mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Renamed methods caseBegin, caseEnd and caseDefault with case_begin, case_end, and case_default. Added some notes relative to case iterators. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152532 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2988 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2988 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Peephole optimize the CFG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "simplifycfg"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Metadata.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| #include "llvm/Support/NoFolder.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <set>
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
 | |
|    cl::desc("Control the amount of phi node folding to perform (default = 1)"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
 | |
|        cl::desc("Duplicate return instructions into unconditional branches"));
 | |
| 
 | |
| STATISTIC(NumSpeculations, "Number of speculative executed instructions");
 | |
| 
 | |
| namespace {
 | |
| class SimplifyCFGOpt {
 | |
|   const TargetData *const TD;
 | |
| 
 | |
|   Value *isValueEqualityComparison(TerminatorInst *TI);
 | |
|   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
 | |
|     std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
 | |
|   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
 | |
|                                                      BasicBlock *Pred,
 | |
|                                                      IRBuilder<> &Builder);
 | |
|   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
 | |
|                                            IRBuilder<> &Builder);
 | |
| 
 | |
|   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
 | |
|   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
 | |
|   bool SimplifyUnreachable(UnreachableInst *UI);
 | |
|   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
 | |
|   bool SimplifyIndirectBr(IndirectBrInst *IBI);
 | |
|   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
 | |
|   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
 | |
| 
 | |
| public:
 | |
|   explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
 | |
|   bool run(BasicBlock *BB);
 | |
| };
 | |
| }
 | |
| 
 | |
| /// SafeToMergeTerminators - Return true if it is safe to merge these two
 | |
| /// terminator instructions together.
 | |
| ///
 | |
| static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
 | |
|   if (SI1 == SI2) return false;  // Can't merge with self!
 | |
|   
 | |
|   // It is not safe to merge these two switch instructions if they have a common
 | |
|   // successor, and if that successor has a PHI node, and if *that* PHI node has
 | |
|   // conflicting incoming values from the two switch blocks.
 | |
|   BasicBlock *SI1BB = SI1->getParent();
 | |
|   BasicBlock *SI2BB = SI2->getParent();
 | |
|   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
 | |
|   
 | |
|   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
 | |
|     if (SI1Succs.count(*I))
 | |
|       for (BasicBlock::iterator BBI = (*I)->begin();
 | |
|            isa<PHINode>(BBI); ++BBI) {
 | |
|         PHINode *PN = cast<PHINode>(BBI);
 | |
|         if (PN->getIncomingValueForBlock(SI1BB) !=
 | |
|             PN->getIncomingValueForBlock(SI2BB))
 | |
|           return false;
 | |
|       }
 | |
|         
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
 | |
| /// now be entries in it from the 'NewPred' block.  The values that will be
 | |
| /// flowing into the PHI nodes will be the same as those coming in from
 | |
| /// ExistPred, an existing predecessor of Succ.
 | |
| static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
 | |
|                                   BasicBlock *ExistPred) {
 | |
|   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
 | |
|   
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator I = Succ->begin();
 | |
|        (PN = dyn_cast<PHINode>(I)); ++I)
 | |
|     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
 | |
| /// least one PHI node in it), check to see if the merge at this block is due
 | |
| /// to an "if condition".  If so, return the boolean condition that determines
 | |
| /// which entry into BB will be taken.  Also, return by references the block
 | |
| /// that will be entered from if the condition is true, and the block that will
 | |
| /// be entered if the condition is false.
 | |
| ///
 | |
| /// This does no checking to see if the true/false blocks have large or unsavory
 | |
| /// instructions in them.
 | |
| static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
 | |
|                              BasicBlock *&IfFalse) {
 | |
|   PHINode *SomePHI = cast<PHINode>(BB->begin());
 | |
|   assert(SomePHI->getNumIncomingValues() == 2 &&
 | |
|          "Function can only handle blocks with 2 predecessors!");
 | |
|   BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
 | |
|   BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
 | |
| 
 | |
|   // We can only handle branches.  Other control flow will be lowered to
 | |
|   // branches if possible anyway.
