llvm-6502/lib/Target/ARM/ARMInstrInfo.td
2008-11-07 09:06:08 +00:00

1365 lines
54 KiB
TableGen

//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the ARM instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ARM specific DAG Nodes.
//
// Type profiles.
def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
def SDT_ARMCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
def SDT_ARMcall : SDTypeProfile<0, -1, [SDTCisInt<0>]>;
def SDT_ARMCMov : SDTypeProfile<1, 3,
[SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
SDTCisVT<3, i32>]>;
def SDT_ARMBrcond : SDTypeProfile<0, 2,
[SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
def SDT_ARMBrJT : SDTypeProfile<0, 3,
[SDTCisPtrTy<0>, SDTCisVT<1, i32>,
SDTCisVT<2, i32>]>;
def SDT_ARMCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def SDT_ARMPICAdd : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
// Node definitions.
def ARMWrapper : SDNode<"ARMISD::Wrapper", SDTIntUnaryOp>;
def ARMWrapperJT : SDNode<"ARMISD::WrapperJT", SDTIntBinOp>;
def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
[SDNPHasChain, SDNPOutFlag]>;
def ARMcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_ARMCallSeqEnd,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def ARMcall : SDNode<"ARMISD::CALL", SDT_ARMcall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def ARMcall_pred : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def ARMcall_nolink : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
[SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
def ARMretflag : SDNode<"ARMISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInFlag]>;
def ARMcmov : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
[SDNPInFlag]>;
def ARMcneg : SDNode<"ARMISD::CNEG", SDT_ARMCMov,
[SDNPInFlag]>;
def ARMbrcond : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
[SDNPHasChain, SDNPInFlag, SDNPOutFlag]>;
def ARMbrjt : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
[SDNPHasChain]>;
def ARMcmp : SDNode<"ARMISD::CMP", SDT_ARMCmp,
[SDNPOutFlag]>;
def ARMcmpNZ : SDNode<"ARMISD::CMPNZ", SDT_ARMCmp,
[SDNPOutFlag]>;
def ARMpic_add : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
def ARMsrl_flag : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutFlag]>;
def ARMsra_flag : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutFlag]>;
def ARMrrx : SDNode<"ARMISD::RRX" , SDTIntUnaryOp, [SDNPInFlag ]>;
def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
//===----------------------------------------------------------------------===//
// ARM Instruction Predicate Definitions.
//
def HasV5T : Predicate<"Subtarget->hasV5TOps()">;
def HasV5TE : Predicate<"Subtarget->hasV5TEOps()">;
def HasV6 : Predicate<"Subtarget->hasV6Ops()">;
def IsThumb : Predicate<"Subtarget->isThumb()">;
def IsARM : Predicate<"!Subtarget->isThumb()">;
//===----------------------------------------------------------------------===//
// ARM Flag Definitions.
class RegConstraint<string C> {
string Constraints = C;
}
//===----------------------------------------------------------------------===//
// ARM specific transformation functions and pattern fragments.
//
// so_imm_XFORM - Return a so_imm value packed into the format described for
// so_imm def below.
def so_imm_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(N->getZExtValue()),
MVT::i32);
}]>;
// so_imm_neg_XFORM - Return a so_imm value packed into the format described for
// so_imm_neg def below.
def so_imm_neg_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(-(int)N->getZExtValue()),
MVT::i32);
}]>;
// so_imm_not_XFORM - Return a so_imm value packed into the format described for
// so_imm_not def below.
def so_imm_not_XFORM : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(~(int)N->getZExtValue()),
MVT::i32);
}]>;
// rot_imm predicate - True if the 32-bit immediate is equal to 8, 16, or 24.
def rot_imm : PatLeaf<(i32 imm), [{
int32_t v = (int32_t)N->getZExtValue();
return v == 8 || v == 16 || v == 24;
}]>;
/// imm1_15 predicate - True if the 32-bit immediate is in the range [1,15].
def imm1_15 : PatLeaf<(i32 imm), [{
return (int32_t)N->getZExtValue() >= 1 && (int32_t)N->getZExtValue() < 16;
}]>;
/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
def imm16_31 : PatLeaf<(i32 imm), [{
return (int32_t)N->getZExtValue() >= 16 && (int32_t)N->getZExtValue() < 32;
}]>;
def so_imm_neg :
PatLeaf<(imm), [{
return ARM_AM::getSOImmVal(-(int)N->getZExtValue()) != -1;
}], so_imm_neg_XFORM>;
def so_imm_not :
PatLeaf<(imm), [{
return ARM_AM::getSOImmVal(~(int)N->getZExtValue()) != -1;
}], so_imm_not_XFORM>;
// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
def sext_16_node : PatLeaf<(i32 GPR:$a), [{
return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
}]>;
class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
//===----------------------------------------------------------------------===//
// Operand Definitions.
//
// Branch target.
def brtarget : Operand<OtherVT>;
// A list of registers separated by comma. Used by load/store multiple.
def reglist : Operand<i32> {
let PrintMethod = "printRegisterList";
}
// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
def cpinst_operand : Operand<i32> {
let PrintMethod = "printCPInstOperand";
}
def jtblock_operand : Operand<i32> {
let PrintMethod = "printJTBlockOperand";
}
// Local PC labels.
def pclabel : Operand<i32> {
let PrintMethod = "printPCLabel";
}
// shifter_operand operands: so_reg and so_imm.
def so_reg : Operand<i32>, // reg reg imm
ComplexPattern<i32, 3, "SelectShifterOperandReg",
[shl,srl,sra,rotr]> {
let PrintMethod = "printSORegOperand";
let MIOperandInfo = (ops GPR, GPR, i32imm);
}
// so_imm - Match a 32-bit shifter_operand immediate operand, which is an
// 8-bit immediate rotated by an arbitrary number of bits. so_imm values are
// represented in the imm field in the same 12-bit form that they are encoded
// into so_imm instructions: the 8-bit immediate is the least significant bits
// [bits 0-7], the 4-bit shift amount is the next 4 bits [bits 8-11].
def so_imm : Operand<i32>,
PatLeaf<(imm),
[{ return ARM_AM::getSOImmVal(N->getZExtValue()) != -1; }],
so_imm_XFORM> {
let PrintMethod = "printSOImmOperand";
}
// Break so_imm's up into two pieces. This handles immediates with up to 16
// bits set in them. This uses so_imm2part to match and so_imm2part_[12] to
// get the first/second pieces.
def so_imm2part : Operand<i32>,
PatLeaf<(imm), [{
return ARM_AM::isSOImmTwoPartVal((unsigned)N->getZExtValue());
}]> {
let PrintMethod = "printSOImm2PartOperand";
}
def so_imm2part_1 : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getSOImmTwoPartFirst((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(V), MVT::i32);
}]>;
def so_imm2part_2 : SDNodeXForm<imm, [{
unsigned V = ARM_AM::getSOImmTwoPartSecond((unsigned)N->getZExtValue());
return CurDAG->getTargetConstant(ARM_AM::getSOImmVal(V), MVT::i32);
}]>;
// Define ARM specific addressing modes.
