jump table entries as PC relative offsets. No additional tweaking
|
|
// is necessary here. Just get the address of the jump table.
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc DL(Op);
|
|
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
|
|
!Subtarget->isTargetMachO()) {
|
|
const unsigned char MO_NC = AArch64II::MO_NC;
|
|
return DAG.getNode(
|
|
AArch64ISD::WrapperLarge, DL, PtrVT,
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
|
|
AArch64II::MO_G0 | MO_NC));
|
|
}
|
|
|
|
SDValue Hi =
|
|
DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
|
|
SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
|
|
AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
|
|
return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc DL(Op);
|
|
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large) {
|
|
// Use the GOT for the large code model on iOS.
|
|
if (Subtarget->isTargetMachO()) {
|
|
SDValue GotAddr = DAG.getTargetConstantPool(
|
|
CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
|
|
AArch64II::MO_GOT);
|
|
return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
|
|
}
|
|
|
|
const unsigned char MO_NC = AArch64II::MO_NC;
|
|
return DAG.getNode(
|
|
AArch64ISD::WrapperLarge, DL, PtrVT,
|
|
DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
|
|
CP->getOffset(), AArch64II::MO_G3),
|
|
DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
|
|
CP->getOffset(), AArch64II::MO_G2 | MO_NC),
|
|
DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
|
|
CP->getOffset(), AArch64II::MO_G1 | MO_NC),
|
|
DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
|
|
CP->getOffset(), AArch64II::MO_G0 | MO_NC));
|
|
} else {
|
|
// Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
|
|
// ELF, the only valid one on Darwin.
|
|
SDValue Hi =
|
|
DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
|
|
CP->getOffset(), AArch64II::MO_PAGE);
|
|
SDValue Lo = DAG.getTargetConstantPool(
|
|
CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
|
|
AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
|
|
|
|
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
|
|
return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
|
|
}
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc DL(Op);
|
|
if (getTargetMachine().getCodeModel() == CodeModel::Large &&
|
|
!Subtarget->isTargetMachO()) {
|
|
const unsigned char MO_NC = AArch64II::MO_NC;
|
|
return DAG.getNode(
|
|
AArch64ISD::WrapperLarge, DL, PtrVT,
|
|
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
|
|
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
|
|
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
|
|
DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
|
|
} else {
|
|
SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
|
|
SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
|
|
AArch64II::MO_NC);
|
|
SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
|
|
return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
|
|
}
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
AArch64FunctionInfo *FuncInfo =
|
|
DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue FR =
|
|
DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
|
|
MachinePointerInfo(SV), false, false, 0);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// The layout of the va_list struct is specified in the AArch64 Procedure Call
|
|
// Standard, section B.3.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
|
|
SDLoc DL(Op);
|
|
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue VAList = Op.getOperand(1);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
SmallVector<SDValue, 4> MemOps;
|
|
|
|
// void *__stack at offset 0
|
|
SDValue Stack =
|
|
DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
|
|
MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
|
|
MachinePointerInfo(SV), false, false, 8));
|
|
|
|
// void *__gr_top at offset 8
|
|
int GPRSize = FuncInfo->getVarArgsGPRSize();
|
|
if (GPRSize > 0) {
|
|
SDValue GRTop, GRTopAddr;
|
|
|
|
GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(8, getPointerTy()));
|
|
|
|
GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
|
|
GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
|
|
DAG.getConstant(GPRSize, getPointerTy()));
|
|
|
|
MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
|
|
MachinePointerInfo(SV, 8), false, false, 8));
|
|
}
|
|
|
|
// void *__vr_top at offset 16
|
|
int FPRSize = FuncInfo->getVarArgsFPRSize();
|
|
if (FPRSize > 0) {
|
|
SDValue VRTop, VRTopAddr;
|
|
VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(16, getPointerTy()));
|
|
|
|
VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
|
|
VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
|
|
DAG.getConstant(FPRSize, getPointerTy()));
|
|
|
|
MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
|
|
MachinePointerInfo(SV, 16), false, false, 8));
|
|
}
|
|
|
|
// int __gr_offs at offset 24
|
|
SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(24, getPointerTy()));
|
|
MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
|
|
GROffsAddr, MachinePointerInfo(SV, 24), false,
|
|
false, 4));
|
|
|
|
// int __vr_offs at offset 28
|
|
SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(28, getPointerTy()));
|
|
MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
|
|
VROffsAddr, MachinePointerInfo(SV, 28), false,
|
|
false, 4));
|
|
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
|
|
: LowerAAPCS_VASTART(Op, DAG);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
|
|
// pointer.
|
|
unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
|
|
const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
|
|
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
|
|
|
|
return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1),
|
|
Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32),
|
|
8, false, false, MachinePointerInfo(DestSV),
|
|
MachinePointerInfo(SrcSV));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetDarwin() &&
|
|
"automatic va_arg instruction only works on Darwin");
|
|
|
|
const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Addr = Op.getOperand(1);
|
|
unsigned Align = Op.getConstantOperandVal(3);
|
|
|
|
SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
|
|
MachinePointerInfo(V), false, false, false, 0);
|
|
Chain = VAList.getValue(1);
|
|
|
|
if (Align > 8) {
|
|
assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
|
|
VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(Align - 1, getPointerTy()));
|
|
VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(-(int64_t)Align, getPointerTy()));
|
|
}
|
|
|
|
Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
|
|
uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
|
|
|
|
// Scalar integer and FP values smaller than 64 bits are implicitly extended
|
|
// up to 64 bits. At the very least, we have to increase the striding of the
|
|
// vaargs list to match this, and for FP values we need to introduce
|
|
// FP_ROUND nodes as well.
|
|
if (VT.isInteger() && !VT.isVector())
|
|
ArgSize = 8;
|
|
bool NeedFPTrunc = false;
|
|
if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
|
|
ArgSize = 8;
|
|
NeedFPTrunc = true;
|
|
}
|
|
|
|
// Increment the pointer, VAList, to the next vaarg
|
|
SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
|
|
DAG.getConstant(ArgSize, getPointerTy()));
|
|
// Store the incremented VAList to the legalized pointer
|
|
SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
|
|
false, false, 0);
|
|
|
|
// Load the actual argument out of the pointer VAList
|
|
if (NeedFPTrunc) {
|
|
// Load the value as an f64.
|
|
SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
// Round the value down to an f32.
|
|
SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
|
|
DAG.getIntPtrConstant(1));
|
|
SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
|
|
// Merge the rounded value with the chain output of the load.
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
|
|
false, false, 0);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setFrameAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
SDValue FrameAddr =
|
|
DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
|
|
while (Depth--)
|
|
FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
return FrameAddr;
|
|
}
|
|
|
|
// FIXME? Maybe this could be a TableGen attribute on some registers and
|
|
// this table could be generated automatically from RegInfo.
|
|
unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
|
|
EVT VT) const {
|
|
unsigned Reg = StringSwitch<unsigned>(RegName)
|
|
.Case("sp", AArch64::SP)
|
|
.Default(0);
|
|
if (Reg)
|
|
return Reg;
|
|
report_fatal_error("Invalid register name global variable");
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MFI->setReturnAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
if (Depth) {
|
|
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset = DAG.getConstant(8, getPointerTy());
|
|
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
}
|
|
|
|
// Return LR, which contains the return address. Mark it an implicit live-in.
|
|
unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
|
|
}
|
|
|
|
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
|
|
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
|
|
SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
SDValue ARMcc;
|
|
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
|
|
|
|
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
|
|
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
|
|
DAG.getConstant(VTBits, MVT::i64), ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
|
|
DAG.getConstant(VTBits, MVT::i64));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
|
|
|
|
SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
|
|
ISD::SETGE, dl, DAG);
|
|
SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
|
|
|
|
SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
|
|
SDValue Lo =
|
|
DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
|
|
|
|
// AArch64 shifts larger than the register width are wrapped rather than
|
|
// clamped, so we can't just emit "hi >> x".
|
|
SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
|
|
SDValue TrueValHi = Opc == ISD::SRA
|
|
? DAG.getNode(Opc, dl, VT, ShOpHi,
|
|
DAG.getConstant(VTBits - 1, MVT::i64))
|
|
: DAG.getConstant(0, VT);
|
|
SDValue Hi =
|
|
DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
|
|
/// i64 values and take a 2 x i64 value to shift plus a shift amount.
|
|
SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
SDValue ARMcc;
|
|
|
|
assert(Op.getOpcode() == ISD::SHL_PARTS);
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
|
|
DAG.getConstant(VTBits, MVT::i64), ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
|
|
DAG.getConstant(VTBits, MVT::i64));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
|
|
SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
|
|
|
|
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
|
|
SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64),
|
|
ISD::SETGE, dl, DAG);
|
|
SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32);
|
|
SDValue Hi =
|
|
DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
|
|
|
|
// AArch64 shifts of larger than register sizes are wrapped rather than
|
|
// clamped, so we can't just emit "lo << a" if a is too big.
|
|
SDValue TrueValLo = DAG.getConstant(0, VT);
|
|
SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue Lo =
|
|
DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, dl);
|
|
}
|
|
|
|
bool AArch64TargetLowering::isOffsetFoldingLegal(
|
|
const GlobalAddressSDNode *GA) const {
|
|
// The AArch64 target doesn't support folding offsets into global addresses.
|
|
return false;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
// We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
|
|
// FIXME: We should be able to handle f128 as well with a clever lowering.
|
|
if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
|
|
return true;
|
|
|
|
if (VT == MVT::f64)
|
|
return AArch64_AM::getFP64Imm(Imm) != -1;
|
|
else if (VT == MVT::f32)
|
|
return AArch64_AM::getFP32Imm(Imm) != -1;
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Table of Constraints
|
|
// TODO: This is the current set of constraints supported by ARM for the
|
|
// compiler, not all of them may make sense, e.g. S may be difficult to support.
|
|
//
|
|
// r - A general register
|
|
// w - An FP/SIMD register of some size in the range v0-v31
|
|
// x - An FP/SIMD register of some size in the range v0-v15
|
|
// I - Constant that can be used with an ADD instruction
|
|
// J - Constant that can be used with a SUB instruction
|
|
// K - Constant that can be used with a 32-bit logical instruction
|
|
// L - Constant that can be used with a 64-bit logical instruction
|
|
// M - Constant that can be used as a 32-bit MOV immediate
|
|
// N - Constant that can be used as a 64-bit MOV immediate
|
|
// Q - A memory reference with base register and no offset
|
|
// S - A symbolic address
|
|
// Y - Floating point constant zero
|
|
// Z - Integer constant zero
|
|
//
|
|
// Note that general register operands will be output using their 64-bit x
|
|
// register name, whatever the size of the variable, unless the asm operand
|
|
// is prefixed by the %w modifier. Floating-point and SIMD register operands
|
|
// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
|
|
// %q modifier.
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
AArch64TargetLowering::ConstraintType
|
|
AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default:
|
|
break;
|
|
case 'z':
|
|
return C_Other;
|
|
case 'x':
|
|
case 'w':
|
|
return C_RegisterClass;
|
|
// An address with a single base register. Due to the way we
|
|
// currently handle addresses it is the same as 'r'.
|
|
case 'Q':
|
|
return C_Memory;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
AArch64TargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (!CallOperandVal)
|
|
return CW_Default;
|
|
Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
case 'x':
|
|
case 'w':
|
|
if (type->isFloatingPointTy() || type->isVectorTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'z':
|
|
weight = CW_Constant;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
AArch64TargetLowering::getRegForInlineAsmConstraint(
|
|
const std::string &Constraint, MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'r':
|
|
if (VT.getSizeInBits() == 64)
|
|
return std::make_pair(0U, &AArch64::GPR64commonRegClass);
|
|
return std::make_pair(0U, &AArch64::GPR32commonRegClass);
|
|
case 'w':
|
|
if (VT == MVT::f32)
|
|
return std::make_pair(0U, &AArch64::FPR32RegClass);
|
|
if (VT.getSizeInBits() == 64)
|
|
return std::make_pair(0U, &AArch64::FPR64RegClass);
|
|
if (VT.getSizeInBits() == 128)
|
|
return std::make_pair(0U, &AArch64::FPR128RegClass);
|
|
break;
|
|
// The instructions that this constraint is designed for can
|
|
// only take 128-bit registers so just use that regclass.
|
|
case 'x':
|
|
if (VT.getSizeInBits() == 128)
|
|
return std::make_pair(0U, &AArch64::FPR128_loRegClass);
|
|
break;
|
|
}
|
|
}
|
|
if (StringRef("{cc}").equals_lower(Constraint))
|
|
return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
|
|
|
|
// Use the default implementation in TargetLowering to convert the register
|
|
// constraint into a member of a register class.
|
|
std::pair<unsigned, const TargetRegisterClass *> Res;
|
|
Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
|
|
// Not found as a standard register?
|
|
if (!Res.second) {
|
|
unsigned Size = Constraint.size();
|
|
if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
|
|
tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
|
|
const std::string Reg =
|
|
std::string(&Constraint[2], &Constraint[Size - 1]);
|
|
int RegNo = atoi(Reg.c_str());
|
|
if (RegNo >= 0 && RegNo <= 31) {
|
|
// v0 - v31 are aliases of q0 - q31.
|
|
// By default we'll emit v0-v31 for this unless there's a modifier where
|
|
// we'll emit the correct register as well.
|
|
Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
|
|
Res.second = &AArch64::FPR128RegClass;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void AArch64TargetLowering::LowerAsmOperandForConstraint(
|
|
SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result;
|
|
|
|
// Currently only support length 1 constraints.
|
|
if (Constraint.length() != 1)
|
|
return;
|
|
|
|
char ConstraintLetter = Constraint[0];
|
|
switch (ConstraintLetter) {
|
|
default:
|
|
break;
|
|
|
|
// This set of constraints deal with valid constants for various instructions.
|
|
// Validate and return a target constant for them if we can.
|
|
case 'z': {
|
|
// 'z' maps to xzr or wzr so it needs an input of 0.
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C || C->getZExtValue() != 0)
|
|
return;
|
|
|
|
if (Op.getValueType() == MVT::i64)
|
|
Result = DAG.getRegister(AArch64::XZR, MVT::i64);
|
|
else
|
|
Result = DAG.getRegister(AArch64::WZR, MVT::i32);
|
|
break;
|
|
}
|
|
|
|
case 'I':
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C)
|
|
return;
|
|
|
|
// Grab the value and do some validation.
|
|
uint64_t CVal = C->getZExtValue();
|
|
switch (ConstraintLetter) {
|
|
// The I constraint applies only to simple ADD or SUB immediate operands:
|
|
// i.e. 0 to 4095 with optional shift by 12
|
|
// The J constraint applies only to ADD or SUB immediates that would be
|
|
// valid when negated, i.e. if [an add pattern] were to be output as a SUB
|
|
// instruction [or vice versa], in other words -1 to -4095 with optional
|
|
// left shift by 12.
|
|
case 'I':
|
|
if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
|
|
break;
|
|
return;
|
|
case 'J': {
|
|
uint64_t NVal = -C->getSExtValue();
|
|
if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
|
|
CVal = C->getSExtValue();
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
// The K and L constraints apply *only* to logical immediates, including
|
|
// what used to be the MOVI alias for ORR (though the MOVI alias has now
|
|
// been removed and MOV should be used). So these constraints have to
|
|
// distinguish between bit patterns that are valid 32-bit or 64-bit
|
|
// "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
|
|
// not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
|
|
// versa.
|
|
case 'K':
|
|
if (AArch64_AM::isLogicalImmediate(CVal, 32))
|
|
break;
|
|
return;
|
|
case 'L':
|
|
if (AArch64_AM::isLogicalImmediate(CVal, 64))
|
|
break;
|
|
return;
|
|
// The M and N constraints are a superset of K and L respectively, for use
|
|
// with the MOV (immediate) alias. As well as the logical immediates they
|
|
// also match 32 or 64-bit immediates that can be loaded either using a
|
|
// *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
|
|
// (M) or 64-bit 0x1234000000000000 (N) etc.
|
|
// As a note some of this code is liberally stolen from the asm parser.
|
|
case 'M': {
|
|
if (!isUInt<32>(CVal))
|
|
return;
|
|
if (AArch64_AM::isLogicalImmediate(CVal, 32))
|
|
break;
|
|
if ((CVal & 0xFFFF) == CVal)
|
|
break;
|
|
if ((CVal & 0xFFFF0000ULL) == CVal)
|
|
break;
|
|
uint64_t NCVal = ~(uint32_t)CVal;
|
|
if ((NCVal & 0xFFFFULL) == NCVal)
|
|
break;
|
|
if ((NCVal & 0xFFFF0000ULL) == NCVal)
|
|
break;
|
|
return;
|
|
}
|
|
case 'N': {
|
|
if (AArch64_AM::isLogicalImmediate(CVal, 64))
|
|
break;
|
|
if ((CVal & 0xFFFFULL) == CVal)
|
|
break;
|
|
if ((CVal & 0xFFFF0000ULL) == CVal)
|
|
break;
|
|
if ((CVal & 0xFFFF00000000ULL) == CVal)
|
|
break;
|
|
if ((CVal & 0xFFFF000000000000ULL) == CVal)
|
|
break;
|
|
uint64_t NCVal = ~CVal;
|
|
if ((NCVal & 0xFFFFULL) == NCVal)
|
|
break;
|
|
if ((NCVal & 0xFFFF0000ULL) == NCVal)
|
|
break;
|
|
if ((NCVal & 0xFFFF00000000ULL) == NCVal)
|
|
break;
|
|
if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
|
|
break;
|
|
return;
|
|
}
|
|
default:
|
|
return;
|
|
}
|
|
|
|
// All assembler immediates are 64-bit integers.