 | |
|   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
 | |
|   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
 | |
|   if (Pred1Br == 0 || Pred2Br == 0)
 | |
|     return 0;
 | |
| 
 | |
|   // Eliminate code duplication by ensuring that Pred1Br is conditional if
 | |
|   // either are.
 | |
|   if (Pred2Br->isConditional()) {
 | |
|     // If both branches are conditional, we don't have an "if statement".  In
 | |
|     // reality, we could transform this case, but since the condition will be
 | |
|     // required anyway, we stand no chance of eliminating it, so the xform is
 | |
|     // probably not profitable.
 | |
|     if (Pred1Br->isConditional())
 | |
|       return 0;
 | |
| 
 | |
|     std::swap(Pred1, Pred2);
 | |
|     std::swap(Pred1Br, Pred2Br);
 | |
|   }
 | |
| 
 | |
|   if (Pred1Br->isConditional()) {
 | |
|     // The only thing we have to watch out for here is to make sure that Pred2
 | |
|     // doesn't have incoming edges from other blocks.  If it does, the condition
 | |
|     // doesn't dominate BB.
 | |
|     if (Pred2->getSinglePredecessor() == 0)
 | |
|       return 0;
 | |
|     
 | |
|     // If we found a conditional branch predecessor, make sure that it branches
 | |
|     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
 | |
|     if (Pred1Br->getSuccessor(0) == BB &&
 | |
|         Pred1Br->getSuccessor(1) == Pred2) {
 | |
|       IfTrue = Pred1;
 | |
|       IfFalse = Pred2;
 | |
|     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
 | |
|                Pred1Br->getSuccessor(1) == BB) {
 | |
|       IfTrue = Pred2;
 | |
|       IfFalse = Pred1;
 | |
|     } else {
 | |
|       // We know that one arm of the conditional goes to BB, so the other must
 | |
|       // go somewhere unrelated, and this must not be an "if statement".
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     return Pred1Br->getCondition();
 | |
|   }
 | |
| 
 | |
|   // Ok, if we got here, both predecessors end with an unconditional branch to
 | |
|   // BB.  Don't panic!  If both blocks only have a single (identical)
 | |
|   // predecessor, and THAT is a conditional branch, then we're all ok!
 | |
|   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
 | |
|   if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
 | |
|     return 0;
 | |
| 
 | |
|   // Otherwise, if this is a conditional branch, then we can use it!
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
 | |
|   if (BI == 0) return 0;
 | |
|   
 | |
|   assert(BI->isConditional() && "Two successors but not conditional?");
 | |
|   if (BI->getSuccessor(0) == Pred1) {
 | |
|     IfTrue = Pred1;
 | |
|     IfFalse = Pred2;
 | |
|   } else {
 | |
|     IfTrue = Pred2;
 | |
|     IfFalse = Pred1;
 | |
|   }
 | |
|   return BI->getCondition();
 | |
| }
 | |
| 
 | |
| /// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
 | |
| /// given instruction, which is assumed to be safe to speculate. 1 means
 | |
| /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
 | |
| static unsigned ComputeSpeculationCost(const User *I) {
 | |
|   assert(isSafeToSpeculativelyExecute(I) &&
 | |
|          "Instruction is not safe to speculatively execute!");
 | |
|   switch (Operator::getOpcode(I)) {
 | |
|   default:
 | |
|     // In doubt, be conservative.
 | |
|     return UINT_MAX;
 | |
|   case Instruction::GetElementPtr:
 | |
|     // GEPs are cheap if all indices are constant.
 | |
|     if (!cast<GEPOperator>(I)->hasAllConstantIndices())
 | |
|       return UINT_MAX;
 | |
|     return 1;
 | |
|   case Instruction::Load:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|     return 1; // These are all cheap.