// addrmode2 := reg +/- reg shop imm
// addrmode2 := reg +/- imm12
//
def addrmode2 : Operand<i32>,
ComplexPattern<i32, 3, "SelectAddrMode2", []> {
let PrintMethod = "printAddrMode2Operand";
let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
}
def am2offset : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrMode2Offset", []> {
let PrintMethod = "printAddrMode2OffsetOperand";
let MIOperandInfo = (ops GPR, i32imm);
}
// addrmode3 := reg +/- reg
// addrmode3 := reg +/- imm8
//
def addrmode3 : Operand<i32>,
ComplexPattern<i32, 3, "SelectAddrMode3", []> {
let PrintMethod = "printAddrMode3Operand";
let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
}
def am3offset : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrMode3Offset", []> {
let PrintMethod = "printAddrMode3OffsetOperand";
let MIOperandInfo = (ops GPR, i32imm);
}
// addrmode4 := reg, <mode|W>
//
def addrmode4 : Operand<i32>,
ComplexPattern<i32, 2, "", []> {
let PrintMethod = "printAddrMode4Operand";
let MIOperandInfo = (ops GPR, i32imm);
}
// addrmode5 := reg +/- imm8*4
//
def addrmode5 : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrMode5", []> {
let PrintMethod = "printAddrMode5Operand";
let MIOperandInfo = (ops GPR, i32imm);
}
// addrmodepc := pc + reg
//
def addrmodepc : Operand<i32>,
ComplexPattern<i32, 2, "SelectAddrModePC", []> {
let PrintMethod = "printAddrModePCOperand";
let MIOperandInfo = (ops GPR, i32imm);
}
// ARM Predicate operand. Default to 14 = always (AL). Second part is CC
// register whose default is 0 (no register).
def pred : PredicateOperand<OtherVT, (ops i32imm, CCR),
(ops (i32 14), (i32 zero_reg))> {
let PrintMethod = "printPredicateOperand";
}
// Conditional code result for instructions whose 's' bit is set, e.g. subs.
//
def cc_out : OptionalDefOperand<OtherVT, (ops CCR), (ops (i32 zero_reg))> {
let PrintMethod = "printSBitModifierOperand";
}
//===----------------------------------------------------------------------===//
// ARM Instruction flags. These need to match ARMInstrInfo.h.
//
// Addressing mode.
class AddrMode<bits<4> val> {
bits<4> Value = val;
}
def AddrModeNone : AddrMode<0>;
def AddrMode1 : AddrMode<1>;
def AddrMode2 : AddrMode<2>;
def AddrMode3 : AddrMode<3>;
def AddrMode4 : AddrMode<4>;
def AddrMode5 : AddrMode<5>;
def AddrModeT1 : AddrMode<6>;
def AddrModeT2 : AddrMode<7>;
def AddrModeT4 : AddrMode<8>;
def AddrModeTs : AddrMode<9>;
// Instruction size.
class SizeFlagVal<bits<3> val> {
bits<3> Value = val;
}
def SizeInvalid : SizeFlagVal<0>; // Unset.
def SizeSpecial : SizeFlagVal<1>; // Pseudo or special.
def Size8Bytes : SizeFlagVal<2>;
def Size4Bytes : SizeFlagVal<3>;
def Size2Bytes : SizeFlagVal<4>;
// Load / store index mode.
class IndexMode<bits<2> val> {
bits<2> Value = val;
}
def IndexModeNone : IndexMode<0>;
def IndexModePre : IndexMode<1>;
def IndexModePost : IndexMode<2>;
//===----------------------------------------------------------------------===//
include "ARMInstrFormats.td"
//===----------------------------------------------------------------------===//
// Multiclass helpers...
//
/// AsI1_bin_irs - Defines a set of (op r, {so_imm|r|so_reg}) patterns for a
/// binop that produces a value.
multiclass AsI1_bin_irs<bits<4> opcod, string opc, PatFrag opnode> {
def ri : AsI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm,
opc, " $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]>;
def rr : AsI1<opcod, (outs GPR:$dst), (ins GPR:$a, GPR:$b), DPFrm,
opc, " $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, GPR:$b))]>;
def rs : AsI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm,
opc, " $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]>;
}
/// ASI1_bin_s_irs - Similar to AsI1_bin_irs except it sets the 's' bit so the
/// instruction modifies the CSPR register.
let Defs = [CPSR] in {
multiclass ASI1_bin_s_irs<bits<4> opcod, string opc, PatFrag opnode> {
def ri : AI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm,
opc, "s $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]>;
def rr : AI1<opcod, (outs GPR:$dst), (ins GPR:$a, GPR:$b), DPFrm,
opc, "s $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, GPR:$b))]>;
def rs : AI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm,
opc, "s $dst, $a, $b",
[(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]>;
}
}
/// AI1_cmp_irs - Defines a set of (op r, {so_imm|r|so_reg}) cmp / test
/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
/// a explicit result, only implicitly set CPSR.
let Defs = [CPSR] in {
multiclass AI1_cmp_irs<bits<4> opcod, string opc, PatFrag opnode> {
def ri : AI1<opcod, (outs), (ins GPR:$a, so_imm:$b), DPFrm,
opc, " $a, $b",
[(opnode GPR:$a, so_imm:$b)]>;
def rr : AI1<opcod, (outs), (ins GPR:$a, GPR:$b), DPFrm,
opc, " $a, $b",
[(opnode GPR:$a, GPR:$b)]>;
def rs : AI1<opcod, (outs), (ins GPR:$a, so_reg:$b), DPSoRegFrm,
opc, " $a, $b",
[(opnode GPR:$a, so_reg:$b)]>;
}
}
/// AI_unary_rrot - A unary operation with two forms: one whose operand is a
/// register and one whose operand is a register rotated by 8/16/24.