|
|
Result = DAG.getTargetConstant(CVal, MVT::i64);
|
|
break;
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
|
|
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 Advanced SIMD Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// WidenVector - Given a value in the V64 register class, produce the
|
|
/// equivalent value in the V128 register class.
|
|
static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
|
|
EVT VT = V64Reg.getValueType();
|
|
unsigned NarrowSize = VT.getVectorNumElements();
|
|
MVT EltTy = VT.getVectorElementType().getSimpleVT();
|
|
MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
|
|
SDLoc DL(V64Reg);
|
|
|
|
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
|
|
V64Reg, DAG.getConstant(0, MVT::i32));
|
|
}
|
|
|
|
/// getExtFactor - Determine the adjustment factor for the position when
|
|
/// generating an "extract from vector registers" instruction.
|
|
static unsigned getExtFactor(SDValue &V) {
|
|
EVT EltType = V.getValueType().getVectorElementType();
|
|
return EltType.getSizeInBits() / 8;
|
|
}
|
|
|
|
/// NarrowVector - Given a value in the V128 register class, produce the
|
|
/// equivalent value in the V64 register class.
|
|
static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
|
|
EVT VT = V128Reg.getValueType();
|
|
unsigned WideSize = VT.getVectorNumElements();
|
|
MVT EltTy = VT.getVectorElementType().getSimpleVT();
|
|
MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
|
|
SDLoc DL(V128Reg);
|
|
|
|
return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
|
|
}
|
|
|
|
// Gather data to see if the operation can be modelled as a
|
|
// shuffle in combination with VEXTs.
|
|
SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
struct ShuffleSourceInfo {
|
|
SDValue Vec;
|
|
unsigned MinElt;
|
|
unsigned MaxElt;
|
|
|
|
// We may insert some combination of BITCASTs and VEXT nodes to force Vec to
|
|
// be compatible with the shuffle we intend to construct. As a result
|
|
// ShuffleVec will be some sliding window into the original Vec.
|
|
SDValue ShuffleVec;
|
|
|
|
// Code should guarantee that element i in Vec starts at element "WindowBase
|
|
// + i * WindowScale in ShuffleVec".
|
|
int WindowBase;
|
|
int WindowScale;
|
|
|
|
bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
|
|
ShuffleSourceInfo(SDValue Vec)
|
|
: Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
|
|
WindowScale(1) {}
|
|
};
|
|
|
|
// First gather all vectors used as an immediate source for this BUILD_VECTOR
|
|
// node.
|
|
SmallVector<ShuffleSourceInfo, 2> Sources;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
|
|
// A shuffle can only come from building a vector from various
|
|
// elements of other vectors.
|
|
return SDValue();
|
|
}
|
|
|
|
// Add this element source to the list if it's not already there.
|
|
SDValue SourceVec = V.getOperand(0);
|
|
auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
|
|
if (Source == Sources.end())
|
|
Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
|
|
|
|
// Update the minimum and maximum lane number seen.
|
|
unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
|
|
Source->MinElt = std::min(Source->MinElt, EltNo);
|
|
Source->MaxElt = std::max(Source->MaxElt, EltNo);
|
|
}
|
|
|
|
// Currently only do something sane when at most two source vectors
|
|
// are involved.
|
|
if (Sources.size() > 2)
|
|
return SDValue();
|
|
|
|
// Find out the smallest element size among result and two sources, and use
|
|
// it as element size to build the shuffle_vector.
|
|
EVT SmallestEltTy = VT.getVectorElementType();
|
|
for (auto &Source : Sources) {
|
|
EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
|
|
if (SrcEltTy.bitsLT(SmallestEltTy)) {
|
|
SmallestEltTy = SrcEltTy;
|
|
}
|
|
}
|
|
unsigned ResMultiplier =
|
|
VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
|
|
NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
|
|
EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
|
|
|
|
// If the source vector is too wide or too narrow, we may nevertheless be able
|
|
// to construct a compatible shuffle either by concatenating it with UNDEF or
|
|
// extracting a suitable range of elements.
|
|
for (auto &Src : Sources) {
|
|
EVT SrcVT = Src.ShuffleVec.getValueType();
|
|
|
|
if (SrcVT.getSizeInBits() == VT.getSizeInBits())
|
|
continue;
|
|
|
|
// This stage of the search produces a source with the same element type as
|
|
// the original, but with a total width matching the BUILD_VECTOR output.
|
|
EVT EltVT = SrcVT.getVectorElementType();
|
|
unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
|
|
EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
|
|
|
|
if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
|
|
assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
|
|
// We can pad out the smaller vector for free, so if it's part of a
|
|
// shuffle...
|
|
Src.ShuffleVec =
|
|
DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getUNDEF(Src.ShuffleVec.getValueType()));
|
|
continue;
|
|
}
|
|
|
|
assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
|
|
|
|
if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
|
|
// Span too large for a VEXT to cope
|
|
return SDValue();
|
|
}
|
|
|
|
if (Src.MinElt >= NumSrcElts) {
|
|
// The extraction can just take the second half
|
|
Src.ShuffleVec =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getIntPtrConstant(NumSrcElts));
|
|
Src.WindowBase = -NumSrcElts;
|
|
} else if (Src.MaxElt < NumSrcElts) {
|
|
// The extraction can just take the first half
|
|
Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
|
|
Src.ShuffleVec, DAG.getIntPtrConstant(0));
|
|
} else {
|
|
// An actual VEXT is needed
|
|
SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
|
|
Src.ShuffleVec, DAG.getIntPtrConstant(0));
|
|
SDValue VEXTSrc2 =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
|
|
DAG.getIntPtrConstant(NumSrcElts));
|
|
unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
|
|
|
|
Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
|
|
VEXTSrc2, DAG.getConstant(Imm, MVT::i32));
|
|
Src.WindowBase = -Src.MinElt;
|
|
}
|
|
}
|
|
|
|
// Another possible incompatibility occurs from the vector element types. We
|
|
// can fix this by bitcasting the source vectors to the same type we intend
|
|
// for the shuffle.
|
|
for (auto &Src : Sources) {
|
|
EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
|
|
if (SrcEltTy == SmallestEltTy)
|
|
continue;
|
|
assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
|
|
Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
|
|
Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
|
|
Src.WindowBase *= Src.WindowScale;
|
|
}
|
|
|
|
// Final sanity check before we try to actually produce a shuffle.
|
|
DEBUG(
|
|
for (auto Src : Sources)
|
|
assert(Src.ShuffleVec.getValueType() == ShuffleVT);
|
|
);
|
|
|
|
// The stars all align, our next step is to produce the mask for the shuffle.
|
|
SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
|
|
int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
|
|
for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
|
|
SDValue Entry = Op.getOperand(i);
|
|
if (Entry.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
|
|
auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
|
|
int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
|
|
|
|
// EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
|
|
// trunc. So only std::min(SrcBits, DestBits) actually get defined in this
|
|
// segment.
|
|
EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
|
|
int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
|
|
VT.getVectorElementType().getSizeInBits());
|
|
int LanesDefined = BitsDefined / BitsPerShuffleLane;
|
|
|
|
// This source is expected to fill ResMultiplier lanes of the final shuffle,
|
|
// starting at the appropriate offset.
|
|
int *LaneMask = &Mask[i * ResMultiplier];
|
|
|
|
int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
|
|
ExtractBase += NumElts * (Src - Sources.begin());
|
|
for (int j = 0; j < LanesDefined; ++j)
|
|
LaneMask[j] = ExtractBase + j;
|
|
}
|
|
|
|
// Final check before we try to produce nonsense...
|
|
if (!isShuffleMaskLegal(Mask, ShuffleVT))
|
|
return SDValue();
|
|
|
|
SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
|
|
for (unsigned i = 0; i < Sources.size(); ++i)
|
|
ShuffleOps[i] = Sources[i].ShuffleVec;
|
|
|
|
SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
|
|
ShuffleOps[1], &Mask[0]);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
|
|
}
|
|
|
|
// check if an EXT instruction can handle the shuffle mask when the
|
|
// vector sources of the shuffle are the same.
|
|
static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
// Assume that the first shuffle index is not UNDEF. Fail if it is.
|
|
if (M[0] < 0)
|
|
return false;
|
|
|
|
Imm = M[0];
|
|
|
|
// If this is a VEXT shuffle, the immediate value is the index of the first
|
|
// element. The other shuffle indices must be the successive elements after
|
|
// the first one.
|
|
unsigned ExpectedElt = Imm;
|
|
for (unsigned i = 1; i < NumElts; ++i) {
|
|
// Increment the expected index. If it wraps around, just follow it
|
|
// back to index zero and keep going.
|
|
++ExpectedElt;
|
|
if (ExpectedElt == NumElts)
|
|
ExpectedElt = 0;
|
|
|
|
if (M[i] < 0)
|
|
continue; // ignore UNDEF indices
|
|
if (ExpectedElt != static_cast<unsigned>(M[i]))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// check if an EXT instruction can handle the shuffle mask when the
|
|
// vector sources of the shuffle are different.
|
|
static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
|
|
unsigned &Imm) {
|
|
// Look for the first non-undef element.
|
|
const int *FirstRealElt = std::find_if(M.begin(), M.end(),
|
|
[](int Elt) {return Elt >= 0;});
|
|
|
|
// Benefit form APInt to handle overflow when calculating expected element.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
|
|
APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
|
|
// The following shuffle indices must be the successive elements after the
|
|
// first real element.
|
|
const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
|
|
[&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
|
|
if (FirstWrongElt != M.end())
|
|
return false;
|
|
|
|
// The index of an EXT is the first element if it is not UNDEF.
|
|
// Watch out for the beginning UNDEFs. The EXT index should be the expected
|
|
// value of the first element. E.g.
|
|
// <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
|
|
// <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
|
|
// ExpectedElt is the last mask index plus 1.
|
|
Imm = ExpectedElt.getZExtValue();
|
|
|
|
// There are two difference cases requiring to reverse input vectors.
|
|
// For example, for vector <4 x i32> we have the following cases,
|
|
// Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
|
|
// Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
|
|
// For both cases, we finally use mask <5, 6, 7, 0>, which requires
|
|
// to reverse two input vectors.
|
|
if (Imm < NumElts)
|
|
ReverseEXT = true;
|
|
else
|
|
Imm -= NumElts;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isREVMask - Check if a vector shuffle corresponds to a REV
|
|
/// instruction with the specified blocksize. (The order of the elements
|
|
/// within each block of the vector is reversed.)
|
|
static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
|
|
assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
|
|
"Only possible block sizes for REV are: 16, 32, 64");
|
|
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned BlockElts = M[0] + 1;
|
|
// If the first shuffle index is UNDEF, be optimistic.
|
|
if (M[0] < 0)
|
|
BlockElts = BlockSize / EltSz;
|
|
|
|
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
if (M[i] < 0)
|
|
continue; // ignore UNDEF indices
|
|
if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned i = 0; i != NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
|
|
(M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (M[i] < 0)
|
|
continue; // ignore UNDEF indices
|
|
if ((unsigned)M[i] != 2 * i + WhichResult)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i < NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
|
|
(M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
|
|
static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned i = 0; i != NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
|
|
(M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
|
|
static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned Half = VT.getVectorNumElements() / 2;
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned j = 0; j != 2; ++j) {
|
|
unsigned Idx = WhichResult;
|
|
for (unsigned i = 0; i != Half; ++i) {
|
|
int MIdx = M[i + j * Half];
|
|
if (MIdx >= 0 && (unsigned)MIdx != Idx)
|
|
return false;
|
|
Idx += 2;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
|
|
static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i < NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
|
|
(M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool isINSMask(ArrayRef<int> M, int NumInputElements,
|
|
bool &DstIsLeft, int &Anomaly) {
|
|
if (M.size() != static_cast<size_t>(NumInputElements))
|
|
return false;
|
|
|
|
int NumLHSMatch = 0, NumRHSMatch = 0;
|
|
int LastLHSMismatch = -1, LastRHSMismatch = -1;
|
|
|
|
for (int i = 0; i < NumInputElements; ++i) {
|
|
if (M[i] == -1) {
|
|
++NumLHSMatch;
|
|
++NumRHSMatch;
|
|
continue;
|
|
}
|
|
|
|
if (M[i] == i)
|
|
++NumLHSMatch;
|
|
else
|
|
LastLHSMismatch = i;
|
|
|
|
if (M[i] == i + NumInputElements)
|
|
++NumRHSMatch;
|
|
else
|
|
LastRHSMismatch = i;
|
|
}
|
|
|
|
if (NumLHSMatch == NumInputElements - 1) {
|
|
DstIsLeft = true;
|
|
Anomaly = LastLHSMismatch;
|
|
return true;
|
|
} else if (NumRHSMatch == NumInputElements - 1) {
|
|
DstIsLeft = false;
|
|
Anomaly = LastRHSMismatch;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
|
|
if (VT.getSizeInBits() != 128)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
for (int I = 0, E = NumElts / 2; I != E; I++) {
|
|
if (Mask[I] != I)
|
|
return false;
|
|
}
|
|
|
|
int Offset = NumElts / 2;
|
|
for (int I = NumElts / 2, E = NumElts; I != E; I++) {
|
|
if (Mask[I] != I + SplitLHS * Offset)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue V0 = Op.getOperand(0);
|
|
SDValue V1 = Op.getOperand(1);
|
|
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
|
|
|
|
if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
|
|
VT.getVectorElementType() != V1.getValueType().getVectorElementType())
|
|
return SDValue();
|
|
|
|
bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
|
|
|
|
if (!isConcatMask(Mask, VT, SplitV0))
|
|
return SDValue();
|
|
|
|
EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
|
|
VT.getVectorNumElements() / 2);
|
|
if (SplitV0) {
|
|
V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
|
|
DAG.getConstant(0, MVT::i64));
|
|
}
|
|
if (V1.getValueType().getSizeInBits() == 128) {
|
|
V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
|
|
DAG.getConstant(0, MVT::i64));
|
|
}
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
|
|
}
|
|
|
|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
|
|
/// the specified operations to build the shuffle.
|
|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
|
|
SDValue RHS, SelectionDAG &DAG,
|
|
SDLoc dl) {
|
|
unsigned OpNum = (PFEntry >> 26) & 0x0F;
|
|
unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
|
|
unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
|
|
|
|
enum {
|
|
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
|
|
OP_VREV,
|
|
OP_VDUP0,
|
|
OP_VDUP1,
|
|
OP_VDUP2,
|
|
OP_VDUP3,
|
|
OP_VEXT1,
|
|
OP_VEXT2,
|
|
OP_VEXT3,
|
|
OP_VUZPL, // VUZP, left result
|
|
OP_VUZPR, // VUZP, right result
|
|
OP_VZIPL, // VZIP, left result
|
|
OP_VZIPR, // VZIP, right result
|
|
OP_VTRNL, // VTRN, left result
|
|
OP_VTRNR // VTRN, right result
|
|
};
|
|
|
|
if (OpNum == OP_COPY) {
|
|
if (LHSID == (1 * 9 + 2) * 9 + 3)
|
|
return LHS;
|
|
assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
|
|
return RHS;
|
|
}
|
|
|
|
SDValue OpLHS, OpRHS;
|
|
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
|
|
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
|
|
EVT VT = OpLHS.getValueType();
|
|
|
|
switch (OpNum) {
|
|
default:
|
|
llvm_unreachable("Unknown shuffle opcode!");
|
|
case OP_VREV:
|
|
// VREV divides the vector in half and swaps within the half.
|
|
if (VT.getVectorElementType() == MVT::i32 ||
|
|
VT.getVectorElementType() == MVT::f32)
|
|
return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
|
|
// vrev <4 x i16> -> REV32
|
|
if (VT.getVectorElementType() == MVT::i16 ||
|
|
VT.getVectorElementType() == MVT::f16)
|
|
return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
|
|
// vrev <4 x i8> -> REV16
|
|
assert(VT.getVectorElementType() == MVT::i8);
|
|
return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
|
|
case OP_VDUP0:
|
|
case OP_VDUP1:
|
|
case OP_VDUP2:
|
|
case OP_VDUP3: {
|
|
EVT EltTy = VT.getVectorElementType();
|
|
unsigned Opcode;
|
|
if (EltTy == MVT::i8)
|
|
Opcode = AArch64ISD::DUPLANE8;
|
|
else if (EltTy == MVT::i16)
|
|
Opcode = AArch64ISD::DUPLANE16;
|
|
else if (EltTy == MVT::i32 || EltTy == MVT::f32)
|
|
Opcode = AArch64ISD::DUPLANE32;
|
|
else if (EltTy == MVT::i64 || EltTy == MVT::f64)
|
|
Opcode = AArch64ISD::DUPLANE64;
|
|
else
|
|
llvm_unreachable("Invalid vector element type?");
|
|
|
|
if (VT.getSizeInBits() == 64)
|
|
OpLHS = WidenVector(OpLHS, DAG);
|
|
SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64);
|
|
return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
|
|
}
|
|
case OP_VEXT1:
|
|
case OP_VEXT2:
|
|
case OP_VEXT3: {
|
|
unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
|
|
return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
|
|
DAG.getConstant(Imm, MVT::i32));
|
|
}
|
|
case OP_VUZPL:
|
|
return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
case OP_VUZPR:
|
|
return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
case OP_VZIPL:
|
|
return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
case OP_VZIPR:
|
|
return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
case OP_VTRNL:
|
|
return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
case OP_VTRNR:
|
|
return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
|
|
OpRHS);
|
|
}
|
|
}
|
|
|
|
static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
|
|
SelectionDAG &DAG) {
|
|
// Check to see if we can use the TBL instruction.