 | |
| 
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Select:
 | |
|     return 2;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// DominatesMergePoint - If we have a merge point of an "if condition" as
 | |
| /// accepted above, return true if the specified value dominates the block.  We
 | |
| /// don't handle the true generality of domination here, just a special case
 | |
| /// which works well enough for us.
 | |
| ///
 | |
| /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
 | |
| /// see if V (which must be an instruction) and its recursive operands
 | |
| /// that do not dominate BB have a combined cost lower than CostRemaining and
 | |
| /// are non-trapping.  If both are true, the instruction is inserted into the
 | |
| /// set and true is returned.
 | |
| ///
 | |
| /// The cost for most non-trapping instructions is defined as 1 except for
 | |
| /// Select whose cost is 2.
 | |
| ///
 | |
| /// After this function returns, CostRemaining is decreased by the cost of
 | |
| /// V plus its non-dominating operands.  If that cost is greater than
 | |
| /// CostRemaining, false is returned and CostRemaining is undefined.
 | |
| static bool DominatesMergePoint(Value *V, BasicBlock *BB,
 | |
|                                 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
 | |
|                                 unsigned &CostRemaining) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) {
 | |
|     // Non-instructions all dominate instructions, but not all constantexprs
 | |
|     // can be executed unconditionally.
 | |
|     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
 | |
|       if (C->canTrap())
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   BasicBlock *PBB = I->getParent();
 | |
| 
 | |
|   // We don't want to allow weird loops that might have the "if condition" in
 | |
|   // the bottom of this block.
 | |
|   if (PBB == BB) return false;
 | |
| 
 | |
|   // If this instruction is defined in a block that contains an unconditional
 | |
|   // branch to BB, then it must be in the 'conditional' part of the "if
 | |
|   // statement".  If not, it definitely dominates the region.
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
 | |
|   if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
 | |
|     return true;
 | |
| 
 | |
|   // If we aren't allowing aggressive promotion anymore, then don't consider
 | |
|   // instructions in the 'if region'.
 | |
|   if (AggressiveInsts == 0) return false;
 | |
|   
 | |
|   // If we have seen this instruction before, don't count it again.
 | |
|   if (AggressiveInsts->count(I)) return true;
 | |
| 
 | |
|   // Okay, it looks like the instruction IS in the "condition".  Check to
 | |
|   // see if it's a cheap instruction to unconditionally compute, and if it
 | |
|   // only uses stuff defined outside of the condition.  If so, hoist it out.
 | |
|   if (!isSafeToSpeculativelyExecute(I))
 | |
|     return false;
 | |
| 
 | |
|   unsigned Cost = ComputeSpeculationCost(I);
 | |
| 
 | |
|   if (Cost > CostRemaining)
 | |
|     return false;
 | |
| 
 | |
|   CostRemaining -= Cost;
 | |
| 
 | |
|   // Okay, we can only really hoist these out if their operands do
 | |
|   // not take us over the cost threshold.
 | |
|   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
 | |
|     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
 | |
|       return false;
 | |
|   // Okay, it's safe to do this!  Remember this instruction.
 | |
|   AggressiveInsts->insert(I);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
 | |
| /// and PointerNullValue. Return NULL if value is not a constant int.
 | |
| static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
 | |
|   // Normal constant int.
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(V);
 | |
|   if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
 | |
|     return CI;
 | |
| 
 | |
|   // This is some kind of pointer constant. Turn it into a pointer-sized
 | |
|   // ConstantInt if possible.
 | |
|   IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
 | |
| 
 | |
|   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
 | |
|   if (isa<ConstantPointerNull>(V))
 | |
|     return ConstantInt::get(PtrTy, 0);
 | |
| 
 | |
|   // IntToPtr const int.
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     if (CE->getOpcode() == Instruction::IntToPtr)
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
 | |
|         // The constant is very likely to have the right type already.
 | |
|         if (CI->getType() == PtrTy)
 | |
|           return CI;
 | |
|         else
 | |
|           return cast<ConstantInt>
 | |
|             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
 | |
|       }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
 | |
| /// collection of icmp eq/ne instructions that compare a value against a
 | |
| /// constant, return the value being compared, and stick the constant into the
 | |
| /// Values vector.
 | |
| static Value *
 | |
| GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
 | |
|                        const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (I == 0) return 0;
 | |
|   
 | |
|   // If this is an icmp against a constant, handle this as one of the cases.