/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
multiclass AI_unary_rrot<bits<8> opcod, string opc, PatFrag opnode> {
def r : AExtI<opcod, (outs GPR:$dst), (ins GPR:$Src),
opc, " $dst, $Src",
[(set GPR:$dst, (opnode GPR:$Src))]>,
Requires<[IsARM, HasV6]> {
let Inst{19-16} = 0b1111;
}
def r_rot : AExtI<opcod, (outs GPR:$dst), (ins GPR:$Src, i32imm:$rot),
opc, " $dst, $Src, ror $rot",
[(set GPR:$dst, (opnode (rotr GPR:$Src, rot_imm:$rot)))]>,
Requires<[IsARM, HasV6]> {
let Inst{19-16} = 0b1111;
}
}
/// AI_bin_rrot - A binary operation with two forms: one whose operand is a
/// register and one whose operand is a register rotated by 8/16/24.
multiclass AI_bin_rrot<bits<8> opcod, string opc, PatFrag opnode> {
def rr : AExtI<opcod, (outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS),
opc, " $dst, $LHS, $RHS",
[(set GPR:$dst, (opnode GPR:$LHS, GPR:$RHS))]>,
Requires<[IsARM, HasV6]>;
def rr_rot : AExtI<opcod, (outs GPR:$dst), (ins GPR:$LHS, GPR:$RHS, i32imm:$rot),
opc, " $dst, $LHS, $RHS, ror $rot",
[(set GPR:$dst, (opnode GPR:$LHS,
(rotr GPR:$RHS, rot_imm:$rot)))]>,
Requires<[IsARM, HasV6]>;
}
/// AsXI1_bin_c_irs - Same as AsI1_bin_irs but without the predicate operand and
/// setting carry bit. But it can optionally set CPSR.
let Uses = [CPSR] in {
multiclass AsXI1_bin_c_irs<bits<4> opcod, string opc, PatFrag opnode> {
def ri : AXI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_imm:$b, cc_out:$s),
DPFrm, !strconcat(opc, "${s} $dst, $a, $b"),
[(set GPR:$dst, (opnode GPR:$a, so_imm:$b))]>;
def rr : AXI1<opcod, (outs GPR:$dst), (ins GPR:$a, GPR:$b, cc_out:$s),
DPFrm, !strconcat(opc, "${s} $dst, $a, $b"),
[(set GPR:$dst, (opnode GPR:$a, GPR:$b))]>;
def rs : AXI1<opcod, (outs GPR:$dst), (ins GPR:$a, so_reg:$b, cc_out:$s),
DPSoRegFrm, !strconcat(opc, "${s} $dst, $a, $b"),
[(set GPR:$dst, (opnode GPR:$a, so_reg:$b))]>;
}
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions.
//
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
/// the function. The first operand is the ID# for this instruction, the second
/// is the index into the MachineConstantPool that this is, the third is the
/// size in bytes of this constant pool entry.
let isNotDuplicable = 1 in
def CONSTPOOL_ENTRY :
PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
i32imm:$size),
"${instid:label} ${cpidx:cpentry}", []>;
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKUP :
PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p),
"@ ADJCALLSTACKUP $amt1",
[(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKDOWN :
PseudoInst<(outs), (ins i32imm:$amt, pred:$p),
"@ ADJCALLSTACKDOWN $amt",
[(ARMcallseq_start timm:$amt)]>;
}
def DWARF_LOC :
PseudoInst<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file),
".loc $file, $line, $col",
[(dwarf_loc (i32 imm:$line), (i32 imm:$col), (i32 imm:$file))]>;
// Address computation and loads and stores in PIC mode.
let isNotDuplicable = 1 in {
def PICADD : AXI1<0b0100, (outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
Pseudo, "$cp:\n\tadd$p $dst, pc, $a",
[(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>;
let AddedComplexity = 10 in {
let isSimpleLoad = 1 in
def PICLDR : AXI2ldw<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
Pseudo, "${addr:label}:\n\tldr$p $dst, $addr",
[(set GPR:$dst, (load addrmodepc:$addr))]>;
def PICLDRH : AXI3ldh<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
Pseudo, "${addr:label}:\n\tldr${p}h $dst, $addr",
[(set GPR:$dst, (zextloadi16 addrmodepc:$addr))]>;
def PICLDRB : AXI2ldb<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
Pseudo, "${addr:label}:\n\tldr${p}b $dst, $addr",
[(set GPR:$dst, (zextloadi8 addrmodepc:$addr))]>;
def PICLDRSH : AXI3ldsh<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
Pseudo, "${addr:label}:\n\tldr${p}sh $dst, $addr",
[(set GPR:$dst, (sextloadi16 addrmodepc:$addr))]>;
def PICLDRSB : AXI3ldsb<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
Pseudo, "${addr:label}:\n\tldr${p}sb $dst, $addr",
[(set GPR:$dst, (sextloadi8 addrmodepc:$addr))]>;
}
let AddedComplexity = 10 in {
def PICSTR : AXI2stw<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
Pseudo, "${addr:label}:\n\tstr$p $src, $addr",
[(store GPR:$src, addrmodepc:$addr)]>;
def PICSTRH : AXI3sth<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
Pseudo, "${addr:label}:\n\tstr${p}h $src, $addr",
[(truncstorei16 GPR:$src, addrmodepc:$addr)]>;
def PICSTRB : AXI2stb<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
Pseudo, "${addr:label}:\n\tstr${p}b $src, $addr",
[(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
}
} // isNotDuplicable = 1
//===----------------------------------------------------------------------===//
// Control Flow Instructions.
//
let isReturn = 1, isTerminator = 1 in
def BX_RET : AI<(outs), (ins), BrMiscFrm, "bx", " lr", [(ARMretflag)]> {
let Inst{7-4} = 0b0001;
let Inst{19-8} = 0b111111111111;
let Inst{27-20} = 0b00010010;
}
// FIXME: remove when we have a way to marking a MI with these properties.
// FIXME: $dst1 should be a def. But the extra ops must be in the end of the
// operand list.
// FIXME: Should pc be an implicit operand like PICADD, etc?
let isReturn = 1, isTerminator = 1 in
def LDM_RET : AXI4ld<(outs),
(ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops),
LdMulFrm, "ldm${p}${addr:submode} $addr, $dst1",
[]>;
let isCall = 1,
Defs = [R0, R1, R2, R3, R12, LR,
D0, D1, D2, D3, D4, D5, D6, D7, CPSR] in {
def BL : ABXI<0b1011, (outs), (ins i32imm:$func, variable_ops),
"bl ${func:call}",
[(ARMcall tglobaladdr:$func)]>;
def BL_pred : ABI<0b1011, (outs), (ins i32imm:$func, variable_ops),
"bl", " ${func:call}",
[(ARMcall_pred tglobaladdr:$func)]>;
// ARMv5T and above
def BLX : AXI<(outs), (ins GPR:$func, variable_ops), BrMiscFrm,
"blx $func",
[(ARMcall GPR:$func)]>, Requires<[IsARM, HasV5T]> {
let Inst{7-4} = 0b0011;
let Inst{19-8} = 0b111111111111;
let Inst{27-20} = 0b00010010;
}
let Uses = [LR] in {
// ARMv4T
def BX : ABXIx2<(outs), (ins GPR:$func, variable_ops),
"mov lr, pc\n\tbx $func",
[(ARMcall_nolink GPR:$func)]>;
}
}
let isBranch = 1, isTerminator = 1 in {
// B is "predicable" since it can be xformed into a Bcc.