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
|
|
EVT EltVT = Op.getValueType().getVectorElementType();
|
|
unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
|
|
|
|
SmallVector<SDValue, 8> TBLMask;
|
|
for (int Val : ShuffleMask) {
|
|
for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
|
|
unsigned Offset = Byte + Val * BytesPerElt;
|
|
TBLMask.push_back(DAG.getConstant(Offset, MVT::i32));
|
|
}
|
|
}
|
|
|
|
MVT IndexVT = MVT::v8i8;
|
|
unsigned IndexLen = 8;
|
|
if (Op.getValueType().getSizeInBits() == 128) {
|
|
IndexVT = MVT::v16i8;
|
|
IndexLen = 16;
|
|
}
|
|
|
|
SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
|
|
SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
|
|
|
|
SDValue Shuffle;
|
|
if (V2.getNode()->getOpcode() == ISD::UNDEF) {
|
|
if (IndexLen == 8)
|
|
V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
|
|
Shuffle = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
|
|
makeArrayRef(TBLMask.data(), IndexLen)));
|
|
} else {
|
|
if (IndexLen == 8) {
|
|
V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
|
|
Shuffle = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
|
|
makeArrayRef(TBLMask.data(), IndexLen)));
|
|
} else {
|
|
// FIXME: We cannot, for the moment, emit a TBL2 instruction because we
|
|
// cannot currently represent the register constraints on the input
|
|
// table registers.
|
|
// Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
|
|
// DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
|
|
// &TBLMask[0], IndexLen));
|
|
Shuffle = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
|
|
makeArrayRef(TBLMask.data(), IndexLen)));
|
|
}
|
|
}
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
|
|
}
|
|
|
|
static unsigned getDUPLANEOp(EVT EltType) {
|
|
if (EltType == MVT::i8)
|
|
return AArch64ISD::DUPLANE8;
|
|
if (EltType == MVT::i16 || EltType == MVT::f16)
|
|
return AArch64ISD::DUPLANE16;
|
|
if (EltType == MVT::i32 || EltType == MVT::f32)
|
|
return AArch64ISD::DUPLANE32;
|
|
if (EltType == MVT::i64 || EltType == MVT::f64)
|
|
return AArch64ISD::DUPLANE64;
|
|
|
|
llvm_unreachable("Invalid vector element type?");
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
|
|
|
|
// Convert shuffles that are directly supported on NEON to target-specific
|
|
// DAG nodes, instead of keeping them as shuffles and matching them again
|
|
// during code selection. This is more efficient and avoids the possibility
|
|
// of inconsistencies between legalization and selection.
|
|
ArrayRef<int> ShuffleMask = SVN->getMask();
|
|
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
|
|
if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
|
|
V1.getValueType().getSimpleVT())) {
|
|
int Lane = SVN->getSplatIndex();
|
|
// If this is undef splat, generate it via "just" vdup, if possible.
|
|
if (Lane == -1)
|
|
Lane = 0;
|
|
|
|
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
|
|
return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
|
|
V1.getOperand(0));
|
|
// Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
|
|
// constant. If so, we can just reference the lane's definition directly.
|
|
if (V1.getOpcode() == ISD::BUILD_VECTOR &&
|
|
!isa<ConstantSDNode>(V1.getOperand(Lane)))
|
|
return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
|
|
|
|
// Otherwise, duplicate from the lane of the input vector.
|
|
unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
|
|
|
|
// SelectionDAGBuilder may have "helpfully" already extracted or conatenated
|
|
// to make a vector of the same size as this SHUFFLE. We can ignore the
|
|
// extract entirely, and canonicalise the concat using WidenVector.
|
|
if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
|
|
Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
|
|
V1 = V1.getOperand(0);
|
|
} else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
|
|
unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
|
|
Lane -= Idx * VT.getVectorNumElements() / 2;
|
|
V1 = WidenVector(V1.getOperand(Idx), DAG);
|
|
} else if (VT.getSizeInBits() == 64)
|
|
V1 = WidenVector(V1, DAG);
|
|
|
|
return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64));
|
|
}
|
|
|
|
if (isREVMask(ShuffleMask, VT, 64))
|
|
return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
|
|
if (isREVMask(ShuffleMask, VT, 32))
|
|
return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
|
|
if (isREVMask(ShuffleMask, VT, 16))
|
|
return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
|
|
|
|
bool ReverseEXT = false;
|
|
unsigned Imm;
|
|
if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
|
|
if (ReverseEXT)
|
|
std::swap(V1, V2);
|
|
Imm *= getExtFactor(V1);
|
|
return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
|
|
DAG.getConstant(Imm, MVT::i32));
|
|
} else if (V2->getOpcode() == ISD::UNDEF &&
|
|
isSingletonEXTMask(ShuffleMask, VT, Imm)) {
|
|
Imm *= getExtFactor(V1);
|
|
return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
|
|
DAG.getConstant(Imm, MVT::i32));
|
|
}
|
|
|
|
unsigned WhichResult;
|
|
if (isZIPMask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
|
|
}
|
|
if (isUZPMask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
|
|
}
|
|
if (isTRNMask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
|
|
}
|
|
|
|
if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
|
|
}
|
|
if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
|
|
}
|
|
if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
|
|
unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
|
|
return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
|
|
}
|
|
|
|
SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
|
|
if (Concat.getNode())
|
|
return Concat;
|
|
|
|
bool DstIsLeft;
|
|
int Anomaly;
|
|
int NumInputElements = V1.getValueType().getVectorNumElements();
|
|
if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
|
|
SDValue DstVec = DstIsLeft ? V1 : V2;
|
|
SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64);
|
|
|
|
SDValue SrcVec = V1;
|
|
int SrcLane = ShuffleMask[Anomaly];
|
|
if (SrcLane >= NumInputElements) {
|
|
SrcVec = V2;
|
|
SrcLane -= VT.getVectorNumElements();
|
|
}
|
|
SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64);
|
|
|
|
EVT ScalarVT = VT.getVectorElementType();
|
|
|
|
if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
|
|
ScalarVT = MVT::i32;
|
|
|
|
return DAG.getNode(
|
|
ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
|
|
DstLaneV);
|
|
}
|
|
|
|
// If the shuffle is not directly supported and it has 4 elements, use
|
|
// the PerfectShuffle-generated table to synthesize it from other shuffles.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (NumElts == 4) {
|
|
unsigned PFIndexes[4];
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (ShuffleMask[i] < 0)
|
|
PFIndexes[i] = 8;
|
|
else
|
|
PFIndexes[i] = ShuffleMask[i];
|
|
}
|
|
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
|
|
PFIndexes[2] * 9 + PFIndexes[3];
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
if (Cost <= 4)
|
|
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
|
|
}
|
|
|
|
return GenerateTBL(Op, ShuffleMask, DAG);
|
|
}
|
|
|
|
static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
|
|
APInt &UndefBits) {
|
|
EVT VT = BVN->getValueType(0);
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
|
|
unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
|
|
|
|
for (unsigned i = 0; i < NumSplats; ++i) {
|
|
CnstBits <<= SplatBitSize;
|
|
UndefBits <<= SplatBitSize;
|
|
CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
|
|
UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
BuildVectorSDNode *BVN =
|
|
dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
if (!BVN)
|
|
return Op;
|
|
|
|
APInt CnstBits(VT.getSizeInBits(), 0);
|
|
APInt UndefBits(VT.getSizeInBits(), 0);
|
|
if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
|
|
// We only have BIC vector immediate instruction, which is and-not.
|
|
CnstBits = ~CnstBits;
|
|
|
|
// We make use of a little bit of goto ickiness in order to avoid having to
|
|
// duplicate the immediate matching logic for the undef toggled case.
|
|
bool SecondTry = false;
|
|
AttemptModImm:
|
|
|
|
if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
|
|
CnstBits = CnstBits.zextOrTrunc(64);
|
|
uint64_t CnstVal = CnstBits.getZExtValue();
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(8, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(16, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(24, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(8, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
}
|
|
|
|
if (SecondTry)
|
|
goto FailedModImm;
|
|
SecondTry = true;
|
|
CnstBits = ~UndefBits;
|
|
goto AttemptModImm;
|
|
}
|
|
|
|
// We can always fall back to a non-immediate AND.
|
|
FailedModImm:
|
|
return Op;
|
|
}
|
|
|
|
// Specialized code to quickly find if PotentialBVec is a BuildVector that
|
|
// consists of only the same constant int value, returned in reference arg
|
|
// ConstVal
|
|
static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
|
|
uint64_t &ConstVal) {
|
|
BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
|
|
if (!Bvec)
|
|
return false;
|
|
ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
|
|
if (!FirstElt)
|
|
return false;
|
|
EVT VT = Bvec->getValueType(0);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
for (unsigned i = 1; i < NumElts; ++i)
|
|
if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
|
|
return false;
|
|
ConstVal = FirstElt->getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
static unsigned getIntrinsicID(const SDNode *N) {
|
|
unsigned Opcode = N->getOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
return Intrinsic::not_intrinsic;
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
if (IID < Intrinsic::num_intrinsics)
|
|
return IID;
|
|
return Intrinsic::not_intrinsic;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
|
|
// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
|
|
// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
|
|
// Also, logical shift right -> sri, with the same structure.
|
|
static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
|
|
// Is the first op an AND?
|
|
const SDValue And = N->getOperand(0);
|
|
if (And.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
// Is the second op an shl or lshr?
|
|
SDValue Shift = N->getOperand(1);
|
|
// This will have been turned into: AArch64ISD::VSHL vector, #shift
|
|
// or AArch64ISD::VLSHR vector, #shift
|
|
unsigned ShiftOpc = Shift.getOpcode();
|
|
if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
|
|
return SDValue();
|
|
bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
|
|
|
|
// Is the shift amount constant?
|
|
ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
|
|
if (!C2node)
|
|
return SDValue();
|
|
|
|
// Is the and mask vector all constant?
|
|
uint64_t C1;
|
|
if (!isAllConstantBuildVector(And.getOperand(1), C1))
|
|
return SDValue();
|
|
|
|
// Is C1 == ~C2, taking into account how much one can shift elements of a
|
|
// particular size?
|
|
uint64_t C2 = C2node->getZExtValue();
|
|
unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
|
|
if (C2 > ElemSizeInBits)
|
|
return SDValue();
|
|
unsigned ElemMask = (1 << ElemSizeInBits) - 1;
|
|
if ((C1 & ElemMask) != (~C2 & ElemMask))
|
|
return SDValue();
|
|
|
|
SDValue X = And.getOperand(0);
|
|
SDValue Y = Shift.getOperand(0);
|
|
|
|
unsigned Intrin =
|
|
IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
|
|
SDValue ResultSLI =
|
|
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1));
|
|
|
|
DEBUG(dbgs() << "aarch64-lower: transformed: \n");
|
|
DEBUG(N->dump(&DAG));
|
|
DEBUG(dbgs() << "into: \n");
|
|
DEBUG(ResultSLI->dump(&DAG));
|
|
|
|
++NumShiftInserts;
|
|
return ResultSLI;
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
|
|
if (EnableAArch64SlrGeneration) {
|
|
SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
|
|
if (Res.getNode())
|
|
return Res;
|
|
}
|
|
|
|
BuildVectorSDNode *BVN =
|
|
dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
|
|
SDValue LHS = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
// OR commutes, so try swapping the operands.
|
|
if (!BVN) {
|
|
LHS = Op.getOperand(0);
|
|
BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
|
|
}
|
|
if (!BVN)
|
|
return Op;
|
|
|
|
APInt CnstBits(VT.getSizeInBits(), 0);
|
|
APInt UndefBits(VT.getSizeInBits(), 0);
|
|
if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
|
|
// We make use of a little bit of goto ickiness in order to avoid having to
|
|
// duplicate the immediate matching logic for the undef toggled case.
|
|
bool SecondTry = false;
|
|
AttemptModImm:
|
|
|
|
if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
|
|
CnstBits = CnstBits.zextOrTrunc(64);
|
|
uint64_t CnstVal = CnstBits.getZExtValue();
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(8, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(16, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(24, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(8, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
}
|
|
|
|
if (SecondTry)
|
|
goto FailedModImm;
|
|
SecondTry = true;
|
|
CnstBits = UndefBits;
|
|
goto AttemptModImm;
|
|
}
|
|
|
|
// We can always fall back to a non-immediate OR.
|
|
FailedModImm:
|
|
return Op;
|
|
}
|
|
|
|
// Normalize the operands of BUILD_VECTOR. The value of constant operands will
|
|
// be truncated to fit element width.
|
|
static SDValue NormalizeBuildVector(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
EVT EltTy= VT.getVectorElementType();
|
|
|
|
if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
|
|
return Op;
|
|
|
|
SmallVector<SDValue, 16> Ops;
|
|
for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
|
|
SDValue Lane = Op.getOperand(I);
|
|
if (Lane.getOpcode() == ISD::Constant) {
|
|
APInt LowBits(EltTy.getSizeInBits(),
|
|
cast<ConstantSDNode>(Lane)->getZExtValue());
|
|
Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32);
|
|
}
|
|
Ops.push_back(Lane);
|
|
}
|
|
return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
Op = NormalizeBuildVector(Op, DAG);
|
|
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
|
|
|
|
APInt CnstBits(VT.getSizeInBits(), 0);
|
|
APInt UndefBits(VT.getSizeInBits(), 0);
|
|
if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
|
|
// We make use of a little bit of goto ickiness in order to avoid having to
|
|
// duplicate the immediate matching logic for the undef toggled case.
|
|
bool SecondTry = false;
|
|
AttemptModImm:
|
|
|
|
if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
|
|
CnstBits = CnstBits.zextOrTrunc(64);
|
|
uint64_t CnstVal = CnstBits.getZExtValue();
|
|
|
|
// Certain magic vector constants (used to express things like NOT
|
|
// and NEG) are passed through unmodified. This allows codegen patterns
|
|
// for these operations to match. Special-purpose patterns will lower
|
|
// these immediates to MOVIs if it proves necessary.
|
|
if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
|
|
return Op;
|
|
|
|
// The many faces of MOVI...
|
|
if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
|
|
if (VT.getSizeInBits() == 128) {
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
|
|
DAG.getConstant(CnstVal, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
// Support the V64 version via subregister insertion.
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
|
|
DAG.getConstant(CnstVal, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(8, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(16, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(24, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(8, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(264, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(272, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
// The few faces of FMOV...
|
|
if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
|
|
VT.getSizeInBits() == 128) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
|
|
SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
|
|
DAG.getConstant(CnstVal, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
// The many faces of MVNI...
|
|
CnstVal = ~CnstVal;
|
|
if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(8, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(16, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(24, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(8, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(264, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
|
|
if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
|
|
CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
|
|
MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
|
|
DAG.getConstant(CnstVal, MVT::i32),
|
|
DAG.getConstant(272, MVT::i32));
|
|
return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
|
|
}
|
|
}
|
|
|
|
if (SecondTry)
|
|
goto FailedModImm;
|
|
SecondTry = true;
|
|
CnstBits = UndefBits;
|
|
goto AttemptModImm;
|
|
}
|
|
FailedModImm:
|
|
|
|
// Scan through the operands to find some interesting properties we can
|
|
// exploit:
|
|
// 1) If only one value is used, we can use a DUP, or
|
|
// 2) if only the low element is not undef, we can just insert that, or
|
|
// 3) if only one constant value is used (w/ some non-constant lanes),
|
|
// we can splat the constant value into the whole vector then fill
|
|
// in the non-constant lanes.
|
|
// 4) FIXME: If different constant values are used, but we can intelligently
|
|
// select the values we'll be overwriting for the non-constant
|
|
// lanes such that we can directly materialize the vector
|
|
// some other way (MOVI, e.g.), we can be sneaky.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
bool isOnlyLowElement = true;
|
|
bool usesOnlyOneValue = true;
|
|
bool usesOnlyOneConstantValue = true;
|
|
bool isConstant = true;
|
|
unsigned NumConstantLanes = 0;
|
|
SDValue Value;
|
|
SDValue ConstantValue;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
if (i > 0)
|
|
isOnlyLowElement = false;
|
|
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
|
|
isConstant = false;
|
|
|
|
if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
|
|
++NumConstantLanes;
|
|
if (!ConstantValue.getNode())
|
|
ConstantValue = V;
|
|
else if (ConstantValue != V)
|
|
usesOnlyOneConstantValue = false;
|
|
}
|
|
|
|
if (!Value.getNode())
|
|
Value = V;
|
|
else if (V != Value)
|
|
usesOnlyOneValue = false;
|
|
}
|
|
|
|
if (!Value.getNode())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
if (isOnlyLowElement)
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
|
|
|
|
// Use DUP for non-constant splats. For f32 constant splats, reduce to
|
|
// i32 and try again.
|
|
if (usesOnlyOneValue) {
|
|
if (!isConstant) {
|
|
if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
Value.getValueType() != VT)
|
|
return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
|
|
|
|
// This is actually a DUPLANExx operation, which keeps everything vectory.
|
|
|
|
// DUPLANE works on 128-bit vectors, widen it if necessary.
|
|
SDValue Lane = Value.getOperand(1);
|
|
Value = Value.getOperand(0);
|
|
if (Value.getValueType().getSizeInBits() == 64)
|
|
Value = WidenVector(Value, DAG);
|
|
|
|
unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
|
|
return DAG.getNode(Opcode, dl, VT, Value, Lane);
|
|
}
|
|
|
|
if (VT.getVectorElementType().isFloatingPoint()) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
MVT NewType =
|
|
(VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
|
|
for (unsigned i = 0; i < NumElts; ++i)
|
|
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
|
|
SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
|
|
Val = LowerBUILD_VECTOR(Val, DAG);
|
|
if (Val.getNode())
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
|
|
}
|
|
}
|
|
|
|
// If there was only one constant value used and for more than one lane,
|
|
// start by splatting that value, then replace the non-constant lanes. This
|
|
// is better than the default, which will perform a separate initialization
|
|
// for each lane.
|
|
if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
|
|
SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
|
|
// Now insert the non-constant lanes.