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
 | |
|     if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
 | |
|       if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
 | |
|         UsedICmps++;
 | |
|         Vals.push_back(C);
 | |
|         return I->getOperand(0);
 | |
|       }
 | |
|       
 | |
|       // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
 | |
|       // the set.
 | |
|       ConstantRange Span =
 | |
|         ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
 | |
|       
 | |
|       // If this is an and/!= check then we want to optimize "x ugt 2" into
 | |
|       // x != 0 && x != 1.
 | |
|       if (!isEQ)
 | |
|         Span = Span.inverse();
 | |
|       
 | |
|       // If there are a ton of values, we don't want to make a ginormous switch.
 | |
|       if (Span.getSetSize().ugt(8) || Span.isEmptySet())
 | |
|         return 0;
 | |
|       
 | |
|       for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
 | |
|         Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
 | |
|       UsedICmps++;
 | |
|       return I->getOperand(0);
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we can only handle an | or &, depending on isEQ.
 | |
|   if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
 | |
|     return 0;
 | |
|   
 | |
|   unsigned NumValsBeforeLHS = Vals.size();
 | |
|   unsigned UsedICmpsBeforeLHS = UsedICmps;
 | |
|   if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
 | |
|                                           isEQ, UsedICmps)) {
 | |
|     unsigned NumVals = Vals.size();
 | |
|     unsigned UsedICmpsBeforeRHS = UsedICmps;
 | |
|     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
 | |
|                                             isEQ, UsedICmps)) {
 | |
|       if (LHS == RHS)
 | |
|         return LHS;
 | |
|       Vals.resize(NumVals);
 | |
|       UsedICmps = UsedICmpsBeforeRHS;
 | |
|     }
 | |
| 
 | |
|     // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
 | |
|     // set it and return success.
 | |
|     if (Extra == 0 || Extra == I->getOperand(1)) {
 | |
|       Extra = I->getOperand(1);
 | |
|       return LHS;
 | |
|     }
 | |
|     
 | |
|     Vals.resize(NumValsBeforeLHS);
 | |
|     UsedICmps = UsedICmpsBeforeLHS;
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   // If the LHS can't be folded in, but Extra is available and RHS can, try to
 | |
|   // use LHS as Extra.
 | |
|   if (Extra == 0 || Extra == I->getOperand(0)) {
 | |
|     Value *OldExtra = Extra;
 | |
|     Extra = I->getOperand(0);
 | |
|     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
 | |
|                                             isEQ, UsedICmps))
 | |
|       return RHS;
 | |
|     assert(Vals.size() == NumValsBeforeLHS);
 | |
|     Extra = OldExtra;
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
 | |
|   Instruction *Cond = 0;
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     Cond = dyn_cast<Instruction>(SI->getCondition());
 | |
|   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|     if (BI->isConditional())
 | |
|       Cond = dyn_cast<Instruction>(BI->getCondition());
 | |
|   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
 | |
|     Cond = dyn_cast<Instruction>(IBI->getAddress());
 | |
|   }
 | |
| 
 | |
|   TI->eraseFromParent();
 | |
|   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
 | |
| }
 | |
| 
 | |
| /// isValueEqualityComparison - Return true if the specified terminator checks
 | |
| /// to see if a value is equal to constant integer value.
 | |
| Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
 | |
|   Value *CV = 0;
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     // Do not permit merging of large switch instructions into their
 | |
|     // predecessors unless there is only one predecessor.