let isBarrier = 1 in {
let isPredicable = 1 in
def B : ABXI<0b1010, (outs), (ins brtarget:$target), "b $target",
[(br bb:$target)]>;
let isNotDuplicable = 1, isIndirectBranch = 1 in {
def BR_JTr : JTI<(outs), (ins GPR:$target, jtblock_operand:$jt, i32imm:$id),
"mov pc, $target \n$jt",
[(ARMbrjt GPR:$target, tjumptable:$jt, imm:$id)]> {
let Inst{20} = 0; // S Bit
let Inst{24-21} = 0b1101;
let Inst{27-26} = {0,0};
}
def BR_JTm : JTI<(outs),
(ins addrmode2:$target, jtblock_operand:$jt, i32imm:$id),
"ldr pc, $target \n$jt",
[(ARMbrjt (i32 (load addrmode2:$target)), tjumptable:$jt,
imm:$id)]> {
let Inst{20} = 1; // L bit
let Inst{21} = 0; // W bit
let Inst{22} = 0; // B bit
let Inst{24} = 1; // P bit
let Inst{27-26} = {0,1};
}
def BR_JTadd : JTI<(outs),
(ins GPR:$target, GPR:$idx, jtblock_operand:$jt, i32imm:$id),
"add pc, $target, $idx \n$jt",
[(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt,
imm:$id)]> {
let Inst{20} = 0; // S bit
let Inst{24-21} = 0b0100;
let Inst{27-26} = {0,0};
}
} // isNotDuplicable = 1, isIndirectBranch = 1
} // isBarrier = 1
// FIXME: should be able to write a pattern for ARMBrcond, but can't use
// a two-value operand where a dag node expects two operands. :(
def Bcc : ABI<0b1010, (outs), (ins brtarget:$target),
"b", " $target",
[/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>;
}
//===----------------------------------------------------------------------===//
// Load / store Instructions.
//
// Load
let isSimpleLoad = 1 in
def LDR : AI2ldw<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm,
"ldr", " $dst, $addr",
[(set GPR:$dst, (load addrmode2:$addr))]>;
// Special LDR for loads from non-pc-relative constpools.
let isSimpleLoad = 1, mayLoad = 1, isReMaterializable = 1 in
def LDRcp : AI2ldw<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm,
"ldr", " $dst, $addr", []>;
// Loads with zero extension
def LDRH : AI3ldh<(outs GPR:$dst), (ins addrmode3:$addr), LdMiscFrm,
"ldr", "h $dst, $addr",
[(set GPR:$dst, (zextloadi16 addrmode3:$addr))]>;
def LDRB : AI2ldb<(outs GPR:$dst), (ins addrmode2:$addr), LdFrm,
"ldr", "b $dst, $addr",
[(set GPR:$dst, (zextloadi8 addrmode2:$addr))]>;
// Loads with sign extension
def LDRSH : AI3ldsh<(outs GPR:$dst), (ins addrmode3:$addr), LdMiscFrm,
"ldr", "sh $dst, $addr",
[(set GPR:$dst, (sextloadi16 addrmode3:$addr))]>;
def LDRSB : AI3ldsb<(outs GPR:$dst), (ins addrmode3:$addr), LdMiscFrm,
"ldr", "sb $dst, $addr",
[(set GPR:$dst, (sextloadi8 addrmode3:$addr))]>;
let mayLoad = 1 in {
// Load doubleword
def LDRD : AI3ldd<(outs GPR:$dst), (ins addrmode3:$addr), LdMiscFrm,
"ldr", "d $dst, $addr",
[]>, Requires<[IsARM, HasV5T]>;
// Indexed loads
def LDR_PRE : AI2ldwpr<(outs GPR:$dst, GPR:$base_wb),
(ins addrmode2:$addr), LdFrm,
"ldr", " $dst, $addr!", "$addr.base = $base_wb", []>;
def LDR_POST : AI2ldwpo<(outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base, am2offset:$offset), LdFrm,
"ldr", " $dst, [$base], $offset", "$base = $base_wb", []>;
def LDRH_PRE : AI3ldhpr<(outs GPR:$dst, GPR:$base_wb),
(ins addrmode3:$addr), LdMiscFrm,
"ldr", "h $dst, $addr!", "$addr.base = $base_wb", []>;
def LDRH_POST : AI3ldhpo<(outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base,am3offset:$offset), LdMiscFrm,
"ldr", "h $dst, [$base], $offset", "$base = $base_wb", []>;
def LDRB_PRE : AI2ldbpr<(outs GPR:$dst, GPR:$base_wb),
(ins addrmode2:$addr), LdFrm,
"ldr", "b $dst, $addr!", "$addr.base = $base_wb", []>;
def LDRB_POST : AI2ldbpo<(outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base,am2offset:$offset), LdFrm,
"ldr", "b $dst, [$base], $offset", "$base = $base_wb", []>;
def LDRSH_PRE : AI3ldshpr<(outs GPR:$dst, GPR:$base_wb),
(ins addrmode3:$addr), LdMiscFrm,
"ldr", "sh $dst, $addr!", "$addr.base = $base_wb", []>;
def LDRSH_POST: AI3ldshpo<(outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base,am3offset:$offset), LdMiscFrm,
"ldr", "sh $dst, [$base], $offset", "$base = $base_wb", []>;
def LDRSB_PRE : AI3ldsbpr<(outs GPR:$dst, GPR:$base_wb),
(ins addrmode3:$addr), LdMiscFrm,
"ldr", "sb $dst, $addr!", "$addr.base = $base_wb", []>;
def LDRSB_POST: AI3ldsbpo<(outs GPR:$dst, GPR:$base_wb),
(ins GPR:$base,am3offset:$offset), LdMiscFrm,
"ldr", "sb $dst, [$base], $offset", "$base = $base_wb", []>;
}
// Store
def STR : AI2stw<(outs), (ins GPR:$src, addrmode2:$addr), StFrm,
"str", " $src, $addr",
[(store GPR:$src, addrmode2:$addr)]>;
// Stores with truncate
def STRH : AI3sth<(outs), (ins GPR:$src, addrmode3:$addr), StMiscFrm,
"str", "h $src, $addr",
[(truncstorei16 GPR:$src, addrmode3:$addr)]>;
def STRB : AI2stb<(outs), (ins GPR:$src, addrmode2:$addr), StFrm,
"str", "b $src, $addr",
[(truncstorei8 GPR:$src, addrmode2:$addr)]>;
// Store doubleword
let mayStore = 1 in
def STRD : AI3std<(outs), (ins GPR:$src, addrmode3:$addr), StMiscFrm,
"str", "d $src, $addr",
[]>, Requires<[IsARM, HasV5T]>;
// Indexed stores
def STR_PRE : AI2stwpr<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base, am2offset:$offset), StFrm,
"str", " $src, [$base, $offset]!", "$base = $base_wb",
[(set GPR:$base_wb,
(pre_store GPR:$src, GPR:$base, am2offset:$offset))]>;
def STR_POST : AI2stwpo<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base,am2offset:$offset), StFrm,
"str", " $src, [$base], $offset", "$base = $base_wb",
[(set GPR:$base_wb,
(post_store GPR:$src, GPR:$base, am2offset:$offset))]>;
def STRH_PRE : AI3sthpr<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base,am3offset:$offset), StMiscFrm,
"str", "h $src, [$base, $offset]!", "$base = $base_wb",
[(set GPR:$base_wb,
(pre_truncsti16 GPR:$src, GPR:$base,am3offset:$offset))]>;
def STRH_POST: AI3sthpo<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base,am3offset:$offset), StMiscFrm,
"str", "h $src, [$base], $offset", "$base = $base_wb",
[(set GPR:$base_wb, (post_truncsti16 GPR:$src,
GPR:$base, am3offset:$offset))]>;
def STRB_PRE : AI2stbpr<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base,am2offset:$offset), StFrm,
"str", "b $src, [$base, $offset]!", "$base = $base_wb",
[(set GPR:$base_wb, (pre_truncsti8 GPR:$src,
GPR:$base, am2offset:$offset))]>;
def STRB_POST: AI2stbpo<(outs GPR:$base_wb),
(ins GPR:$src, GPR:$base,am2offset:$offset), StFrm,
"str", "b $src, [$base], $offset", "$base = $base_wb",
[(set GPR:$base_wb, (post_truncsti8 GPR:$src,
GPR:$base, am2offset:$offset))]>;
//===----------------------------------------------------------------------===//
// Load / store multiple Instructions.