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
|
|
if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
|
|
// Note that type legalization likely mucked about with the VT of the
|
|
// source operand, so we may have to convert it here before inserting.
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
|
|
}
|
|
}
|
|
return Val;
|
|
}
|
|
|
|
// If all elements are constants and the case above didn't get hit, fall back
|
|
// to the default expansion, which will generate a load from the constant
|
|
// pool.
|
|
if (isConstant)
|
|
return SDValue();
|
|
|
|
// Empirical tests suggest this is rarely worth it for vectors of length <= 2.
|
|
if (NumElts >= 4) {
|
|
SDValue shuffle = ReconstructShuffle(Op, DAG);
|
|
if (shuffle != SDValue())
|
|
return shuffle;
|
|
}
|
|
|
|
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
|
|
// know the default expansion would otherwise fall back on something even
|
|
// worse. For a vector with one or two non-undef values, that's
|
|
// scalar_to_vector for the elements followed by a shuffle (provided the
|
|
// shuffle is valid for the target) and materialization element by element
|
|
// on the stack followed by a load for everything else.
|
|
if (!isConstant && !usesOnlyOneValue) {
|
|
SDValue Vec = DAG.getUNDEF(VT);
|
|
SDValue Op0 = Op.getOperand(0);
|
|
unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
|
|
unsigned i = 0;
|
|
// For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
|
|
// a) Avoid a RMW dependency on the full vector register, and
|
|
// b) Allow the register coalescer to fold away the copy if the
|
|
// value is already in an S or D register.
|
|
if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
|
|
unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
|
|
MachineSDNode *N =
|
|
DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
|
|
DAG.getTargetConstant(SubIdx, MVT::i32));
|
|
Vec = SDValue(N, 0);
|
|
++i;
|
|
}
|
|
for (; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
SDValue LaneIdx = DAG.getConstant(i, MVT::i64);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
|
|
}
|
|
return Vec;
|
|
}
|
|
|
|
// Just use the default expansion. We failed to find a better alternative.
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
|
|
|
|
// Check for non-constant or out of range lane.
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
|
|
if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
|
|
return SDValue();
|
|
|
|
|
|
// Insertion/extraction are legal for V128 types.
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
|
|
VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
|
|
VT == MVT::v8f16)
|
|
return Op;
|
|
|
|
if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
|
|
VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
|
|
return SDValue();
|
|
|
|
// For V64 types, we perform insertion by expanding the value
|
|
// to a V128 type and perform the insertion on that.
|
|
SDLoc DL(Op);
|
|
SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
|
|
EVT WideTy = WideVec.getValueType();
|
|
|
|
SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
// Re-narrow the resultant vector.
|
|
return NarrowVector(Node, DAG);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
|
|
|
|
// Check for non-constant or out of range lane.
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
|
|
return SDValue();
|
|
|
|
|
|
// Insertion/extraction are legal for V128 types.
|
|
if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
|
|
VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
|
|
VT == MVT::v8f16)
|
|
return Op;
|
|
|
|
if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
|
|
VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
|
|
return SDValue();
|
|
|
|
// For V64 types, we perform extraction by expanding the value
|
|
// to a V128 type and perform the extraction on that.
|
|
SDLoc DL(Op);
|
|
SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
|
|
EVT WideTy = WideVec.getValueType();
|
|
|
|
EVT ExtrTy = WideTy.getVectorElementType();
|
|
if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
|
|
ExtrTy = MVT::i32;
|
|
|
|
// For extractions, we just return the result directly.
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
|
|
Op.getOperand(1));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getOperand(0).getValueType();
|
|
SDLoc dl(Op);
|
|
// Just in case...
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
if (!Cst)
|
|
return SDValue();
|
|
unsigned Val = Cst->getZExtValue();
|
|
|
|
unsigned Size = Op.getValueType().getSizeInBits();
|
|
if (Val == 0) {
|
|
switch (Size) {
|
|
case 8:
|
|
return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
|
|
Op.getOperand(0));
|
|
case 16:
|
|
return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
|
|
Op.getOperand(0));
|
|
case 32:
|
|
return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
|
|
Op.getOperand(0));
|
|
case 64:
|
|
return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
|
|
Op.getOperand(0));
|
|
default:
|
|
llvm_unreachable("Unexpected vector type in extract_subvector!");
|
|
}
|
|
}
|
|
// If this is extracting the upper 64-bits of a 128-bit vector, we match
|
|
// that directly.
|
|
if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
|
|
return Op;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
|
|
EVT VT) const {
|
|
if (VT.getVectorNumElements() == 4 &&
|
|
(VT.is128BitVector() || VT.is64BitVector())) {
|
|
unsigned PFIndexes[4];
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (M[i] < 0)
|
|
PFIndexes[i] = 8;
|
|
else
|
|
PFIndexes[i] = M[i];
|
|
}
|
|
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
|
|
PFIndexes[2] * 9 + PFIndexes[3];
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
if (Cost <= 4)
|
|
return true;
|
|
}
|
|
|
|
bool DummyBool;
|
|
int DummyInt;
|
|
unsigned DummyUnsigned;
|
|
|
|
return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
|
|
isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
|
|
isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
|
|
// isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
|
|
isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
|
|
isZIPMask(M, VT, DummyUnsigned) ||
|
|
isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
|
|
isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
|
|
isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
|
|
isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
|
|
isConcatMask(M, VT, VT.getSizeInBits() == 128));
|
|
}
|
|
|
|
/// getVShiftImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift operation, where all the elements of the
|
|
/// build_vector must have the same constant integer value.
|
|
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
|
|
// Ignore bit_converts.
|
|
while (Op.getOpcode() == ISD::BITCAST)
|
|
Op = Op.getOperand(0);
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs, ElementBits) ||
|
|
SplatBitSize > ElementBits)
|
|
return false;
|
|
Cnt = SplatBits.getSExtValue();
|
|
return true;
|
|
}
|
|
|
|
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift left operation. That value must be in the range:
|
|
/// 0 <= Value < ElementBits for a left shift; or
|
|
/// 0 <= Value <= ElementBits for a long left shift.
|
|
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
|
|
if (!getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
|
|
}
|
|
|
|
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift right operation. For a shift opcode, the value
|
|
/// is positive, but for an intrinsic the value count must be negative. The
|
|
/// absolute value must be in the range:
|
|
/// 1 <= |Value| <= ElementBits for a right shift; or
|
|
/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
|
|
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
|
|
int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
|
|
if (!getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
if (isIntrinsic)
|
|
Cnt = -Cnt;
|
|
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
int64_t Cnt;
|
|
|
|
if (!Op.getOperand(1).getValueType().isVector())
|
|
return Op;
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("unexpected shift opcode");
|
|
|
|
case ISD::SHL:
|
|
if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
|
|
return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0),
|
|
DAG.getConstant(Cnt, MVT::i32));
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32),
|
|
Op.getOperand(0), Op.getOperand(1));
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
// Right shift immediate
|
|
if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
|
|
Cnt < EltSize) {
|
|
unsigned Opc =
|
|
(Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
|
|
return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0),
|
|
DAG.getConstant(Cnt, MVT::i32));
|
|
}
|
|
|
|
// Right shift register. Note, there is not a shift right register
|
|
// instruction, but the shift left register instruction takes a signed
|
|
// value, where negative numbers specify a right shift.
|
|
unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
|
|
: Intrinsic::aarch64_neon_ushl;
|
|
// negate the shift amount
|
|
SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
|
|
SDValue NegShiftLeft =
|
|
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
|
|
DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift);
|
|
return NegShiftLeft;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
|
|
AArch64CC::CondCode CC, bool NoNans, EVT VT,
|
|
SDLoc dl, SelectionDAG &DAG) {
|
|
EVT SrcVT = LHS.getValueType();
|
|
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
|
|
APInt CnstBits(VT.getSizeInBits(), 0);
|
|
APInt UndefBits(VT.getSizeInBits(), 0);
|
|
bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
|
|
bool IsZero = IsCnst && (CnstBits == 0);
|
|
|
|
if (SrcVT.getVectorElementType().isFloatingPoint()) {
|
|
switch (CC) {
|
|
default:
|
|
return SDValue();
|
|
case AArch64CC::NE: {
|
|
SDValue Fcmeq;
|
|
if (IsZero)
|
|
Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
|
|
else
|
|
Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
|
|
return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
|
|
}
|
|
case AArch64CC::EQ:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
|
|
case AArch64CC::GE:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
|
|
case AArch64CC::GT:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
|
|
case AArch64CC::LS:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
|
|
case AArch64CC::LT:
|
|
if (!NoNans)
|
|
return SDValue();
|
|
// If we ignore NaNs then we can use to the MI implementation.
|
|
// Fallthrough.
|
|
case AArch64CC::MI:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
|
|
}
|
|
}
|
|
|
|
switch (CC) {
|
|
default:
|
|
return SDValue();
|
|
case AArch64CC::NE: {
|
|
SDValue Cmeq;
|
|
if (IsZero)
|
|
Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
|
|
else
|
|
Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
|
|
return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
|
|
}
|
|
case AArch64CC::EQ:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
|
|
case AArch64CC::GE:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
|
|
case AArch64CC::GT:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
|
|
case AArch64CC::LE:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
|
|
case AArch64CC::LS:
|
|
return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
|
|
case AArch64CC::LO:
|
|
return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
|
|
case AArch64CC::LT:
|
|
if (IsZero)
|
|
return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
|
|
return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
|
|
case AArch64CC::HI:
|
|
return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
|
|
case AArch64CC::HS:
|
|
return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
|
|
}
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
|
|
if (LHS.getValueType().getVectorElementType().isInteger()) {
|
|
assert(LHS.getValueType() == RHS.getValueType());
|
|
AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
|
|
return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(),
|
|
dl, DAG);
|
|
}
|
|
|
|
assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
|
|
LHS.getValueType().getVectorElementType() == MVT::f64);
|
|
|
|
// Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
|
|
// clean. Some of them require two branches to implement.
|
|
AArch64CC::CondCode CC1, CC2;
|
|
bool ShouldInvert;
|
|
changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
|
|
|
|
bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
|
|
SDValue Cmp =
|
|
EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG);
|
|
if (!Cmp.getNode())
|
|
return SDValue();
|
|
|
|
if (CC2 != AArch64CC::AL) {
|
|
SDValue Cmp2 =
|
|
EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG);
|
|
if (!Cmp2.getNode())
|
|
return SDValue();
|
|
|
|
Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2);
|
|
}
|
|
|
|
if (ShouldInvert)
|
|
return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
|
|
|
|
return Cmp;
|
|
}
|
|
|
|
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
|
|
/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
|
|
/// specified in the intrinsic calls.
|
|
bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
unsigned Intrinsic) const {
|
|
switch (Intrinsic) {
|
|
case Intrinsic::aarch64_neon_ld2:
|
|
case Intrinsic::aarch64_neon_ld3:
|
|
case Intrinsic::aarch64_neon_ld4:
|
|
case Intrinsic::aarch64_neon_ld1x2:
|
|
case Intrinsic::aarch64_neon_ld1x3:
|
|
case Intrinsic::aarch64_neon_ld1x4:
|
|
case Intrinsic::aarch64_neon_ld2lane:
|
|
case Intrinsic::aarch64_neon_ld3lane:
|
|
case Intrinsic::aarch64_neon_ld4lane:
|
|
case Intrinsic::aarch64_neon_ld2r:
|
|
case Intrinsic::aarch64_neon_ld3r:
|
|
case Intrinsic::aarch64_neon_ld4r: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
// Conservatively set memVT to the entire set of vectors loaded.
|
|
uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.offset = 0;
|
|
Info.align = 0;
|
|
Info.vol = false; // volatile loads with NEON intrinsics not supported
|
|
Info.readMem = true;
|
|
Info.writeMem = false;
|
|
return true;
|
|
}
|
|
case Intrinsic::aarch64_neon_st2:
|
|
case Intrinsic::aarch64_neon_st3:
|
|
case Intrinsic::aarch64_neon_st4:
|
|
case Intrinsic::aarch64_neon_st1x2:
|
|
case Intrinsic::aarch64_neon_st1x3:
|
|
case Intrinsic::aarch64_neon_st1x4:
|
|
case Intrinsic::aarch64_neon_st2lane:
|
|
case Intrinsic::aarch64_neon_st3lane:
|
|
case Intrinsic::aarch64_neon_st4lane: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
// Conservatively set memVT to the entire set of vectors stored.
|
|
unsigned NumElts = 0;
|
|
for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
|
|
Type *ArgTy = I.getArgOperand(ArgI)->getType();
|
|
if (!ArgTy->isVectorTy())
|
|
break;
|
|
NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
|
|
}
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.offset = 0;
|
|
Info.align = 0;
|
|
Info.vol = false; // volatile stores with NEON intrinsics not supported
|
|
Info.readMem = false;
|
|
Info.writeMem = true;
|
|
return true;
|
|
}
|
|
case Intrinsic::aarch64_ldaxr:
|
|
case Intrinsic::aarch64_ldxr: {
|
|
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::getVT(PtrTy->getElementType());
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
|
|
Info.vol = true;
|
|
Info.readMem = true;
|
|
Info.writeMem = false;
|
|
return true;
|
|
}
|
|
case Intrinsic::aarch64_stlxr:
|
|
case Intrinsic::aarch64_stxr: {
|
|
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::getVT(PtrTy->getElementType());
|
|
Info.ptrVal = I.getArgOperand(1);
|
|
Info.offset = 0;
|
|
Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
|
|
Info.vol = true;
|
|
Info.readMem = false;
|
|
Info.writeMem = true;
|
|
return true;
|
|
}
|
|
case Intrinsic::aarch64_ldaxp:
|
|
case Intrinsic::aarch64_ldxp: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i128;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = 16;
|
|
Info.vol = true;
|
|
Info.readMem = true;
|
|
Info.writeMem = false;
|
|
return true;
|
|
}
|
|
case Intrinsic::aarch64_stlxp:
|
|
case Intrinsic::aarch64_stxp: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i128;
|
|
Info.ptrVal = I.getArgOperand(2);
|
|
Info.offset = 0;
|
|
Info.align = 16;
|
|
Info.vol = true;
|
|
Info.readMem = false;
|
|
Info.writeMem = true;
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Truncations from 64-bit GPR to 32-bit GPR is free.
|
|
bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
|
|
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
|
|
return NumBits1 > NumBits2;
|
|
}
|
|
bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
|
|
if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
|
|
return false;
|
|
unsigned NumBits1 = VT1.getSizeInBits();
|
|
unsigned NumBits2 = VT2.getSizeInBits();
|
|
return NumBits1 > NumBits2;
|
|
}
|
|
|
|
// All 32-bit GPR operations implicitly zero the high-half of the corresponding
|
|
// 64-bit GPR.
|
|
bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
|
|
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
|
|
return NumBits1 == 32 && NumBits2 == 64;
|
|
}
|
|
bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
|
|
if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
|
|
return false;
|
|
unsigned NumBits1 = VT1.getSizeInBits();
|
|
unsigned NumBits2 = VT2.getSizeInBits();
|
|
return NumBits1 == 32 && NumBits2 == 64;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
|
|
EVT VT1 = Val.getValueType();
|
|
if (isZExtFree(VT1, VT2)) {
|
|
return true;
|
|
}
|
|
|
|
if (Val.getOpcode() != ISD::LOAD)
|
|
return false;
|
|
|
|
// 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
|
|
return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
|
|
VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
|
|
VT1.getSizeInBits() <= 32);
|
|
}
|
|
|
|
bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
|
|
unsigned &RequiredAligment) const {
|
|
if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
|
|
return false;
|
|
// Cyclone supports unaligned accesses.
|
|
RequiredAligment = 0;
|
|
unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
|
|
return NumBits == 32 || NumBits == 64;
|
|
}
|
|
|
|
bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
|
|
unsigned &RequiredAligment) const {
|
|
if (!LoadedType.isSimple() ||
|
|
(!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
|
|
return false;
|
|
// Cyclone supports unaligned accesses.
|
|
RequiredAligment = 0;
|
|
unsigned NumBits = LoadedType.getSizeInBits();
|
|
return NumBits == 32 || NumBits == 64;
|
|
}
|
|
|
|
static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
|
|
unsigned AlignCheck) {
|
|
return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
|
|
(DstAlign == 0 || DstAlign % AlignCheck == 0));
|
|
}
|
|
|
|
EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
|
|
unsigned SrcAlign, bool IsMemset,
|
|
bool ZeroMemset,
|
|
bool MemcpyStrSrc,
|
|
MachineFunction &MF) const {
|
|
// Don't use AdvSIMD to implement 16-byte memset. It would have taken one
|
|
// instruction to materialize the v2i64 zero and one store (with restrictive
|
|
// addressing mode). Just do two i64 store of zero-registers.