 | |
|     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
 | |
|                                              pred_end(SI->getParent())) <= 128)
 | |
|       CV = SI->getCondition();
 | |
|   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
 | |
|     if (BI->isConditional() && BI->getCondition()->hasOneUse())
 | |
|       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
 | |
|         if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
 | |
|              ICI->getPredicate() == ICmpInst::ICMP_NE) &&
 | |
|             GetConstantInt(ICI->getOperand(1), TD))
 | |
|           CV = ICI->getOperand(0);
 | |
| 
 | |
|   // Unwrap any lossless ptrtoint cast.
 | |
|   if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
 | |
|     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
 | |
|       CV = PTII->getOperand(0);
 | |
|   return CV;
 | |
| }
 | |
| 
 | |
| /// GetValueEqualityComparisonCases - Given a value comparison instruction,
 | |
| /// decode all of the 'cases' that it represents and return the 'default' block.
 | |
| BasicBlock *SimplifyCFGOpt::
 | |
| GetValueEqualityComparisonCases(TerminatorInst *TI,
 | |
|                                 std::vector<std::pair<ConstantInt*,
 | |
|                                                       BasicBlock*> > &Cases) {
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|     Cases.reserve(SI->getNumCases());
 | |
|     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
 | |
|       Cases.push_back(std::make_pair(i.getCaseValue(),
 | |
|                                      i.getCaseSuccessor()));
 | |
|     return SI->getDefaultDest();
 | |
|   }
 | |
| 
 | |
|   BranchInst *BI = cast<BranchInst>(TI);
 | |
|   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
 | |
|   Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
 | |
|                                  BI->getSuccessor(ICI->getPredicate() ==
 | |
|                                                   ICmpInst::ICMP_NE)));
 | |
|   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
 | |
| /// in the list that match the specified block.
 | |
| static void EliminateBlockCases(BasicBlock *BB,
 | |
|                std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
 | |
|   for (unsigned i = 0, e = Cases.size(); i != e; ++i)
 | |
|     if (Cases[i].second == BB) {
 | |
|       Cases.erase(Cases.begin()+i);
 | |
|       --i; --e;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
 | |
| /// well.
 | |
| static bool
 | |
| ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
 | |
|               std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
 | |
|   std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
 | |
| 
 | |
|   // Make V1 be smaller than V2.
 | |
|   if (V1->size() > V2->size())
 | |
|     std::swap(V1, V2);
 | |
| 
 | |
|   if (V1->size() == 0) return false;
 | |
|   if (V1->size() == 1) {
 | |
|     // Just scan V2.
 | |
|     ConstantInt *TheVal = (*V1)[0].first;
 | |
|     for (unsigned i = 0, e = V2->size(); i != e; ++i)
 | |
|       if (TheVal == (*V2)[i].first)
 | |
|         return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, just sort both lists and compare element by element.
 | |
|   array_pod_sort(V1->begin(), V1->end());
 | |
|   array_pod_sort(V2->begin(), V2->end());
 | |
|   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
 | |
|   while (i1 != e1 && i2 != e2) {
 | |
|     if ((*V1)[i1].first == (*V2)[i2].first)
 | |
|       return true;
 | |
|     if ((*V1)[i1].first < (*V2)[i2].first)
 | |
|       ++i1;
 | |
|     else
 | |
|       ++i2;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
 | |
| /// terminator instruction and its block is known to only have a single
 | |
| /// predecessor block, check to see if that predecessor is also a value
 | |
| /// comparison with the same value, and if that comparison determines the
 | |
| /// outcome of this comparison.  If so, simplify TI.  This does a very limited
 | |
| /// form of jump threading.
 | |
| bool SimplifyCFGOpt::
 | |
| SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
 | |
|                                               BasicBlock *Pred,
 | |
|                                               IRBuilder<> &Builder) {
 | |
|   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
 | |
|   if (!PredVal) return false;  // Not a value comparison in predecessor.
 | |
| 
 | |
|   Value *ThisVal = isValueEqualityComparison(TI);
 | |
|   assert(ThisVal && "This isn't a value comparison!!");
 | |
|   if (ThisVal != PredVal) return false;  // Different predicates.
 | |
| 
 | |
|   // Find out information about when control will move from Pred to TI's block.