//
// FIXME: $dst1 should be a def.
let mayLoad = 1 in
def LDM : AXI4ld<(outs),
(ins addrmode4:$addr, pred:$p, reglist:$dst1, variable_ops),
LdMulFrm, "ldm${p}${addr:submode} $addr, $dst1",
[]>;
let mayStore = 1 in
def STM : AXI4st<(outs),
(ins addrmode4:$addr, pred:$p, reglist:$src1, variable_ops),
StMulFrm, "stm${p}${addr:submode} $addr, $src1",
[]>;
//===----------------------------------------------------------------------===//
// Move Instructions.
//
def MOVr : AsI1<0b1101, (outs GPR:$dst), (ins GPR:$src), DPFrm,
"mov", " $dst, $src", []>, UnaryDP;
def MOVs : AsI1<0b1101, (outs GPR:$dst), (ins so_reg:$src), DPSoRegFrm,
"mov", " $dst, $src", [(set GPR:$dst, so_reg:$src)]>, UnaryDP;
let isReMaterializable = 1 in
def MOVi : AsI1<0b1101, (outs GPR:$dst), (ins so_imm:$src), DPFrm,
"mov", " $dst, $src", [(set GPR:$dst, so_imm:$src)]>, UnaryDP;
def MOVrx : AsI1<0b1101, (outs GPR:$dst), (ins GPR:$src), DPFrm,
"mov", " $dst, $src, rrx",
[(set GPR:$dst, (ARMrrx GPR:$src))]>, UnaryDP;
// These aren't really mov instructions, but we have to define them this way
// due to flag operands.
let Defs = [CPSR] in {
def MOVsrl_flag : AI1<0b1101, (outs GPR:$dst), (ins GPR:$src), DPFrm,
"mov", "s $dst, $src, lsr #1",
[(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP;
def MOVsra_flag : AI1<0b1101, (outs GPR:$dst), (ins GPR:$src), DPFrm,
"mov", "s $dst, $src, asr #1",
[(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP;
}
//===----------------------------------------------------------------------===//
// Extend Instructions.
//
// Sign extenders
defm SXTB : AI_unary_rrot<0b01101010,
"sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
defm SXTH : AI_unary_rrot<0b01101011,
"sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
defm SXTAB : AI_bin_rrot<0b01101010,
"sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
defm SXTAH : AI_bin_rrot<0b01101011,
"sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
// TODO: SXT(A){B|H}16
// Zero extenders
let AddedComplexity = 16 in {
defm UXTB : AI_unary_rrot<0b01101110,
"uxtb" , UnOpFrag<(and node:$Src, 0x000000FF)>>;
defm UXTH : AI_unary_rrot<0b01101111,
"uxth" , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
defm UXTB16 : AI_unary_rrot<0b01101100,
"uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
def : ARMV6Pat<(and (shl GPR:$Src, 8), 0xFF00FF),
(UXTB16r_rot GPR:$Src, 24)>;
def : ARMV6Pat<(and (srl GPR:$Src, 8), 0xFF00FF),
(UXTB16r_rot GPR:$Src, 8)>;
defm UXTAB : AI_bin_rrot<0b01101110, "uxtab",
BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
defm UXTAH : AI_bin_rrot<0b01101111, "uxtah",
BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
}
// This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
//defm UXTAB16 : xxx<"uxtab16", 0xff00ff>;
// TODO: UXT(A){B|H}16
//===----------------------------------------------------------------------===//
// Arithmetic Instructions.
//
defm ADD : AsI1_bin_irs<0b0100, "add",
BinOpFrag<(add node:$LHS, node:$RHS)>>;
defm SUB : AsI1_bin_irs<0b0010, "sub",
BinOpFrag<(sub node:$LHS, node:$RHS)>>;
// ADD and SUB with 's' bit set.
defm ADDS : ASI1_bin_s_irs<0b0100, "add",
BinOpFrag<(addc node:$LHS, node:$RHS)>>;
defm SUBS : ASI1_bin_s_irs<0b0010, "sub",
BinOpFrag<(subc node:$LHS, node:$RHS)>>;
// FIXME: Do not allow ADC / SBC to be predicated for now.
defm ADC : AsXI1_bin_c_irs<0b0101, "adc",
BinOpFrag<(adde node:$LHS, node:$RHS)>>;
defm SBC : AsXI1_bin_c_irs<0b0110, "sbc",
BinOpFrag<(sube node:$LHS, node:$RHS)>>;
// These don't define reg/reg forms, because they are handled above.
def RSBri : AsI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm,
"rsb", " $dst, $a, $b",
[(set GPR:$dst, (sub so_imm:$b, GPR:$a))]>;
def RSBrs : AsI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm,
"rsb", " $dst, $a, $b",
[(set GPR:$dst, (sub so_reg:$b, GPR:$a))]>;
// RSB with 's' bit set.