|
|
bool Fast;
|
|
const Function *F = MF.getFunction();
|
|
if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
|
|
!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::NoImplicitFloat) &&
|
|
(memOpAlign(SrcAlign, DstAlign, 16) ||
|
|
(allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
|
|
return MVT::f128;
|
|
|
|
return Size >= 8 ? MVT::i64 : MVT::i32;
|
|
}
|
|
|
|
// 12-bit optionally shifted immediates are legal for adds.
|
|
bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
|
|
if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
|
|
// immediates is the same as for an add or a sub.
|
|
bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
|
|
if (Immed < 0)
|
|
Immed *= -1;
|
|
return isLegalAddImmediate(Immed);
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
// AArch64 has five basic addressing modes:
|
|
// reg
|
|
// reg + 9-bit signed offset
|
|
// reg + SIZE_IN_BYTES * 12-bit unsigned offset
|
|
// reg1 + reg2
|
|
// reg + SIZE_IN_BYTES * reg
|
|
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
// No reg+reg+imm addressing.
|
|
if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
|
|
return false;
|
|
|
|
// check reg + imm case:
|
|
// i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
|
|
uint64_t NumBytes = 0;
|
|
if (Ty->isSized()) {
|
|
uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
|
|
NumBytes = NumBits / 8;
|
|
if (!isPowerOf2_64(NumBits))
|
|
NumBytes = 0;
|
|
}
|
|
|
|
if (!AM.Scale) {
|
|
int64_t Offset = AM.BaseOffs;
|
|
|
|
// 9-bit signed offset
|
|
if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
|
|
return true;
|
|
|
|
// 12-bit unsigned offset
|
|
unsigned shift = Log2_64(NumBytes);
|
|
if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
|
|
// Must be a multiple of NumBytes (NumBytes is a power of 2)
|
|
(Offset >> shift) << shift == Offset)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
|
|
|
|
if (!AM.Scale || AM.Scale == 1 ||
|
|
(AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
// Scaling factors are not free at all.
|
|
// Operands | Rt Latency
|
|
// -------------------------------------------
|
|
// Rt, [Xn, Xm] | 4
|
|
// -------------------------------------------
|
|
// Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
|
|
// Rt, [Xn, Wm, <extend> #imm] |
|
|
if (isLegalAddressingMode(AM, Ty))
|
|
// Scale represents reg2 * scale, thus account for 1 if
|
|
// it is not equal to 0 or 1.
|
|
return AM.Scale != 0 && AM.Scale != 1;
|
|
return -1;
|
|
}
|
|
|
|
bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
|
|
VT = VT.getScalarType();
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const MCPhysReg *
|
|
AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
|
|
// LR is a callee-save register, but we must treat it as clobbered by any call
|
|
// site. Hence we include LR in the scratch registers, which are in turn added
|
|
// as implicit-defs for stackmaps and patchpoints.
|
|
static const MCPhysReg ScratchRegs[] = {
|
|
AArch64::X16, AArch64::X17, AArch64::LR, 0
|
|
};
|
|
return ScratchRegs;
|
|
}
|
|
|
|
bool
|
|
AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
|
|
EVT VT = N->getValueType(0);
|
|
// If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
|
|
// it with shift to let it be lowered to UBFX.
|
|
if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
|
|
isa<ConstantSDNode>(N->getOperand(1))) {
|
|
uint64_t TruncMask = N->getConstantOperandVal(1);
|
|
if (isMask_64(TruncMask) &&
|
|
N->getOperand(0).getOpcode() == ISD::SRL &&
|
|
isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
|
|
Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return false;
|
|
|
|
int64_t Val = Imm.getSExtValue();
|
|
if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
|
|
return true;
|
|
|
|
if ((int64_t)Val < 0)
|
|
Val = ~Val;
|
|
if (BitSize == 32)
|
|
Val &= (1LL << 32) - 1;
|
|
|
|
unsigned LZ = countLeadingZeros((uint64_t)Val);
|
|
unsigned Shift = (63 - LZ) / 16;
|
|
// MOVZ is free so return true for one or fewer MOVK.
|
|
return (Shift < 3) ? true : false;
|
|
}
|
|
|
|
// Generate SUBS and CSEL for integer abs.
|
|
static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDLoc DL(N);
|
|
|
|
// Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
|
|
// and change it to SUB and CSEL.
|
|
if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
|
|
N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
|
|
N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
|
|
if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
|
|
if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
|
|
SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
|
|
N0.getOperand(0));
|
|
// Generate SUBS & CSEL.
|
|
SDValue Cmp =
|
|
DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
|
|
N0.getOperand(0), DAG.getConstant(0, VT));
|
|
return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
|
|
DAG.getConstant(AArch64CC::PL, MVT::i32),
|
|
SDValue(Cmp.getNode(), 1));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// performXorCombine - Attempts to handle integer ABS.
|
|
static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
return performIntegerAbsCombine(N, DAG);
|
|
}
|
|
|
|
SDValue
|
|
AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
|
|
SelectionDAG &DAG,
|
|
std::vector<SDNode *> *Created) const {
|
|
// fold (sdiv X, pow2)
|
|
EVT VT = N->getValueType(0);
|
|
if ((VT != MVT::i32 && VT != MVT::i64) ||
|
|
!(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
SDValue N0 = N->getOperand(0);
|
|
unsigned Lg2 = Divisor.countTrailingZeros();
|
|
SDValue Zero = DAG.getConstant(0, VT);
|
|
SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, VT);
|
|
|
|
// Add (N0 < 0) ? Pow2 - 1 : 0;
|
|
SDValue CCVal;
|
|
SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
|
|
SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
|
|
|
|
if (Created) {
|
|
Created->push_back(Cmp.getNode());
|
|
Created->push_back(Add.getNode());
|
|
Created->push_back(CSel.getNode());
|
|
}
|
|
|
|
// Divide by pow2.
|
|
SDValue SRA =
|
|
DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64));
|
|
|
|
// If we're dividing by a positive value, we're done. Otherwise, we must
|
|
// negate the result.
|
|
if (Divisor.isNonNegative())
|
|
return SRA;
|
|
|
|
if (Created)
|
|
Created->push_back(SRA.getNode());
|
|
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA);
|
|
}
|
|
|
|
static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
// Multiplication of a power of two plus/minus one can be done more
|
|
// cheaply as as shift+add/sub. For now, this is true unilaterally. If
|
|
// future CPUs have a cheaper MADD instruction, this may need to be
|
|
// gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
|
|
// 64-bit is 5 cycles, so this is always a win.
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
|
|
APInt Value = C->getAPIntValue();
|
|
EVT VT = N->getValueType(0);
|
|
if (Value.isNonNegative()) {
|
|
// (mul x, 2^N + 1) => (add (shl x, N), x)
|
|
APInt VM1 = Value - 1;
|
|
if (VM1.isPowerOf2()) {
|
|
SDValue ShiftedVal =
|
|
DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
|
|
DAG.getConstant(VM1.logBase2(), MVT::i64));
|
|
return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal,
|
|
N->getOperand(0));
|
|
}
|
|
// (mul x, 2^N - 1) => (sub (shl x, N), x)
|
|
APInt VP1 = Value + 1;
|
|
if (VP1.isPowerOf2()) {
|
|
SDValue ShiftedVal =
|
|
DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
|
|
DAG.getConstant(VP1.logBase2(), MVT::i64));
|
|
return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal,
|
|
N->getOperand(0));
|
|
}
|
|
} else {
|
|
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
|
|
APInt VNM1 = -Value - 1;
|
|
if (VNM1.isPowerOf2()) {
|
|
SDValue ShiftedVal =
|
|
DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
|
|
DAG.getConstant(VNM1.logBase2(), MVT::i64));
|
|
SDValue Add =
|
|
DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0));
|
|
return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add);
|
|
}
|
|
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
|
|
APInt VNP1 = -Value + 1;
|
|
if (VNP1.isPowerOf2()) {
|
|
SDValue ShiftedVal =
|
|
DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0),
|
|
DAG.getConstant(VNP1.logBase2(), MVT::i64));
|
|
return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0),
|
|
ShiftedVal);
|
|
}
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
|
|
SelectionDAG &DAG) {
|
|
// Take advantage of vector comparisons producing 0 or -1 in each lane to
|
|
// optimize away operation when it's from a constant.
|
|
//
|
|
// The general transformation is:
|
|
// UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
|
|
// AND(VECTOR_CMP(x,y), constant2)
|
|
// constant2 = UNARYOP(constant)
|
|
|
|
// Early exit if this isn't a vector operation, the operand of the
|
|
// unary operation isn't a bitwise AND, or if the sizes of the operations
|
|
// aren't the same.
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
|
|
N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
|
|
VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
|
|
return SDValue();
|
|
|
|
// Now check that the other operand of the AND is a constant. We could
|
|
// make the transformation for non-constant splats as well, but it's unclear
|
|
// that would be a benefit as it would not eliminate any operations, just
|
|
// perform one more step in scalar code before moving to the vector unit.
|
|
if (BuildVectorSDNode *BV =
|
|
dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
|
|
// Bail out if the vector isn't a constant.
|
|
if (!BV->isConstant())
|
|
return SDValue();
|
|
|
|
// Everything checks out. Build up the new and improved node.
|
|
SDLoc DL(N);
|
|
EVT IntVT = BV->getValueType(0);
|
|
// Create a new constant of the appropriate type for the transformed
|
|
// DAG.
|
|
SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
|
|
// The AND node needs bitcasts to/from an integer vector type around it.
|
|
SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
|
|
SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
|
|
N->getOperand(0)->getOperand(0), MaskConst);
|
|
SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
|
|
return Res;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// First try to optimize away the conversion when it's conditionally from
|
|
// a constant. Vectors only.
|
|
SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
|
|
if (Res != SDValue())
|
|
return Res;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::f32 && VT != MVT::f64)
|
|
return SDValue();
|
|
|
|
// Only optimize when the source and destination types have the same width.
|
|
if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
|
|
return SDValue();
|
|
|
|
// If the result of an integer load is only used by an integer-to-float
|
|
// conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
|
|
// This eliminates an "integer-to-vector-move UOP and improve throughput.
|
|
SDValue N0 = N->getOperand(0);
|
|
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
|
|
// Do not change the width of a volatile load.
|
|
!cast<LoadSDNode>(N0)->isVolatile()) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
|
|
LN0->getPointerInfo(), LN0->isVolatile(),
|
|
LN0->isNonTemporal(), LN0->isInvariant(),
|
|
LN0->getAlignment());
|
|
|
|
// Make sure successors of the original load stay after it by updating them
|
|
// to use the new Chain.
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
|
|
|
|
unsigned Opcode =
|
|
(N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
|
|
return DAG.getNode(Opcode, SDLoc(N), VT, Load);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// An EXTR instruction is made up of two shifts, ORed together. This helper
|
|
/// searches for and classifies those shifts.
|
|
static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
|
|
bool &FromHi) {
|
|
if (N.getOpcode() == ISD::SHL)
|
|
FromHi = false;
|
|
else if (N.getOpcode() == ISD::SRL)
|
|
FromHi = true;
|
|
else
|
|
return false;
|
|
|
|
if (!isa<ConstantSDNode>(N.getOperand(1)))
|
|
return false;
|
|
|
|
ShiftAmount = N->getConstantOperandVal(1);
|
|
Src = N->getOperand(0);
|
|
return true;
|
|
}
|
|
|
|
/// EXTR instruction extracts a contiguous chunk of bits from two existing
|
|
/// registers viewed as a high/low pair. This function looks for the pattern:
|
|
/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
|
|
/// EXTR. Can't quite be done in TableGen because the two immediates aren't
|
|
/// independent.
|
|
static SDValue tryCombineToEXTR(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
assert(N->getOpcode() == ISD::OR && "Unexpected root");
|
|
|
|
if (VT != MVT::i32 && VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
SDValue LHS;
|
|
uint32_t ShiftLHS = 0;
|
|
bool LHSFromHi = 0;
|
|
if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
|
|
return SDValue();
|
|
|
|
SDValue RHS;
|
|
uint32_t ShiftRHS = 0;
|
|
bool RHSFromHi = 0;
|
|
if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
|
|
return SDValue();
|
|
|
|
// If they're both trying to come from the high part of the register, they're
|
|
// not really an EXTR.
|
|
if (LHSFromHi == RHSFromHi)
|
|
return SDValue();
|
|
|
|
if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
if (LHSFromHi) {
|
|
std::swap(LHS, RHS);
|
|
std::swap(ShiftLHS, ShiftRHS);
|
|
}
|
|
|
|
return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
|
|
DAG.getConstant(ShiftRHS, MVT::i64));
|
|
}
|
|
|
|
static SDValue tryCombineToBSL(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
EVT VT = N->getValueType(0);
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
if (N0.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N1.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
// We only have to look for constant vectors here since the general, variable
|
|
// case can be handled in TableGen.
|
|
unsigned Bits = VT.getVectorElementType().getSizeInBits();
|
|
uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
|
|
for (int i = 1; i >= 0; --i)
|
|
for (int j = 1; j >= 0; --j) {
|
|
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
|
|
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
|
|
if (!BVN0 || !BVN1)
|
|
continue;
|
|
|
|
bool FoundMatch = true;
|
|
for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
|
|
ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
|
|
ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
|
|
if (!CN0 || !CN1 ||
|
|
CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
|
|
FoundMatch = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (FoundMatch)
|
|
return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
|
|
N0->getOperand(1 - i), N1->getOperand(1 - j));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
// Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
|
|
if (!EnableAArch64ExtrGeneration)
|
|
return SDValue();
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
SDValue Res = tryCombineToEXTR(N, DCI);
|
|
if (Res.getNode())
|
|
return Res;
|
|
|
|
Res = tryCombineToBSL(N, DCI);
|
|
if (Res.getNode())
|
|
return Res;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performBitcastCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
// Wait 'til after everything is legalized to try this. That way we have
|
|
// legal vector types and such.
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
// Remove extraneous bitcasts around an extract_subvector.
|
|
// For example,
|
|
// (v4i16 (bitconvert
|
|
// (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
|
|
// becomes
|
|
// (extract_subvector ((v8i16 ...), (i64 4)))
|
|
|
|
// Only interested in 64-bit vectors as the ultimate result.
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
if (VT.getSimpleVT().getSizeInBits() != 64)
|
|
return SDValue();
|
|
// Is the operand an extract_subvector starting at the beginning or halfway
|
|
// point of the vector? A low half may also come through as an
|
|
// EXTRACT_SUBREG, so look for that, too.
|
|
SDValue Op0 = N->getOperand(0);
|
|
if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
|
|
!(Op0->isMachineOpcode() &&
|
|
Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
|
|
return SDValue();
|
|
uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
|
|
if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
|
|
if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
|
|
return SDValue();
|
|
} else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
|
|
if (idx != AArch64::dsub)
|
|
return SDValue();
|
|
// The dsub reference is equivalent to a lane zero subvector reference.
|
|
idx = 0;
|
|
}
|
|
// Look through the bitcast of the input to the extract.
|
|
if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
|
|
return SDValue();
|
|
SDValue Source = Op0->getOperand(0)->getOperand(0);
|
|
// If the source type has twice the number of elements as our destination
|
|
// type, we know this is an extract of the high or low half of the vector.
|
|
EVT SVT = Source->getValueType(0);
|
|
if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
|
|
return SDValue();
|
|
|
|
DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
|
|
|
|
// Create the simplified form to just extract the low or high half of the
|
|
// vector directly rather than bothering with the bitcasts.
|
|
SDLoc dl(N);
|
|
unsigned NumElements = VT.getVectorNumElements();
|
|
if (idx) {
|
|
SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
|
|
} else {
|
|
SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32);
|
|
return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
|
|
Source, SubReg),
|
|
0);
|
|
}
|
|
}
|
|
|
|
static SDValue performConcatVectorsCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
// Wait 'til after everything is legalized to try this. That way we have
|
|
// legal vector types and such.
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
|
|
// splat. The indexed instructions are going to be expecting a DUPLANE64, so
|
|
// canonicalise to that.
|
|
if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) {
|
|
assert(VT.getVectorElementType().getSizeInBits() == 64);
|
|
return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT,
|
|
WidenVector(N->getOperand(0), DAG),
|
|
DAG.getConstant(0, MVT::i64));
|
|
}
|
|
|
|
// Canonicalise concat_vectors so that the right-hand vector has as few
|
|
// bit-casts as possible before its real operation. The primary matching
|
|
// destination for these operations will be the narrowing "2" instructions,
|
|
// which depend on the operation being performed on this right-hand vector.
|
|
// For example,
|
|
// (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
|
|
// becomes
|
|
// (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
|
|
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op1->getOpcode() != ISD::BITCAST)
|
|
return SDValue();
|
|
SDValue RHS = Op1->getOperand(0);
|
|
MVT RHSTy = RHS.getValueType().getSimpleVT();
|
|
// If the RHS is not a vector, this is not the pattern we're looking for.
|
|
if (!RHSTy.isVector())
|
|
return SDValue();
|
|
|
|
DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
|
|
|
|
MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
|
|
RHSTy.getVectorNumElements() * 2);
|
|
return DAG.getNode(
|
|
ISD::BITCAST, dl, VT,
|
|
DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
|
|
DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS));
|
|
}
|
|
|
|
static SDValue tryCombineFixedPointConvert(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
// Wait 'til after everything is legalized to try this. That way we have
|
|
// legal vector types and such.
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
// Transform a scalar conversion of a value from a lane extract into a
|
|
// lane extract of a vector conversion. E.g., from foo1 to foo2:
|
|
// double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
|
|
// double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
|
|
//
|
|
// The second form interacts better with instruction selection and the
|
|
// register allocator to avoid cross-class register copies that aren't
|
|
// coalescable due to a lane reference.
|
|
|
|
// Check the operand and see if it originates from a lane extract.