 | |
|   std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
 | |
|   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
 | |
|                                                         PredCases);
 | |
|   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
 | |
| 
 | |
|   // Find information about how control leaves this block.
 | |
|   std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
 | |
|   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
 | |
|   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
 | |
| 
 | |
|   // If TI's block is the default block from Pred's comparison, potentially
 | |
|   // simplify TI based on this knowledge.
 | |
|   if (PredDef == TI->getParent()) {
 | |
|     // If we are here, we know that the value is none of those cases listed in
 | |
|     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
 | |
|     // can simplify TI.
 | |
|     if (!ValuesOverlap(PredCases, ThisCases))
 | |
|       return false;
 | |
|     
 | |
|     if (isa<BranchInst>(TI)) {
 | |
|       // Okay, one of the successors of this condbr is dead.  Convert it to a
 | |
|       // uncond br.
 | |
|       assert(ThisCases.size() == 1 && "Branch can only have one case!");
 | |
|       // Insert the new branch.
 | |
|       Instruction *NI = Builder.CreateBr(ThisDef);
 | |
|       (void) NI;
 | |
| 
 | |
|       // Remove PHI node entries for the dead edge.
 | |
|       ThisCases[0].second->removePredecessor(TI->getParent());
 | |
| 
 | |
|       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
 | |
|            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
 | |
| 
 | |
|       EraseTerminatorInstAndDCECond(TI);
 | |
|       return true;
 | |
|     }
 | |
|       
 | |
|     SwitchInst *SI = cast<SwitchInst>(TI);
 | |
|     // Okay, TI has cases that are statically dead, prune them away.
 | |
|     SmallPtrSet<Constant*, 16> DeadCases;
 | |
|     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|       DeadCases.insert(PredCases[i].first);
 | |
| 
 | |
|     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
 | |
|                  << "Through successor TI: " << *TI);
 | |
| 
 | |
|     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
 | |
|       --i;
 | |
|       if (DeadCases.count(i.getCaseValue())) {
 | |
|         i.getCaseSuccessor()->removePredecessor(TI->getParent());
 | |
|         SI->removeCase(i);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, TI's block must correspond to some matched value.  Find out
 | |
|   // which value (or set of values) this is.
 | |
|   ConstantInt *TIV = 0;
 | |
|   BasicBlock *TIBB = TI->getParent();
 | |
|   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|     if (PredCases[i].second == TIBB) {
 | |
|       if (TIV != 0)
 | |
|         return false;  // Cannot handle multiple values coming to this block.
 | |
|       TIV = PredCases[i].first;
 | |
|     }
 | |
|   assert(TIV && "No edge from pred to succ?");
 | |
| 
 | |
|   // Okay, we found the one constant that our value can be if we get into TI's
 | |
|   // BB.  Find out which successor will unconditionally be branched to.
 | |
|   BasicBlock *TheRealDest = 0;
 | |
|   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
 | |
|     if (ThisCases[i].first == TIV) {
 | |
|       TheRealDest = ThisCases[i].second;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // If not handled by any explicit cases, it is handled by the default case.
 | |
|   if (TheRealDest == 0) TheRealDest = ThisDef;
 | |
| 
 | |
|   // Remove PHI node entries for dead edges.
 | |
|   BasicBlock *CheckEdge = TheRealDest;
 | |
|   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
 | |
|     if (*SI != CheckEdge)
 | |
|       (*SI)->removePredecessor(TIBB);
 | |
|     else
 | |
|       CheckEdge = 0;
 | |
| 
 | |
|   // Insert the new branch.
 | |
|   Instruction *NI = Builder.CreateBr(TheRealDest);
 | |
|   (void) NI;
 | |
| 
 | |
|   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
 | |
|             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
 | |
| 
 | |
|   EraseTerminatorInstAndDCECond(TI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// ConstantIntOrdering - This class implements a stable ordering of constant
 | |
|   /// integers that does not depend on their address.  This is important for
 | |
|   /// applications that sort ConstantInt's to ensure uniqueness.