let Defs = [CPSR] in {
def RSBSri : AI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_imm:$b), DPFrm,
"rsb", "s $dst, $a, $b",
[(set GPR:$dst, (subc so_imm:$b, GPR:$a))]>;
def RSBSrs : AI1<0b0011, (outs GPR:$dst), (ins GPR:$a, so_reg:$b), DPSoRegFrm,
"rsb", "s $dst, $a, $b",
[(set GPR:$dst, (subc so_reg:$b, GPR:$a))]>;
}
// FIXME: Do not allow RSC to be predicated for now. But they can set CPSR.
let Uses = [CPSR] in {
def RSCri : AXI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_imm:$b, cc_out:$s),
DPFrm, "rsc${s} $dst, $a, $b",
[(set GPR:$dst, (sube so_imm:$b, GPR:$a))]>;
def RSCrs : AXI1<0b0111, (outs GPR:$dst), (ins GPR:$a, so_reg:$b, cc_out:$s),
DPSoRegFrm, "rsc${s} $dst, $a, $b",
[(set GPR:$dst, (sube so_reg:$b, GPR:$a))]>;
}
// (sub X, imm) gets canonicalized to (add X, -imm). Match this form.
def : ARMPat<(add GPR:$src, so_imm_neg:$imm),
(SUBri GPR:$src, so_imm_neg:$imm)>;
//def : ARMPat<(addc GPR:$src, so_imm_neg:$imm),
// (SUBSri GPR:$src, so_imm_neg:$imm)>;
//def : ARMPat<(adde GPR:$src, so_imm_neg:$imm),
// (SBCri GPR:$src, so_imm_neg:$imm)>;
// Note: These are implemented in C++ code, because they have to generate
// ADD/SUBrs instructions, which use a complex pattern that a xform function
// cannot produce.
// (mul X, 2^n+1) -> (add (X << n), X)
// (mul X, 2^n-1) -> (rsb X, (X << n))
//===----------------------------------------------------------------------===//
// Bitwise Instructions.
//
defm AND : AsI1_bin_irs<0b0000, "and",
BinOpFrag<(and node:$LHS, node:$RHS)>>;
defm ORR : AsI1_bin_irs<0b1100, "orr",
BinOpFrag<(or node:$LHS, node:$RHS)>>;
defm EOR : AsI1_bin_irs<0b0001, "eor",
BinOpFrag<(xor node:$LHS, node:$RHS)>>;
defm BIC : AsI1_bin_irs<0b1110, "bic",
BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
def MVNr : AsI1<0b1111, (outs GPR:$dst), (ins GPR:$src), DPFrm,
"mvn", " $dst, $src",
[(set GPR:$dst, (not GPR:$src))]>, UnaryDP;
def MVNs : AsI1<0b1111, (outs GPR:$dst), (ins so_reg:$src), DPSoRegFrm,
"mvn", " $dst, $src",
[(set GPR:$dst, (not so_reg:$src))]>, UnaryDP;
let isReMaterializable = 1 in
def MVNi : AsI1<0b1111, (outs GPR:$dst), (ins so_imm:$imm), DPFrm,
"mvn", " $dst, $imm",
[(set GPR:$dst, so_imm_not:$imm)]>,UnaryDP;
def : ARMPat<(and GPR:$src, so_imm_not:$imm),
(BICri GPR:$src, so_imm_not:$imm)>;
//===----------------------------------------------------------------------===//
// Multiply Instructions.
//
def MUL : AsMul1I<0b0000000, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
"mul", " $dst, $a, $b",
[(set GPR:$dst, (mul GPR:$a, GPR:$b))]>;
def MLA : AsMul1I<0b0000001, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
"mla", " $dst, $a, $b, $c",
[(set GPR:$dst, (add (mul GPR:$a, GPR:$b), GPR:$c))]>;
// Extra precision multiplies with low / high results
def SMULL : AsMul1I<0b0000110, (outs GPR:$ldst, GPR:$hdst),
(ins GPR:$a, GPR:$b),
"smull", " $ldst, $hdst, $a, $b", []>;
def UMULL : AsMul1I<0b0000100, (outs GPR:$ldst, GPR:$hdst),
(ins GPR:$a, GPR:$b),
"umull", " $ldst, $hdst, $a, $b", []>;
// Multiply + accumulate
def SMLAL : AsMul1I<0b0000111, (outs GPR:$ldst, GPR:$hdst),
(ins GPR:$a, GPR:$b),
"smlal", " $ldst, $hdst, $a, $b", []>;
def UMLAL : AsMul1I<0b0000101, (outs GPR:$ldst, GPR:$hdst),
(ins GPR:$a, GPR:$b),
"umlal", " $ldst, $hdst, $a, $b", []>;
def UMAAL : AMul1I <0b0000010, (outs GPR:$ldst, GPR:$hdst),
(ins GPR:$a, GPR:$b),
"umaal", " $ldst, $hdst, $a, $b", []>,
Requires<[IsARM, HasV6]>;
// Most significant word multiply
def SMMUL : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
"smmul", " $dst, $a, $b",
[(set GPR:$dst, (mulhs GPR:$a, GPR:$b))]>,
Requires<[IsARM, HasV6]> {
let Inst{7-4} = 0b0001;
let Inst{15-12} = 0b1111;
}
def SMMLA : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
"smmla", " $dst, $a, $b, $c",
[(set GPR:$dst, (add (mulhs GPR:$a, GPR:$b), GPR:$c))]>,
Requires<[IsARM, HasV6]> {
let Inst{7-4} = 0b0001;
}
def SMMLS : AMul2I <0b0111010, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$c),
"smmls", " $dst, $a, $b, $c",
[(set GPR:$dst, (sub GPR:$c, (mulhs GPR:$a, GPR:$b)))]>,
Requires<[IsARM, HasV6]> {
let Inst{7-4} = 0b1101;
}
multiclass AI_smul<string opc, PatFrag opnode> {
def BB : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
!strconcat(opc, "bb"), " $dst, $a, $b",
[(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16),
(sext_inreg GPR:$b, i16)))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 0;
let Inst{6} = 0;
}
def BT : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
!strconcat(opc, "bt"), " $dst, $a, $b",
[(set GPR:$dst, (opnode (sext_inreg GPR:$a, i16),
(sra GPR:$b, 16)))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 0;
let Inst{6} = 1;
}
def TB : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
!strconcat(opc, "tb"), " $dst, $a, $b",
[(set GPR:$dst, (opnode (sra GPR:$a, 16),
(sext_inreg GPR:$b, i16)))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 1;
let Inst{6} = 0;
}
def TT : AMulxyI<0b0001011, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
!strconcat(opc, "tt"), " $dst, $a, $b",
[(set GPR:$dst, (opnode (sra GPR:$a, 16),
(sra GPR:$b, 16)))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 1;