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
|
|
// Yep, no additional predication needed. Perform the transform.
|
|
SDValue IID = N->getOperand(0);
|
|
SDValue Shift = N->getOperand(2);
|
|
SDValue Vec = Op1.getOperand(0);
|
|
SDValue Lane = Op1.getOperand(1);
|
|
EVT ResTy = N->getValueType(0);
|
|
EVT VecResTy;
|
|
SDLoc DL(N);
|
|
|
|
// The vector width should be 128 bits by the time we get here, even
|
|
// if it started as 64 bits (the extract_vector handling will have
|
|
// done so).
|
|
assert(Vec.getValueType().getSizeInBits() == 128 &&
|
|
"unexpected vector size on extract_vector_elt!");
|
|
if (Vec.getValueType() == MVT::v4i32)
|
|
VecResTy = MVT::v4f32;
|
|
else if (Vec.getValueType() == MVT::v2i64)
|
|
VecResTy = MVT::v2f64;
|
|
else
|
|
llvm_unreachable("unexpected vector type!");
|
|
|
|
SDValue Convert =
|
|
DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// AArch64 high-vector "long" operations are formed by performing the non-high
|
|
// version on an extract_subvector of each operand which gets the high half:
|
|
//
|
|
// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
|
|
//
|
|
// However, there are cases which don't have an extract_high explicitly, but
|
|
// have another operation that can be made compatible with one for free. For
|
|
// example:
|
|
//
|
|
// (dupv64 scalar) --> (extract_high (dup128 scalar))
|
|
//
|
|
// This routine does the actual conversion of such DUPs, once outer routines
|
|
// have determined that everything else is in order.
|
|
static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
|
|
// We can handle most types of duplicate, but the lane ones have an extra
|
|
// operand saying *which* lane, so we need to know.
|
|
bool IsDUPLANE;
|
|
switch (N.getOpcode()) {
|
|
case AArch64ISD::DUP:
|
|
IsDUPLANE = false;
|
|
break;
|
|
case AArch64ISD::DUPLANE8:
|
|
case AArch64ISD::DUPLANE16:
|
|
case AArch64ISD::DUPLANE32:
|
|
case AArch64ISD::DUPLANE64:
|
|
IsDUPLANE = true;
|
|
break;
|
|
default:
|
|
return SDValue();
|
|
}
|
|
|
|
MVT NarrowTy = N.getSimpleValueType();
|
|
if (!NarrowTy.is64BitVector())
|
|
return SDValue();
|
|
|
|
MVT ElementTy = NarrowTy.getVectorElementType();
|
|
unsigned NumElems = NarrowTy.getVectorNumElements();
|
|
MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2);
|
|
|
|
SDValue NewDUP;
|
|
if (IsDUPLANE)
|
|
NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0),
|
|
N.getOperand(1));
|
|
else
|
|
NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0));
|
|
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy,
|
|
NewDUP, DAG.getConstant(NumElems, MVT::i64));
|
|
}
|
|
|
|
static bool isEssentiallyExtractSubvector(SDValue N) {
|
|
if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
|
|
return true;
|
|
|
|
return N.getOpcode() == ISD::BITCAST &&
|
|
N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
|
|
}
|
|
|
|
/// \brief Helper structure to keep track of ISD::SET_CC operands.
|
|
struct GenericSetCCInfo {
|
|
const SDValue *Opnd0;
|
|
const SDValue *Opnd1;
|
|
ISD::CondCode CC;
|
|
};
|
|
|
|
/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
|
|
struct AArch64SetCCInfo {
|
|
const SDValue *Cmp;
|
|
AArch64CC::CondCode CC;
|
|
};
|
|
|
|
/// \brief Helper structure to keep track of SetCC information.
|
|
union SetCCInfo {
|
|
GenericSetCCInfo Generic;
|
|
AArch64SetCCInfo AArch64;
|
|
};
|
|
|
|
/// \brief Helper structure to be able to read SetCC information. If set to
|
|
/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
|
|
/// GenericSetCCInfo.
|
|
struct SetCCInfoAndKind {
|
|
SetCCInfo Info;
|
|
bool IsAArch64;
|
|
};
|
|
|
|
/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
|
|
/// an
|
|
/// AArch64 lowered one.
|
|
/// \p SetCCInfo is filled accordingly.
|
|
/// \post SetCCInfo is meanginfull only when this function returns true.
|
|
/// \return True when Op is a kind of SET_CC operation.
|
|
static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
|
|
// If this is a setcc, this is straight forward.
|
|
if (Op.getOpcode() == ISD::SETCC) {
|
|
SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
|
|
SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
|
|
SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
SetCCInfo.IsAArch64 = false;
|
|
return true;
|
|
}
|
|
// Otherwise, check if this is a matching csel instruction.
|
|
// In other words:
|
|
// - csel 1, 0, cc
|
|
// - csel 0, 1, !cc
|
|
if (Op.getOpcode() != AArch64ISD::CSEL)
|
|
return false;
|
|
// Set the information about the operands.
|
|
// TODO: we want the operands of the Cmp not the csel
|
|
SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
|
|
SetCCInfo.IsAArch64 = true;
|
|
SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
|
|
cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
|
|
|
|
// Check that the operands matches the constraints:
|
|
// (1) Both operands must be constants.
|
|
// (2) One must be 1 and the other must be 0.
|
|
ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
|
|
ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
|
|
|
|
// Check (1).
|
|
if (!TValue || !FValue)
|
|
return false;
|
|
|
|
// Check (2).
|
|
if (!TValue->isOne()) {
|
|
// Update the comparison when we are interested in !cc.
|
|
std::swap(TValue, FValue);
|
|
SetCCInfo.Info.AArch64.CC =
|
|
AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
|
|
}
|
|
return TValue->isOne() && FValue->isNullValue();
|
|
}
|
|
|
|
// Returns true if Op is setcc or zext of setcc.
|
|
static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
|
|
if (isSetCC(Op, Info))
|
|
return true;
|
|
return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
|
|
isSetCC(Op->getOperand(0), Info));
|
|
}
|
|
|
|
// The folding we want to perform is:
|
|
// (add x, [zext] (setcc cc ...) )
|
|
// -->
|
|
// (csel x, (add x, 1), !cc ...)
|
|
//
|
|
// The latter will get matched to a CSINC instruction.
|
|
static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
|
|
assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
|
|
SDValue LHS = Op->getOperand(0);
|
|
SDValue RHS = Op->getOperand(1);
|
|
SetCCInfoAndKind InfoAndKind;
|
|
|
|
// If neither operand is a SET_CC, give up.
|
|
if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
|
|
std::swap(LHS, RHS);
|
|
if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
|
|
return SDValue();
|
|
}
|
|
|
|
// FIXME: This could be generatized to work for FP comparisons.
|
|
EVT CmpVT = InfoAndKind.IsAArch64
|
|
? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
|
|
: InfoAndKind.Info.Generic.Opnd0->getValueType();
|
|
if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
|
|
return SDValue();
|
|
|
|
SDValue CCVal;
|
|
SDValue Cmp;
|
|
SDLoc dl(Op);
|
|
if (InfoAndKind.IsAArch64) {
|
|
CCVal = DAG.getConstant(
|
|
AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32);
|
|
Cmp = *InfoAndKind.Info.AArch64.Cmp;
|
|
} else
|
|
Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
|
|
*InfoAndKind.Info.Generic.Opnd1,
|
|
ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
|
|
CCVal, DAG, dl);
|
|
|
|
EVT VT = Op->getValueType(0);
|
|
LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT));
|
|
return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
|
|
}
|
|
|
|
// The basic add/sub long vector instructions have variants with "2" on the end
|
|
// which act on the high-half of their inputs. They are normally matched by
|
|
// patterns like:
|
|
//
|
|
// (add (zeroext (extract_high LHS)),
|
|
// (zeroext (extract_high RHS)))
|
|
// -> uaddl2 vD, vN, vM
|
|
//
|
|
// However, if one of the extracts is something like a duplicate, this
|
|
// instruction can still be used profitably. This function puts the DAG into a
|
|
// more appropriate form for those patterns to trigger.
|
|
static SDValue performAddSubLongCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
MVT VT = N->getSimpleValueType(0);
|
|
if (!VT.is128BitVector()) {
|
|
if (N->getOpcode() == ISD::ADD)
|
|
return performSetccAddFolding(N, DAG);
|
|
return SDValue();
|
|
}
|
|
|
|
// Make sure both branches are extended in the same way.
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
|
|
LHS.getOpcode() != ISD::SIGN_EXTEND) ||
|
|
LHS.getOpcode() != RHS.getOpcode())
|
|
return SDValue();
|
|
|
|
unsigned ExtType = LHS.getOpcode();
|
|
|
|
// It's not worth doing if at least one of the inputs isn't already an
|
|
// extract, but we don't know which it'll be so we have to try both.
|
|
if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
|
|
RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
|
|
if (!RHS.getNode())
|
|
return SDValue();
|
|
|
|
RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
|
|
} else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
|
|
LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
|
|
if (!LHS.getNode())
|
|
return SDValue();
|
|
|
|
LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
|
|
}
|
|
|
|
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
|
|
}
|
|
|
|
// Massage DAGs which we can use the high-half "long" operations on into
|
|
// something isel will recognize better. E.g.
|
|
//
|
|
// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
|
|
// (aarch64_neon_umull (extract_high (v2i64 vec)))
|
|
// (extract_high (v2i64 (dup128 scalar)))))
|
|
//
|
|
static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue LHS = N->getOperand(1);
|
|
SDValue RHS = N->getOperand(2);
|
|
assert(LHS.getValueType().is64BitVector() &&
|
|
RHS.getValueType().is64BitVector() &&
|
|
"unexpected shape for long operation");
|
|
|
|
// Either node could be a DUP, but it's not worth doing both of them (you'd
|
|
// just as well use the non-high version) so look for a corresponding extract
|
|
// operation on the other "wing".
|
|
if (isEssentiallyExtractSubvector(LHS)) {
|
|
RHS = tryExtendDUPToExtractHigh(RHS, DAG);
|
|
if (!RHS.getNode())
|
|
return SDValue();
|
|
} else if (isEssentiallyExtractSubvector(RHS)) {
|
|
LHS = tryExtendDUPToExtractHigh(LHS, DAG);
|
|
if (!LHS.getNode())
|
|
return SDValue();
|
|
}
|
|
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(0), LHS, RHS);
|
|
}
|
|
|
|
static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
|
|
MVT ElemTy = N->getSimpleValueType(0).getScalarType();
|
|
unsigned ElemBits = ElemTy.getSizeInBits();
|
|
|
|
int64_t ShiftAmount;
|
|
if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
|
|
APInt SplatValue, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs, ElemBits) ||
|
|
SplatBitSize != ElemBits)
|
|
return SDValue();
|
|
|
|
ShiftAmount = SplatValue.getSExtValue();
|
|
} else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
|
|
ShiftAmount = CVN->getSExtValue();
|
|
} else
|
|
return SDValue();
|
|
|
|
unsigned Opcode;
|
|
bool IsRightShift;
|
|
switch (IID) {
|
|
default:
|
|
llvm_unreachable("Unknown shift intrinsic");
|
|
case Intrinsic::aarch64_neon_sqshl:
|
|
Opcode = AArch64ISD::SQSHL_I;
|
|
IsRightShift = false;
|
|
break;
|
|
case Intrinsic::aarch64_neon_uqshl:
|
|
Opcode = AArch64ISD::UQSHL_I;
|
|
IsRightShift = false;
|
|
break;
|
|
case Intrinsic::aarch64_neon_srshl:
|
|
Opcode = AArch64ISD::SRSHR_I;
|
|
IsRightShift = true;
|
|
break;
|
|
case Intrinsic::aarch64_neon_urshl:
|
|
Opcode = AArch64ISD::URSHR_I;
|
|
IsRightShift = true;
|
|
break;
|
|
case Intrinsic::aarch64_neon_sqshlu:
|
|
Opcode = AArch64ISD::SQSHLU_I;
|
|
IsRightShift = false;
|
|
break;
|
|
}
|
|
|
|
if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits)
|
|
return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
|
|
DAG.getConstant(-ShiftAmount, MVT::i32));
|
|
else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits)
|
|
return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1),
|
|
DAG.getConstant(ShiftAmount, MVT::i32));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// The CRC32[BH] instructions ignore the high bits of their data operand. Since
|
|
// the intrinsics must be legal and take an i32, this means there's almost
|
|
// certainly going to be a zext in the DAG which we can eliminate.
|
|
static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
|
|
SDValue AndN = N->getOperand(2);
|
|
if (AndN.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
|
|
if (!CMask || CMask->getZExtValue() != Mask)
|
|
return SDValue();
|
|
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
|
|
N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
|
|
}
|
|
|
|
static SDValue performIntrinsicCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const AArch64Subtarget *Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
unsigned IID = getIntrinsicID(N);
|
|
switch (IID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::aarch64_neon_vcvtfxs2fp:
|
|
case Intrinsic::aarch64_neon_vcvtfxu2fp:
|
|
return tryCombineFixedPointConvert(N, DCI, DAG);
|
|
break;
|
|
case Intrinsic::aarch64_neon_fmax:
|
|
return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(1), N->getOperand(2));
|
|
case Intrinsic::aarch64_neon_fmin:
|
|
return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(1), N->getOperand(2));
|
|
case Intrinsic::aarch64_neon_smull:
|
|
case Intrinsic::aarch64_neon_umull:
|
|
case Intrinsic::aarch64_neon_pmull:
|
|
case Intrinsic::aarch64_neon_sqdmull:
|
|
return tryCombineLongOpWithDup(IID, N, DCI, DAG);
|
|
case Intrinsic::aarch64_neon_sqshl:
|
|
case Intrinsic::aarch64_neon_uqshl:
|
|
case Intrinsic::aarch64_neon_sqshlu:
|
|
case Intrinsic::aarch64_neon_srshl:
|
|
case Intrinsic::aarch64_neon_urshl:
|
|
return tryCombineShiftImm(IID, N, DAG);
|
|
case Intrinsic::aarch64_crc32b:
|
|
case Intrinsic::aarch64_crc32cb:
|
|
return tryCombineCRC32(0xff, N, DAG);
|
|
case Intrinsic::aarch64_crc32h:
|
|
case Intrinsic::aarch64_crc32ch:
|
|
return tryCombineCRC32(0xffff, N, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performExtendCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
// If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
|
|
// we can convert that DUP into another extract_high (of a bigger DUP), which
|
|
// helps the backend to decide that an sabdl2 would be useful, saving a real
|
|
// extract_high operation.
|
|
if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
|
|
N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
|
|
SDNode *ABDNode = N->getOperand(0).getNode();
|
|
unsigned IID = getIntrinsicID(ABDNode);
|
|
if (IID == Intrinsic::aarch64_neon_sabd ||
|
|
IID == Intrinsic::aarch64_neon_uabd) {
|
|
SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
|
|
if (!NewABD.getNode())
|
|
return SDValue();
|
|
|
|
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
|
|
NewABD);
|
|
}
|
|
}
|
|
|
|
// This is effectively a custom type legalization for AArch64.
|
|
//
|
|
// Type legalization will split an extend of a small, legal, type to a larger
|
|
// illegal type by first splitting the destination type, often creating
|
|
// illegal source types, which then get legalized in isel-confusing ways,
|
|
// leading to really terrible codegen. E.g.,
|
|
// %result = v8i32 sext v8i8 %value
|
|
// becomes
|
|
// %losrc = extract_subreg %value, ...
|
|
// %hisrc = extract_subreg %value, ...
|
|
// %lo = v4i32 sext v4i8 %losrc
|
|
// %hi = v4i32 sext v4i8 %hisrc
|
|
// Things go rapidly downhill from there.
|
|
//
|
|
// For AArch64, the [sz]ext vector instructions can only go up one element
|
|
// size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
|
|
// take two instructions.
|
|
//
|
|
// This implies that the most efficient way to do the extend from v8i8
|
|
// to two v4i32 values is to first extend the v8i8 to v8i16, then do
|
|
// the normal splitting to happen for the v8i16->v8i32.
|
|
|
|
// This is pre-legalization to catch some cases where the default
|
|
// type legalization will create ill-tempered code.
|
|
if (!DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
// We're only interested in cleaning things up for non-legal vector types
|
|
// here. If both the source and destination are legal, things will just
|
|
// work naturally without any fiddling.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT ResVT = N->getValueType(0);
|
|
if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
|
|
return SDValue();
|
|
// If the vector type isn't a simple VT, it's beyond the scope of what
|
|
// we're worried about here. Let legalization do its thing and hope for
|
|
// the best.
|
|
SDValue Src = N->getOperand(0);
|
|
EVT SrcVT = Src->getValueType(0);
|
|
if (!ResVT.isSimple() || !SrcVT.isSimple())
|
|
return SDValue();
|
|
|
|
// If the source VT is a 64-bit vector, we can play games and get the
|
|
// better results we want.
|
|
if (SrcVT.getSizeInBits() != 64)
|
|
return SDValue();
|
|
|
|
unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
|
|
unsigned ElementCount = SrcVT.getVectorNumElements();
|
|
SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
|
|
SDLoc DL(N);
|
|
Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
|
|
|
|
// Now split the rest of the operation into two halves, each with a 64
|
|
// bit source.
|
|
EVT LoVT, HiVT;
|
|
SDValue Lo, Hi;
|
|
unsigned NumElements = ResVT.getVectorNumElements();
|
|
assert(!(NumElements & 1) && "Splitting vector, but not in half!");
|
|
LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
|
|
ResVT.getVectorElementType(), NumElements / 2);
|
|
|
|
EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
|
|
LoVT.getVectorNumElements());
|
|
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
|
|
DAG.getIntPtrConstant(0));
|
|
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
|
|
DAG.getIntPtrConstant(InNVT.getVectorNumElements()));
|
|
Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
|
|
Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
|
|
|
|
// Now combine the parts back together so we still have a single result
|
|
// like the combiner expects.