 | |
|   struct ConstantIntOrdering {
 | |
|     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
 | |
|       return LHS->getValue().ult(RHS->getValue());
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static int ConstantIntSortPredicate(const void *P1, const void *P2) {
 | |
|   const ConstantInt *LHS = *(const ConstantInt**)P1;
 | |
|   const ConstantInt *RHS = *(const ConstantInt**)P2;
 | |
|   if (LHS->getValue().ult(RHS->getValue()))
 | |
|     return 1;
 | |
|   if (LHS->getValue() == RHS->getValue())
 | |
|     return 0;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
 | |
| /// equality comparison instruction (either a switch or a branch on "X == c").
 | |
| /// See if any of the predecessors of the terminator block are value comparisons
 | |
| /// on the same value.  If so, and if safe to do so, fold them together.
 | |
| bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
 | |
|                                                          IRBuilder<> &Builder) {
 | |
|   BasicBlock *BB = TI->getParent();
 | |
|   Value *CV = isValueEqualityComparison(TI);  // CondVal
 | |
|   assert(CV && "Not a comparison?");
 | |
|   bool Changed = false;
 | |
| 
 | |
|   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
 | |
|   while (!Preds.empty()) {
 | |
|     BasicBlock *Pred = Preds.pop_back_val();
 | |
| 
 | |
|     // See if the predecessor is a comparison with the same value.
 | |
|     TerminatorInst *PTI = Pred->getTerminator();
 | |
|     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
 | |
| 
 | |
|     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
 | |
|       // Figure out which 'cases' to copy from SI to PSI.
 | |
|       std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
 | |
|       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
 | |
| 
 | |
|       std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
 | |
|       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
 | |
| 
 | |
|       // Based on whether the default edge from PTI goes to BB or not, fill in
 | |
|       // PredCases and PredDefault with the new switch cases we would like to
 | |
|       // build.
 | |
|       SmallVector<BasicBlock*, 8> NewSuccessors;
 | |
| 
 | |
|       if (PredDefault == BB) {
 | |
|         // If this is the default destination from PTI, only the edges in TI
 | |
|         // that don't occur in PTI, or that branch to BB will be activated.
 | |
|         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
 | |
|         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|           if (PredCases[i].second != BB)
 | |
|             PTIHandled.insert(PredCases[i].first);
 | |
|           else {
 | |
|             // The default destination is BB, we don't need explicit targets.
 | |
|             std::swap(PredCases[i], PredCases.back());
 | |
|             PredCases.pop_back();
 | |
|             --i; --e;
 | |
|           }
 | |
| 
 | |
|         // Reconstruct the new switch statement we will be building.
 | |
|         if (PredDefault != BBDefault) {
 | |
|           PredDefault->removePredecessor(Pred);
 | |
|           PredDefault = BBDefault;
 | |
|           NewSuccessors.push_back(BBDefault);
 | |
|         }
 | |
|         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
 | |
|           if (!PTIHandled.count(BBCases[i].first) &&
 | |
|               BBCases[i].second != BBDefault) {
 | |
|             PredCases.push_back(BBCases[i]);
 | |
|             NewSuccessors.push_back(BBCases[i].second);
 | |
|           }
 | |
| 
 | |
|       } else {
 | |
|         // If this is not the default destination from PSI, only the edges
 | |
|         // in SI that occur in PSI with a destination of BB will be
 | |
|         // activated.
 | |
|         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
 | |
|         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|           if (PredCases[i].second == BB) {
 | |
|             PTIHandled.insert(PredCases[i].first);
 | |
|             std::swap(PredCases[i], PredCases.back());
 | |
|             PredCases.pop_back();
 | |
|             --i; --e;
 | |
|           }
 | |
| 
 | |
|         // Okay, now we know which constants were sent to BB from the
 | |
|         // predecessor.  Figure out where they will all go now.
 | |
|         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
 | |
|           if (PTIHandled.count(BBCases[i].first)) {
 | |
|             // If this is one we are capable of getting...