let Inst{6} = 1;
}
def WB : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
!strconcat(opc, "wb"), " $dst, $a, $b",
[(set GPR:$dst, (sra (opnode GPR:$a,
(sext_inreg GPR:$b, i16)), 16))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 1;
let Inst{6} = 0;
}
def WT : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b),
!strconcat(opc, "wt"), " $dst, $a, $b",
[(set GPR:$dst, (sra (opnode GPR:$a,
(sra GPR:$b, 16)), 16))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 1;
let Inst{6} = 1;
}
}
multiclass AI_smla<string opc, PatFrag opnode> {
def BB : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
!strconcat(opc, "bb"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc,
(opnode (sext_inreg GPR:$a, i16),
(sext_inreg GPR:$b, i16))))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 0;
let Inst{6} = 0;
}
def BT : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
!strconcat(opc, "bt"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc, (opnode (sext_inreg GPR:$a, i16),
(sra GPR:$b, 16))))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 0;
let Inst{6} = 1;
}
def TB : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
!strconcat(opc, "tb"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, 16),
(sext_inreg GPR:$b, i16))))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 1;
let Inst{6} = 0;
}
def TT : AMulxyI<0b0001000, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
!strconcat(opc, "tt"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc, (opnode (sra GPR:$a, 16),
(sra GPR:$b, 16))))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 1;
let Inst{6} = 1;
}
def WB : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
!strconcat(opc, "wb"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a,
(sext_inreg GPR:$b, i16)), 16)))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 0;
let Inst{6} = 0;
}
def WT : AMulxyI<0b0001001, (outs GPR:$dst), (ins GPR:$a, GPR:$b, GPR:$acc),
!strconcat(opc, "wt"), " $dst, $a, $b, $acc",
[(set GPR:$dst, (add GPR:$acc, (sra (opnode GPR:$a,
(sra GPR:$b, 16)), 16)))]>,
Requires<[IsARM, HasV5TE]> {
let Inst{5} = 0;
let Inst{6} = 1;
}
}
defm SMUL : AI_smul<"smul", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
defm SMLA : AI_smla<"smla", BinOpFrag<(mul node:$LHS, node:$RHS)>>;
// TODO: Halfword multiple accumulate long: SMLAL<x><y>
// TODO: Dual halfword multiple: SMUAD, SMUSD, SMLAD, SMLSD, SMLALD, SMLSLD
//===----------------------------------------------------------------------===//
// Misc. Arithmetic Instructions.
//
def CLZ : AMiscA1I<0b000010110, (outs GPR:$dst), (ins GPR:$src),
"clz", " $dst, $src",
[(set GPR:$dst, (ctlz GPR:$src))]>, Requires<[IsARM, HasV5T]> {
let Inst{7-4} = 0b0001;
let Inst{11-8} = 0b1111;
let Inst{19-16} = 0b1111;
}
def REV : AMiscA1I<0b01101011, (outs GPR:$dst), (ins GPR:$src),
"rev", " $dst, $src",
[(set GPR:$dst, (bswap GPR:$src))]>, Requires<[IsARM, HasV6]> {
let Inst{7-4} = 0b0011;
let Inst{11-8} = 0b1111;
let Inst{19-16} = 0b1111;
}
def REV16 : AMiscA1I<0b01101011, (outs GPR:$dst), (ins GPR:$src),
"rev16", " $dst, $src",
[(set GPR:$dst,
(or (and (srl GPR:$src, 8), 0xFF),
(or (and (shl GPR:$src, 8), 0xFF00),
(or (and (srl GPR:$src, 8), 0xFF0000),
(and (shl GPR:$src, 8), 0xFF000000)))))]>,
Requires<[IsARM, HasV6]> {
let Inst{7-4} = 0b1011;
let Inst{11-8} = 0b1111;
let Inst{19-16} = 0b1111;
}
def REVSH : AMiscA1I<0b01101111, (outs GPR:$dst), (ins GPR:$src),
"revsh", " $dst, $src",
[(set GPR:$dst,
(sext_inreg
(or (srl (and GPR:$src, 0xFF00), 8),
(shl GPR:$src, 8)), i16))]>,
Requires<[IsARM, HasV6]> {
let Inst{7-4} = 0b1011;
let Inst{11-8} = 0b1111;
let Inst{19-16} = 0b1111;
}
def PKHBT : AMiscA1I<0b01101000, (outs GPR:$dst),
(ins GPR:$src1, GPR:$src2, i32imm:$shamt),
"pkhbt", " $dst, $src1, $src2, LSL $shamt",
[(set GPR:$dst, (or (and GPR:$src1, 0xFFFF),
(and (shl GPR:$src2, (i32 imm:$shamt)),
0xFFFF0000)))]>,
Requires<[IsARM, HasV6]> {
let Inst{6-4} = 0b001;
}
// Alternate cases for PKHBT where identities eliminate some nodes.
def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF), (and GPR:$src2, 0xFFFF0000)),
(PKHBT GPR:$src1, GPR:$src2, 0)>;
def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF), (shl GPR:$src2, imm16_31:$shamt)),
(PKHBT GPR:$src1, GPR:$src2, imm16_31:$shamt)>;
def PKHTB : AMiscA1I<0b01101000, (outs GPR:$dst),
(ins GPR:$src1, GPR:$src2, i32imm:$shamt),
"pkhtb", " $dst, $src1, $src2, ASR $shamt",
[(set GPR:$dst, (or (and GPR:$src1, 0xFFFF0000),
(and (sra GPR:$src2, imm16_31:$shamt),
0xFFFF)))]>, Requires<[IsARM, HasV6]> {
let Inst{6-4} = 0b101;
}
// Alternate cases for PKHTB where identities eliminate some nodes. Note that
// a shift amount of 0 is *not legal* here, it is PKHBT instead.
def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF0000), (srl GPR:$src2, 16)),
(PKHTB GPR:$src1, GPR:$src2, 16)>;
def : ARMV6Pat<(or (and GPR:$src1, 0xFFFF0000),
(and (srl GPR:$src2, imm1_15:$shamt), 0xFFFF)),
(PKHTB GPR:$src1, GPR:$src2, imm1_15:$shamt)>;
//===----------------------------------------------------------------------===//
// Comparison Instructions...