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
|
|
}
|
|
|
|
/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
|
|
/// value. The load store optimizer pass will merge them to store pair stores.
|
|
/// This has better performance than a splat of the scalar followed by a split
|
|
/// vector store. Even if the stores are not merged it is four stores vs a dup,
|
|
/// followed by an ext.b and two stores.
|
|
static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
|
|
SDValue StVal = St->getValue();
|
|
EVT VT = StVal.getValueType();
|
|
|
|
// Don't replace floating point stores, they possibly won't be transformed to
|
|
// stp because of the store pair suppress pass.
|
|
if (VT.isFloatingPoint())
|
|
return SDValue();
|
|
|
|
// Check for insert vector elements.
|
|
if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
|
|
return SDValue();
|
|
|
|
// We can express a splat as store pair(s) for 2 or 4 elements.
|
|
unsigned NumVecElts = VT.getVectorNumElements();
|
|
if (NumVecElts != 4 && NumVecElts != 2)
|
|
return SDValue();
|
|
SDValue SplatVal = StVal.getOperand(1);
|
|
unsigned RemainInsertElts = NumVecElts - 1;
|
|
|
|
// Check that this is a splat.
|
|
while (--RemainInsertElts) {
|
|
SDValue NextInsertElt = StVal.getOperand(0);
|
|
if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
|
|
return SDValue();
|
|
if (NextInsertElt.getOperand(1) != SplatVal)
|
|
return SDValue();
|
|
StVal = NextInsertElt;
|
|
}
|
|
unsigned OrigAlignment = St->getAlignment();
|
|
unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
|
|
unsigned Alignment = std::min(OrigAlignment, EltOffset);
|
|
|
|
// Create scalar stores. This is at least as good as the code sequence for a
|
|
// split unaligned store wich is a dup.s, ext.b, and two stores.
|
|
// Most of the time the three stores should be replaced by store pair
|
|
// instructions (stp).
|
|
SDLoc DL(St);
|
|
SDValue BasePtr = St->getBasePtr();
|
|
SDValue NewST1 =
|
|
DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
|
|
St->isVolatile(), St->isNonTemporal(), St->getAlignment());
|
|
|
|
unsigned Offset = EltOffset;
|
|
while (--NumVecElts) {
|
|
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
|
|
DAG.getConstant(Offset, MVT::i64));
|
|
NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
|
|
St->getPointerInfo(), St->isVolatile(),
|
|
St->isNonTemporal(), Alignment);
|
|
Offset += EltOffset;
|
|
}
|
|
return NewST1;
|
|
}
|
|
|
|
static SDValue performSTORECombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG,
|
|
const AArch64Subtarget *Subtarget) {
|
|
if (!DCI.isBeforeLegalize())
|
|
return SDValue();
|
|
|
|
StoreSDNode *S = cast<StoreSDNode>(N);
|
|
if (S->isVolatile())
|
|
return SDValue();
|
|
|
|
// Cyclone has bad performance on unaligned 16B stores when crossing line and
|
|
// page boundries. We want to split such stores.
|
|
if (!Subtarget->isCyclone())
|
|
return SDValue();
|
|
|
|
// Don't split at Oz.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute(
|
|
AttributeSet::FunctionIndex, Attribute::MinSize);
|
|
if (IsMinSize)
|
|
return SDValue();
|
|
|
|
SDValue StVal = S->getValue();
|
|
EVT VT = StVal.getValueType();
|
|
|
|
// Don't split v2i64 vectors. Memcpy lowering produces those and splitting
|
|
// those up regresses performance on micro-benchmarks and olden/bh.
|
|
if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
|
|
return SDValue();
|
|
|
|
// Split unaligned 16B stores. They are terrible for performance.
|
|
// Don't split stores with alignment of 1 or 2. Code that uses clang vector
|
|
// extensions can use this to mark that it does not want splitting to happen
|
|
// (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
|
|
// eliminating alignment hazards is only 1 in 8 for alignment of 2.
|
|
if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
|
|
S->getAlignment() <= 2)
|
|
return SDValue();
|
|
|
|
// If we get a splat of a scalar convert this vector store to a store of
|
|
// scalars. They will be merged into store pairs thereby removing two
|
|
// instructions.
|
|
SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
|
|
if (ReplacedSplat != SDValue())
|
|
return ReplacedSplat;
|
|
|
|
SDLoc DL(S);
|
|
unsigned NumElts = VT.getVectorNumElements() / 2;
|
|
// Split VT into two.
|
|
EVT HalfVT =
|
|
EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
|
|
SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
|
|
DAG.getIntPtrConstant(0));
|
|
SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
|
|
DAG.getIntPtrConstant(NumElts));
|
|
SDValue BasePtr = S->getBasePtr();
|
|
SDValue NewST1 =
|
|
DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
|
|
S->isVolatile(), S->isNonTemporal(), S->getAlignment());
|
|
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
|
|
DAG.getConstant(8, MVT::i64));
|
|
return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
|
|
S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
|
|
S->getAlignment());
|
|
}
|
|
|
|
/// Target-specific DAG combine function for post-increment LD1 (lane) and
|
|
/// post-increment LD1R.
|
|
static SDValue performPostLD1Combine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
bool IsLaneOp) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
|
|
unsigned LoadIdx = IsLaneOp ? 1 : 0;
|
|
SDNode *LD = N->getOperand(LoadIdx).getNode();
|
|
// If it is not LOAD, can not do such combine.
|
|
if (LD->getOpcode() != ISD::LOAD)
|
|
return SDValue();
|
|
|
|
LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
|
|
EVT MemVT = LoadSDN->getMemoryVT();
|
|
// Check if memory operand is the same type as the vector element.
|
|
if (MemVT != VT.getVectorElementType())
|
|
return SDValue();
|
|
|
|
// Check if there are other uses. If so, do not combine as it will introduce
|
|
// an extra load.
|
|
for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
|
|
++UI) {
|
|
if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
|
|
continue;
|
|
if (*UI != N)
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue Addr = LD->getOperand(1);
|
|
SDValue Vector = N->getOperand(0);
|
|
// Search for a use of the address operand that is an increment.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
|
|
Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() != ISD::ADD
|
|
|| UI.getUse().getResNo() != Addr.getResNo())
|
|
continue;
|
|
|
|
// Check that the add is independent of the load. Otherwise, folding it
|
|
// would create a cycle.
|
|
if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
|
|
continue;
|
|
// Also check that add is not used in the vector operand. This would also
|
|
// create a cycle.
|
|
if (User->isPredecessorOf(Vector.getNode()))
|
|
continue;
|
|
|
|
// If the increment is a constant, it must match the memory ref size.
|
|
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
|
|
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
|
|
uint32_t IncVal = CInc->getZExtValue();
|
|
unsigned NumBytes = VT.getScalarSizeInBits() / 8;
|
|
if (IncVal != NumBytes)
|
|
continue;
|
|
Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
|
|
}
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(LD->getOperand(0)); // Chain
|
|
if (IsLaneOp) {
|
|
Ops.push_back(Vector); // The vector to be inserted
|
|
Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
|
|
}
|
|
Ops.push_back(Addr);
|
|
Ops.push_back(Inc);
|
|
|
|
EVT Tys[3] = { VT, MVT::i64, MVT::Other };
|
|
SDVTList SDTys = DAG.getVTList(Tys);
|
|
unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
|
|
SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
|
|
MemVT,
|
|
LoadSDN->getMemOperand());
|
|
|
|
// Update the uses.
|
|
std::vector<SDValue> NewResults;
|
|
NewResults.push_back(SDValue(LD, 0)); // The result of load
|
|
NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
|
|
DCI.CombineTo(LD, NewResults);
|
|
DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
|
|
DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
|
|
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// Target-specific DAG combine function for NEON load/store intrinsics
|
|
/// to merge base address updates.
|
|
static SDValue performNEONPostLDSTCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
|
|
return SDValue();
|
|
|
|
unsigned AddrOpIdx = N->getNumOperands() - 1;
|
|
SDValue Addr = N->getOperand(AddrOpIdx);
|
|
|
|
// Search for a use of the address operand that is an increment.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
|
|
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() != ISD::ADD ||
|
|
UI.getUse().getResNo() != Addr.getResNo())
|
|
continue;
|
|
|
|
// Check that the add is independent of the load/store. Otherwise, folding
|
|
// it would create a cycle.
|
|
if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
|
|
continue;
|
|
|
|
// Find the new opcode for the updating load/store.
|
|
bool IsStore = false;
|
|
bool IsLaneOp = false;
|
|
bool IsDupOp = false;
|
|
unsigned NewOpc = 0;
|
|
unsigned NumVecs = 0;
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("unexpected intrinsic for Neon base update");
|
|
case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
|
|
NumVecs = 2; break;
|
|
case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
|
|
NumVecs = 3; break;
|
|
case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
|
|
NumVecs = 4; break;
|
|
case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
|
|
NumVecs = 2; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
|
|
NumVecs = 3; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
|
|
NumVecs = 4; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
|
|
NumVecs = 2; break;
|
|
case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
|
|
NumVecs = 3; break;
|
|
case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
|
|
NumVecs = 4; break;
|
|
case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
|
|
NumVecs = 2; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
|
|
NumVecs = 3; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
|
|
NumVecs = 4; IsStore = true; break;
|
|
case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
|
|
NumVecs = 2; IsDupOp = true; break;
|
|
case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
|
|
NumVecs = 3; IsDupOp = true; break;
|
|
case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
|
|
NumVecs = 4; IsDupOp = true; break;
|
|
case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
|
|
NumVecs = 2; IsLaneOp = true; break;
|
|
case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
|
|
NumVecs = 3; IsLaneOp = true; break;
|
|
case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
|
|
NumVecs = 4; IsLaneOp = true; break;
|
|
case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
|
|
NumVecs = 2; IsStore = true; IsLaneOp = true; break;
|
|
case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
|
|
NumVecs = 3; IsStore = true; IsLaneOp = true; break;
|
|
case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
|
|
NumVecs = 4; IsStore = true; IsLaneOp = true; break;
|
|
}
|
|
|
|
EVT VecTy;
|
|
if (IsStore)
|
|
VecTy = N->getOperand(2).getValueType();
|
|
else
|
|
VecTy = N->getValueType(0);
|
|
|
|
// If the increment is a constant, it must match the memory ref size.
|
|
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
|
|
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
|
|
uint32_t IncVal = CInc->getZExtValue();
|
|
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
|
|
if (IsLaneOp || IsDupOp)
|
|
NumBytes /= VecTy.getVectorNumElements();
|
|
if (IncVal != NumBytes)
|
|
continue;
|
|
Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
|
|
}
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(N->getOperand(0)); // Incoming chain
|
|
// Load lane and store have vector list as input.
|
|
if (IsLaneOp || IsStore)
|
|
for (unsigned i = 2; i < AddrOpIdx; ++i)
|
|
Ops.push_back(N->getOperand(i));
|
|
Ops.push_back(Addr); // Base register
|
|
Ops.push_back(Inc);
|
|
|
|
// Return Types.
|
|
EVT Tys[6];
|
|
unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
|
|
unsigned n;
|
|
for (n = 0; n < NumResultVecs; ++n)
|
|
Tys[n] = VecTy;
|
|
Tys[n++] = MVT::i64; // Type of write back register
|
|
Tys[n] = MVT::Other; // Type of the chain
|
|
SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
|
|
|
|
MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
|
|
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
|
|
MemInt->getMemoryVT(),
|
|
MemInt->getMemOperand());
|
|
|
|
// Update the uses.
|
|
std::vector<SDValue> NewResults;
|
|
for (unsigned i = 0; i < NumResultVecs; ++i) {
|
|
NewResults.push_back(SDValue(UpdN.getNode(), i));
|
|
}
|
|
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
|
|
DCI.CombineTo(N, NewResults);
|
|
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
|
|
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Checks to see if the value is the prescribed width and returns information
|
|
// about its extension mode.
|
|
static
|
|
bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
|
|
ExtType = ISD::NON_EXTLOAD;
|
|
switch(V.getNode()->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case ISD::LOAD: {
|
|
LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
|
|
if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
|
|
|| (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
|
|
ExtType = LoadNode->getExtensionType();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ISD::AssertSext: {
|
|
VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
|
|
if ((TypeNode->getVT() == MVT::i8 && width == 8)
|
|
|| (TypeNode->getVT() == MVT::i16 && width == 16)) {
|
|
ExtType = ISD::SEXTLOAD;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ISD::AssertZext: {
|
|
VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
|
|
if ((TypeNode->getVT() == MVT::i8 && width == 8)
|
|
|| (TypeNode->getVT() == MVT::i16 && width == 16)) {
|
|
ExtType = ISD::ZEXTLOAD;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ISD::Constant:
|
|
case ISD::TargetConstant: {
|
|
if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
|
|
1LL << (width - 1))
|
|
return true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// This function does a whole lot of voodoo to determine if the tests are
|
|
// equivalent without and with a mask. Essentially what happens is that given a
|
|
// DAG resembling:
|
|
//
|
|
// +-------------+ +-------------+ +-------------+ +-------------+
|
|
// | Input | | AddConstant | | CompConstant| | CC |
|
|
// +-------------+ +-------------+ +-------------+ +-------------+
|
|
// | | | |
|
|
// V V | +----------+
|
|
// +-------------+ +----+ | |
|
|
// | ADD | |0xff| | |
|
|
// +-------------+ +----+ | |
|
|
// | | | |
|
|
// V V | |
|
|
// +-------------+ | |
|
|
// | AND | | |
|
|
// +-------------+ | |
|
|
// | | |
|
|
// +-----+ | |
|
|
// | | |
|
|
// V V V
|
|
// +-------------+
|
|
// | CMP |
|
|
// +-------------+
|
|
//
|
|
// The AND node may be safely removed for some combinations of inputs. In
|
|
// particular we need to take into account the extension type of the Input,
|
|
// the exact values of AddConstant, CompConstant, and CC, along with the nominal
|
|
// width of the input (this can work for any width inputs, the above graph is
|
|
// specific to 8 bits.
|
|
//
|
|
// The specific equations were worked out by generating output tables for each
|
|
// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
|
|
// problem was simplified by working with 4 bit inputs, which means we only
|
|
// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
|
|
// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
|
|
// patterns present in both extensions (0,7). For every distinct set of
|
|
// AddConstant and CompConstants bit patterns we can consider the masked and
|
|
// unmasked versions to be equivalent if the result of this function is true for
|
|
// all 16 distinct bit patterns of for the current extension type of Input (w0).
|
|
//
|
|
// sub w8, w0, w1
|
|
// and w10, w8, #0x0f
|
|
// cmp w8, w2
|
|
// cset w9, AArch64CC
|
|
// cmp w10, w2
|
|
// cset w11, AArch64CC
|
|
// cmp w9, w11
|
|
// cset w0, eq
|
|
// ret
|
|
//
|
|
// Since the above function shows when the outputs are equivalent it defines
|
|
// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
|
|
// would be expensive to run during compiles. The equations below were written
|
|
// in a test harness that confirmed they gave equivalent outputs to the above
|
|
// for all inputs function, so they can be used determine if the removal is
|
|
// legal instead.
|
|
//
|
|
// isEquivalentMaskless() is the code for testing if the AND can be removed
|
|
// factored out of the DAG recognition as the DAG can take several forms.
|
|
|
|
static
|
|
bool isEquivalentMaskless(unsigned CC, unsigned width,
|
|
ISD::LoadExtType ExtType, signed AddConstant,
|
|
signed CompConstant) {
|
|
// By being careful about our equations and only writing the in term
|
|
// symbolic values and well known constants (0, 1, -1, MaxUInt) we can
|
|
// make them generally applicable to all bit widths.
|
|
signed MaxUInt = (1 << width);
|
|
|
|
// For the purposes of these comparisons sign extending the type is
|
|
// equivalent to zero extending the add and displacing it by half the integer
|
|
// width. Provided we are careful and make sure our equations are valid over
|
|
// the whole range we can just adjust the input and avoid writing equations
|
|
// for sign extended inputs.