//
defm CMP : AI1_cmp_irs<0b1010, "cmp",
BinOpFrag<(ARMcmp node:$LHS, node:$RHS)>>;
defm CMN : AI1_cmp_irs<0b1011, "cmn",
BinOpFrag<(ARMcmp node:$LHS,(ineg node:$RHS))>>;
// Note that TST/TEQ don't set all the same flags that CMP does!
defm TST : AI1_cmp_irs<0b1000, "tst",
BinOpFrag<(ARMcmpNZ (and node:$LHS, node:$RHS), 0)>>;
defm TEQ : AI1_cmp_irs<0b1001, "teq",
BinOpFrag<(ARMcmpNZ (xor node:$LHS, node:$RHS), 0)>>;
defm CMPnz : AI1_cmp_irs<0b1010, "cmp",
BinOpFrag<(ARMcmpNZ node:$LHS, node:$RHS)>>;
defm CMNnz : AI1_cmp_irs<0b1011, "cmn",
BinOpFrag<(ARMcmpNZ node:$LHS,(ineg node:$RHS))>>;
def : ARMPat<(ARMcmp GPR:$src, so_imm_neg:$imm),
(CMNri GPR:$src, so_imm_neg:$imm)>;
def : ARMPat<(ARMcmpNZ GPR:$src, so_imm_neg:$imm),
(CMNri GPR:$src, so_imm_neg:$imm)>;
// Conditional moves
// FIXME: should be able to write a pattern for ARMcmov, but can't use
// a two-value operand where a dag node expects two operands. :(
def MOVCCr : AI1<0b1101, (outs GPR:$dst), (ins GPR:$false, GPR:$true), DPFrm,
"mov", " $dst, $true",
[/*(set GPR:$dst, (ARMcmov GPR:$false, GPR:$true, imm:$cc, CCR:$ccr))*/]>,
RegConstraint<"$false = $dst">, UnaryDP;
def MOVCCs : AI1<0b1101, (outs GPR:$dst),
(ins GPR:$false, so_reg:$true), DPSoRegFrm,
"mov", " $dst, $true",
[/*(set GPR:$dst, (ARMcmov GPR:$false, so_reg:$true, imm:$cc, CCR:$ccr))*/]>,
RegConstraint<"$false = $dst">, UnaryDP;
def MOVCCi : AI1<0b1101, (outs GPR:$dst),
(ins GPR:$false, so_imm:$true), DPFrm,
"mov", " $dst, $true",
[/*(set GPR:$dst, (ARMcmov GPR:$false, so_imm:$true, imm:$cc, CCR:$ccr))*/]>,
RegConstraint<"$false = $dst">, UnaryDP;
// LEApcrel - Load a pc-relative address into a register without offending the
// assembler.
def LEApcrel : AXI1<0x0, (outs GPR:$dst), (ins i32imm:$label, pred:$p), Pseudo,
!strconcat(!strconcat(".set PCRELV${:uid}, ($label-(",
"${:private}PCRELL${:uid}+8))\n"),
!strconcat("${:private}PCRELL${:uid}:\n\t",
"add$p $dst, pc, #PCRELV${:uid}")),
[]>;
def LEApcrelJT : AXI1<0x0, (outs GPR:$dst), (ins i32imm:$label, i32imm:$id, pred:$p),
Pseudo,
!strconcat(!strconcat(".set PCRELV${:uid}, (${label}_${id:no_hash}-(",
"${:private}PCRELL${:uid}+8))\n"),
!strconcat("${:private}PCRELL${:uid}:\n\t",
"add$p $dst, pc, #PCRELV${:uid}")),
[]>;
//===----------------------------------------------------------------------===//
// TLS Instructions
//
// __aeabi_read_tp preserves the registers r1-r3.
let isCall = 1,
Defs = [R0, R12, LR, CPSR] in {
def TPsoft : ABXI<0b1011, (outs), (ins),
"bl __aeabi_read_tp",
[(set R0, ARMthread_pointer)]>;
}
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//
// ConstantPool, GlobalAddress, and JumpTable
def : ARMPat<(ARMWrapper tglobaladdr :$dst), (LEApcrel tglobaladdr :$dst)>;
def : ARMPat<(ARMWrapper tconstpool :$dst), (LEApcrel tconstpool :$dst)>;
def : ARMPat<(ARMWrapperJT tjumptable:$dst, imm:$id),
(LEApcrelJT tjumptable:$dst, imm:$id)>;
// Large immediate handling.
// Two piece so_imms.
let isReMaterializable = 1 in
def MOVi2pieces : AI1x2<(outs GPR:$dst), (ins so_imm2part:$src), Pseudo,
"mov", " $dst, $src",
[(set GPR:$dst, so_imm2part:$src)]>;
def : ARMPat<(or GPR:$LHS, so_imm2part:$RHS),
(ORRri (ORRri GPR:$LHS, (so_imm2part_1 imm:$RHS)),
(so_imm2part_2 imm:$RHS))>;
def : ARMPat<(xor GPR:$LHS, so_imm2part:$RHS),
(EORri (EORri GPR:$LHS, (so_imm2part_1 imm:$RHS)),
(so_imm2part_2 imm:$RHS))>;
// TODO: add,sub,and, 3-instr forms?
// Direct calls
def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>;
// zextload i1 -> zextload i8
def : ARMPat<(zextloadi1 addrmode2:$addr), (LDRB addrmode2:$addr)>;
// extload -> zextload
def : ARMPat<(extloadi1 addrmode2:$addr), (LDRB addrmode2:$addr)>;
def : ARMPat<(extloadi8 addrmode2:$addr), (LDRB addrmode2:$addr)>;
def : ARMPat<(extloadi16 addrmode3:$addr), (LDRH addrmode3:$addr)>;
def : ARMPat<(extloadi8 addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
// smul* and smla*
def : ARMV5TEPat<(mul (sra (shl GPR:$a, 16), 16), (sra (shl GPR:$b, 16), 16)),
(SMULBB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
(SMULBB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sra (shl GPR:$a, 16), 16), (sra GPR:$b, 16)),
(SMULBT GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul sext_16_node:$a, (sra GPR:$b, 16)),
(SMULBT GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sra GPR:$a, 16), (sra (shl GPR:$b, 16), 16)),
(SMULTB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(mul (sra GPR:$a, 16), sext_16_node:$b),
(SMULTB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(sra (mul GPR:$a, (sra (shl GPR:$b, 16), 16)), 16),
(SMULWB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(sra (mul GPR:$a, sext_16_node:$b), 16),
(SMULWB GPR:$a, GPR:$b)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul (sra (shl GPR:$a, 16), 16),
(sra (shl GPR:$b, 16), 16))),
(SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul sext_16_node:$a, sext_16_node:$b)),
(SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul (sra (shl GPR:$a, 16), 16), (sra GPR:$b, 16))),
(SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul sext_16_node:$a, (sra GPR:$b, 16))),
(SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul (sra GPR:$a, 16), (sra (shl GPR:$b, 16), 16))),
(SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(mul (sra GPR:$a, 16), sext_16_node:$b)),
(SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(sra (mul GPR:$a, (sra (shl GPR:$b, 16), 16)), 16)),
(SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
def : ARMV5TEPat<(add GPR:$acc,
(sra (mul GPR:$a, sext_16_node:$b), 16)),
(SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
//===----------------------------------------------------------------------===//
// Thumb Support
//
include "ARMInstrThumb.td"
//===----------------------------------------------------------------------===//
// Floating Point Support
//
include "ARMInstrVFP.td"