|
|
if (ExtType == ISD::SEXTLOAD)
|
|
AddConstant -= (1 << (width-1));
|
|
|
|
switch(CC) {
|
|
case AArch64CC::LE:
|
|
case AArch64CC::GT: {
|
|
if ((AddConstant == 0) ||
|
|
(CompConstant == MaxUInt - 1 && AddConstant < 0) ||
|
|
(AddConstant >= 0 && CompConstant < 0) ||
|
|
(AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
|
|
return true;
|
|
} break;
|
|
case AArch64CC::LT:
|
|
case AArch64CC::GE: {
|
|
if ((AddConstant == 0) ||
|
|
(AddConstant >= 0 && CompConstant <= 0) ||
|
|
(AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
|
|
return true;
|
|
} break;
|
|
case AArch64CC::HI:
|
|
case AArch64CC::LS: {
|
|
if ((AddConstant >= 0 && CompConstant < 0) ||
|
|
(AddConstant <= 0 && CompConstant >= -1 &&
|
|
CompConstant < AddConstant + MaxUInt))
|
|
return true;
|
|
} break;
|
|
case AArch64CC::PL:
|
|
case AArch64CC::MI: {
|
|
if ((AddConstant == 0) ||
|
|
(AddConstant > 0 && CompConstant <= 0) ||
|
|
(AddConstant < 0 && CompConstant <= AddConstant))
|
|
return true;
|
|
} break;
|
|
case AArch64CC::LO:
|
|
case AArch64CC::HS: {
|
|
if ((AddConstant >= 0 && CompConstant <= 0) ||
|
|
(AddConstant <= 0 && CompConstant >= 0 &&
|
|
CompConstant <= AddConstant + MaxUInt))
|
|
return true;
|
|
} break;
|
|
case AArch64CC::EQ:
|
|
case AArch64CC::NE: {
|
|
if ((AddConstant > 0 && CompConstant < 0) ||
|
|
(AddConstant < 0 && CompConstant >= 0 &&
|
|
CompConstant < AddConstant + MaxUInt) ||
|
|
(AddConstant >= 0 && CompConstant >= 0 &&
|
|
CompConstant >= AddConstant) ||
|
|
(AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
|
|
|
|
return true;
|
|
} break;
|
|
case AArch64CC::VS:
|
|
case AArch64CC::VC:
|
|
case AArch64CC::AL:
|
|
case AArch64CC::NV:
|
|
return true;
|
|
case AArch64CC::Invalid:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static
|
|
SDValue performCONDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG, unsigned CCIndex,
|
|
unsigned CmpIndex) {
|
|
unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
|
|
SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
|
|
unsigned CondOpcode = SubsNode->getOpcode();
|
|
|
|
if (CondOpcode != AArch64ISD::SUBS)
|
|
return SDValue();
|
|
|
|
// There is a SUBS feeding this condition. Is it fed by a mask we can
|
|
// use?
|
|
|
|
SDNode *AndNode = SubsNode->getOperand(0).getNode();
|
|
unsigned MaskBits = 0;
|
|
|
|
if (AndNode->getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
|
|
uint32_t CNV = CN->getZExtValue();
|
|
if (CNV == 255)
|
|
MaskBits = 8;
|
|
else if (CNV == 65535)
|
|
MaskBits = 16;
|
|
}
|
|
|
|
if (!MaskBits)
|
|
return SDValue();
|
|
|
|
SDValue AddValue = AndNode->getOperand(0);
|
|
|
|
if (AddValue.getOpcode() != ISD::ADD)
|
|
return SDValue();
|
|
|
|
// The basic dag structure is correct, grab the inputs and validate them.
|
|
|
|
SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
|
|
SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
|
|
SDValue SubsInputValue = SubsNode->getOperand(1);
|
|
|
|
// The mask is present and the provenance of all the values is a smaller type,
|
|
// lets see if the mask is superfluous.
|
|
|
|
if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
|
|
!isa<ConstantSDNode>(SubsInputValue.getNode()))
|
|
return SDValue();
|
|
|
|
ISD::LoadExtType ExtType;
|
|
|
|
if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
|
|
!checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
|
|
!checkValueWidth(AddInputValue1, MaskBits, ExtType) )
|
|
return SDValue();
|
|
|
|
if(!isEquivalentMaskless(CC, MaskBits, ExtType,
|
|
cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
|
|
cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
|
|
return SDValue();
|
|
|
|
// The AND is not necessary, remove it.
|
|
|
|
SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
|
|
SubsNode->getValueType(1));
|
|
SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
|
|
|
|
SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
|
|
DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
|
|
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
// Optimize compare with zero and branch.
|
|
static SDValue performBRCONDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
SelectionDAG &DAG) {
|
|
SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
|
|
if (NV.getNode())
|
|
N = NV.getNode();
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Dest = N->getOperand(1);
|
|
SDValue CCVal = N->getOperand(2);
|
|
SDValue Cmp = N->getOperand(3);
|
|
|
|
assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
|
|
unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
|
|
if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
|
|
return SDValue();
|
|
|
|
unsigned CmpOpc = Cmp.getOpcode();
|
|
if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
|
|
return SDValue();
|
|
|
|
// Only attempt folding if there is only one use of the flag and no use of the
|
|
// value.
|
|
if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
|
|
return SDValue();
|
|
|
|
SDValue LHS = Cmp.getOperand(0);
|
|
SDValue RHS = Cmp.getOperand(1);
|
|
|
|
assert(LHS.getValueType() == RHS.getValueType() &&
|
|
"Expected the value type to be the same for both operands!");
|
|
if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
|
|
return SDValue();
|
|
|
|
if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
|
|
std::swap(LHS, RHS);
|
|
|
|
if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
|
|
return SDValue();
|
|
|
|
if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
|
|
LHS.getOpcode() == ISD::SRL)
|
|
return SDValue();
|
|
|
|
// Fold the compare into the branch instruction.
|
|
SDValue BR;
|
|
if (CC == AArch64CC::EQ)
|
|
BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
|
|
else
|
|
BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
|
|
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, BR, false);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// vselect (v1i1 setcc) ->
|
|
// vselect (v1iXX setcc) (XX is the size of the compared operand type)
|
|
// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
|
|
// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
|
|
// such VSELECT.
|
|
static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT CCVT = N0.getValueType();
|
|
|
|
if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
|
|
CCVT.getVectorElementType() != MVT::i1)
|
|
return SDValue();
|
|
|
|
EVT ResVT = N->getValueType(0);
|
|
EVT CmpVT = N0.getOperand(0).getValueType();
|
|
// Only combine when the result type is of the same size as the compared
|
|
// operands.
|
|
if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
SDValue IfTrue = N->getOperand(1);
|
|
SDValue IfFalse = N->getOperand(2);
|
|
SDValue SetCC =
|
|
DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
|
|
N0.getOperand(0), N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
|
|
IfTrue, IfFalse);
|
|
}
|
|
|
|
/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
|
|
/// the compare-mask instructions rather than going via NZCV, even if LHS and
|
|
/// RHS are really scalar. This replaces any scalar setcc in the above pattern
|
|
/// with a vector one followed by a DUP shuffle on the result.
|
|
static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT ResVT = N->getValueType(0);
|
|
|
|
if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1)
|
|
return SDValue();
|
|
|
|
// If NumMaskElts == 0, the comparison is larger than select result. The
|
|
// largest real NEON comparison is 64-bits per lane, which means the result is
|
|
// at most 32-bits and an illegal vector. Just bail out for now.
|
|
EVT SrcVT = N0.getOperand(0).getValueType();
|
|
int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
|
|
if (!ResVT.isVector() || NumMaskElts == 0)
|
|
return SDValue();
|
|
|
|
SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
|
|
EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
|
|
|
|
// First perform a vector comparison, where lane 0 is the one we're interested
|
|
// in.
|
|
SDLoc DL(N0);
|
|
SDValue LHS =
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
|
|
SDValue RHS =
|
|
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
|
|
SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
|
|
|
|
// Now duplicate the comparison mask we want across all other lanes.
|
|
SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
|
|
SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
|
|
Mask = DAG.getNode(ISD::BITCAST, DL,
|
|
ResVT.changeVectorElementTypeToInteger(), Mask);
|
|
|
|
return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
|
|
}
|
|
|
|
SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
break;
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
return performAddSubLongCombine(N, DCI, DAG);
|
|
case ISD::XOR:
|
|
return performXorCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::MUL:
|
|
return performMulCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
return performIntToFpCombine(N, DAG);
|
|
case ISD::OR:
|
|
return performORCombine(N, DCI, Subtarget);
|
|
case ISD::INTRINSIC_WO_CHAIN:
|
|
return performIntrinsicCombine(N, DCI, Subtarget);
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::SIGN_EXTEND:
|
|
return performExtendCombine(N, DCI, DAG);
|
|
case ISD::BITCAST:
|
|
return performBitcastCombine(N, DCI, DAG);
|
|
case ISD::CONCAT_VECTORS:
|
|
return performConcatVectorsCombine(N, DCI, DAG);
|
|
case ISD::SELECT:
|
|
return performSelectCombine(N, DAG);
|
|
case ISD::VSELECT:
|
|
return performVSelectCombine(N, DCI.DAG);
|
|
case ISD::STORE:
|
|
return performSTORECombine(N, DCI, DAG, Subtarget);
|
|
case AArch64ISD::BRCOND:
|
|
return performBRCONDCombine(N, DCI, DAG);
|
|
case AArch64ISD::CSEL:
|
|
return performCONDCombine(N, DCI, DAG, 2, 3);
|
|
case AArch64ISD::DUP:
|
|
return performPostLD1Combine(N, DCI, false);
|
|
case ISD::INSERT_VECTOR_ELT:
|
|
return performPostLD1Combine(N, DCI, true);
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
|
case Intrinsic::aarch64_neon_ld2:
|
|
case Intrinsic::aarch64_neon_ld3:
|
|
case Intrinsic::aarch64_neon_ld4:
|
|
case Intrinsic::aarch64_neon_ld1x2:
|
|
case Intrinsic::aarch64_neon_ld1x3:
|
|
case Intrinsic::aarch64_neon_ld1x4:
|
|
case Intrinsic::aarch64_neon_ld2lane:
|
|
case Intrinsic::aarch64_neon_ld3lane:
|
|
case Intrinsic::aarch64_neon_ld4lane:
|
|
case Intrinsic::aarch64_neon_ld2r:
|
|
case Intrinsic::aarch64_neon_ld3r:
|
|
case Intrinsic::aarch64_neon_ld4r:
|
|
case Intrinsic::aarch64_neon_st2:
|
|
case Intrinsic::aarch64_neon_st3:
|
|
case Intrinsic::aarch64_neon_st4:
|
|
case Intrinsic::aarch64_neon_st1x2:
|
|
case Intrinsic::aarch64_neon_st1x3:
|
|
case Intrinsic::aarch64_neon_st1x4:
|
|
case Intrinsic::aarch64_neon_st2lane:
|
|
case Intrinsic::aarch64_neon_st3lane:
|
|
case Intrinsic::aarch64_neon_st4lane:
|
|
return performNEONPostLDSTCombine(N, DCI, DAG);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Check if the return value is used as only a return value, as otherwise
|
|
// we can't perform a tail-call. In particular, we need to check for
|
|
// target ISD nodes that are returns and any other "odd" constructs
|
|
// that the generic analysis code won't necessarily catch.
|
|
bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
|
|
SDValue &Chain) const {
|
|
if (N->getNumValues() != 1)
|
|
return false;
|
|
if (!N->hasNUsesOfValue(1, 0))
|
|
return false;
|
|
|
|
SDValue TCChain = Chain;
|
|
SDNode *Copy = *N->use_begin();
|
|
if (Copy->getOpcode() == ISD::CopyToReg) {
|
|
// If the copy has a glue operand, we conservatively assume it isn't safe to
|
|
// perform a tail call.
|
|
if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
|
|
MVT::Glue)
|
|
return false;
|
|
TCChain = Copy->getOperand(0);
|
|
} else if (Copy->getOpcode() != ISD::FP_EXTEND)
|
|
return false;
|
|
|
|
bool HasRet = false;
|
|
for (SDNode *Node : Copy->uses()) {
|
|
if (Node->getOpcode() != AArch64ISD::RET_FLAG)
|
|
return false;
|
|
HasRet = true;
|
|
}
|
|
|
|
if (!HasRet)
|
|
return false;
|
|
|
|
Chain = TCChain;
|
|
return true;
|
|
}
|
|
|
|
// Return whether the an instruction can potentially be optimized to a tail
|
|
// call. This will cause the optimizers to attempt to move, or duplicate,
|
|
// return instructions to help enable tail call optimizations for this
|
|
// instruction.
|
|
bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
|
|
if (!CI->isTailCall())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
bool &IsInc,
|
|
SelectionDAG &DAG) const {
|
|
if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
Base = Op->getOperand(0);
|
|
// All of the indexed addressing mode instructions take a signed
|
|
// 9 bit immediate offset.
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
|
|
int64_t RHSC = (int64_t)RHS->getZExtValue();
|
|
if (RHSC >= 256 || RHSC <= -256)
|
|
return false;
|
|
IsInc = (Op->getOpcode() == ISD::ADD);
|
|
Offset = Op->getOperand(1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
Ptr = LD->getBasePtr();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
Ptr = ST->getBasePtr();
|
|
} else
|
|
return false;
|
|
|
|
bool IsInc;
|
|
if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
|
|
return false;
|
|
AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
|
|
return true;
|
|
}
|
|
|
|
bool AArch64TargetLowering::getPostIndexedAddressParts(
|
|
SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
|
|
ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
Ptr = LD->getBasePtr();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
Ptr = ST->getBasePtr();
|
|
} else
|
|
return false;
|
|
|
|
bool IsInc;
|
|
if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
|
|
return false;
|
|
// Post-indexing updates the base, so it's not a valid transform
|
|
// if that's not the same as the load's pointer.
|
|
if (Ptr != Base)
|
|
return false;
|
|
AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
|
|
return true;
|
|
}
|
|
|
|
static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) {
|
|
if (N->getValueType(0) != MVT::i16)
|
|
return;
|
|
|
|
SDLoc DL(N);
|
|
SDValue Op = N->getOperand(0);
|
|
assert(Op.getValueType() == MVT::f16 &&
|
|
"Inconsistent bitcast? Only 16-bit types should be i16 or f16");
|
|
Op = SDValue(
|
|
DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
|
|
DAG.getUNDEF(MVT::i32), Op,
|
|
DAG.getTargetConstant(AArch64::hsub, MVT::i32)),
|
|
0);
|
|
Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
|
|
}
|
|
|
|
void AArch64TargetLowering::ReplaceNodeResults(
|
|
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Don't know how to custom expand this");
|
|
case ISD::BITCAST:
|
|
ReplaceBITCASTResults(N, Results, DAG);
|
|
return;
|
|
case ISD::FP_TO_UINT:
|
|
case ISD::FP_TO_SINT:
|
|
assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
|
|
// Let normal code take care of it by not adding anything to Results.
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool AArch64TargetLowering::useLoadStackGuardNode() const {
|
|
return true;
|
|
}
|
|
|
|
TargetLoweringBase::LegalizeTypeAction
|
|
AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
|
|
MVT SVT = VT.getSimpleVT();
|
|
// During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
|
|
// v4i16, v2i32 instead of to promote.
|
|
if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
|
|
|| SVT == MVT::v1f32)
|
|
return TypeWidenVector;
|
|
|
|
return TargetLoweringBase::getPreferredVectorAction(VT);
|
|
}
|
|
|
|
// Loads and stores less than 128-bits are already atomic; ones above that
|
|
// are doomed anyway, so defer to the default libcall and blame the OS when
|
|
// things go wrong.
|
|
bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
|
|
unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
|
|
return Size == 128;
|
|
}
|
|
|
|
// Loads and stores less than 128-bits are already atomic; ones above that
|
|
// are doomed anyway, so defer to the default libcall and blame the OS when
|
|
// things go wrong.
|
|
bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
|
|
unsigned Size = LI->getType()->getPrimitiveSizeInBits();
|
|
return Size == 128;
|
|
}
|
|
|
|
// For the real atomic operations, we have ldxr/stxr up to 128 bits,
|
|
bool AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
|
|
unsigned Size = AI->getType()->getPrimitiveSizeInBits();
|
|
return Size <= 128;
|
|
}
|
|
|
|
bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
|
|
return true;
|
|
}
|
|
|
|
Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
|
|
AtomicOrdering Ord) const {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
|
|
bool IsAcquire = isAtLeastAcquire(Ord);
|
|
|
|
// Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
|
|
// intrinsic must return {i64, i64} and we have to recombine them into a
|
|
// single i128 here.
|
|
if (ValTy->getPrimitiveSizeInBits() == 128) {
|
|
Intrinsic::ID Int =
|
|
IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
|
|
Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
|
|
|
|
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
|
|
Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
|
|
|
|
Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
|
|
Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
|
|
Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
|
|
Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
|
|
return Builder.CreateOr(
|
|
Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
|
|
}
|
|
|
|
Type *Tys[] = { Addr->getType() };
|
|
Intrinsic::ID Int =
|
|
IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
|
|
Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
|
|
|
|
return Builder.CreateTruncOrBitCast(
|
|
Builder.CreateCall(Ldxr, Addr),
|
|
cast<PointerType>(Addr->getType())->getElementType());
|
|
}
|
|
|
|
Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
|
|
Value *Val, Value *Addr,
|
|
AtomicOrdering Ord) const {
|
|
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
|
|
bool IsRelease = isAtLeastRelease(Ord);
|
|
|
|
// Since the intrinsics must have legal type, the i128 intrinsics take two
|
|
// parameters: "i64, i64". We must marshal Val into the appropriate form
|
|
// before the call.
|
|
if (Val->getType()->getPrimitiveSizeInBits() == 128) {
|
|
Intrinsic::ID Int =
|
|
IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
|
|
Function *Stxr = Intrinsic::getDeclaration(M, Int);
|
|
Type *Int64Ty = Type::getInt64Ty(M->getContext());
|
|
|
|
Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
|
|
Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
|
|
Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
|
|
return Builder.CreateCall3(Stxr, Lo, Hi, Addr);
|
|
}
|
|
|
|
Intrinsic::ID Int =
|
|
IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
|
|
Type *Tys[] = { Addr->getType() };
|
|
Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
|
|
|
|
return Builder.CreateCall2(
|
|
Stxr, Builder.CreateZExtOrBitCast(
|
|
Val, Stxr->getFunctionType()->getParamType(0)),
|
|
Addr);
|
|
}
|