 | |
|             PredCases.push_back(BBCases[i]);
 | |
|             NewSuccessors.push_back(BBCases[i].second);
 | |
|             PTIHandled.erase(BBCases[i].first);// This constant is taken care of
 | |
|           }
 | |
| 
 | |
|         // If there are any constants vectored to BB that TI doesn't handle,
 | |
|         // they must go to the default destination of TI.
 | |
|         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I = 
 | |
|                                     PTIHandled.begin(),
 | |
|                E = PTIHandled.end(); I != E; ++I) {
 | |
|           PredCases.push_back(std::make_pair(*I, BBDefault));
 | |
|           NewSuccessors.push_back(BBDefault);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Okay, at this point, we know which new successor Pred will get.  Make
 | |
|       // sure we update the number of entries in the PHI nodes for these
 | |
|       // successors.
 | |
|       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
 | |
|         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
 | |
| 
 | |
|       Builder.SetInsertPoint(PTI);
 | |
|       // Convert pointer to int before we switch.
 | |
|       if (CV->getType()->isPointerTy()) {
 | |
|         assert(TD && "Cannot switch on pointer without TargetData");
 | |
|         CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
 | |
|                                     "magicptr");
 | |
|       }
 | |
| 
 | |
|       // Now that the successors are updated, create the new Switch instruction.
 | |
|       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
 | |
|                                                PredCases.size());
 | |
|       NewSI->setDebugLoc(PTI->getDebugLoc());
 | |
|       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
 | |
|         NewSI->addCase(PredCases[i].first, PredCases[i].second);
 | |
| 
 | |
|       EraseTerminatorInstAndDCECond(PTI);
 | |
| 
 | |
|       // Okay, last check.  If BB is still a successor of PSI, then we must
 | |
|       // have an infinite loop case.  If so, add an infinitely looping block
 | |
|       // to handle the case to preserve the behavior of the code.
 | |
|       BasicBlock *InfLoopBlock = 0;
 | |
|       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
 | |
|         if (NewSI->getSuccessor(i) == BB) {
 | |
|           if (InfLoopBlock == 0) {
 | |
|             // Insert it at the end of the function, because it's either code,
 | |
|             // or it won't matter if it's hot. :)
 | |
|             InfLoopBlock = BasicBlock::Create(BB->getContext(),
 | |
|                                               "infloop", BB->getParent());
 | |
|             BranchInst::Create(InfLoopBlock, InfLoopBlock);
 | |
|           }
 | |
|           NewSI->setSuccessor(i, InfLoopBlock);
 | |
|         }
 | |
| 
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // isSafeToHoistInvoke - If we would need to insert a select that uses the
 | |
| // value of this invoke (comments in HoistThenElseCodeToIf explain why we
 | |
| // would need to do this), we can't hoist the invoke, as there is nowhere
 | |
| // to put the select in this case.
 | |
| static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
 | |
|                                 Instruction *I1, Instruction *I2) {
 | |
|   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator BBI = SI->begin();
 | |
|          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|       Value *BB1V = PN->getIncomingValueForBlock(BB1);
 | |
|       Value *BB2V = PN->getIncomingValueForBlock(BB2);
 | |
|       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
 | |
| /// BB2, hoist any common code in the two blocks up into the branch block.  The
 | |
| /// caller of this function guarantees that BI's block dominates BB1 and BB2.
 | |
| static bool HoistThenElseCodeToIf(BranchInst *BI) {
 | |
|   // This does very trivial matching, with limited scanning, to find identical
 | |
|   // instructions in the two blocks.  In particular, we don't want to get into
 | |
|   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
 | |
|   // such, we currently just scan for obviously identical instructions in an
 | |
|   // identical order.
 | |
|   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
 | |
|   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
 | |
| 
 | |
|   BasicBlock::iterator BB1_Itr = BB1->begin();
 | |
|   BasicBlock::iterator BB2_Itr = BB2->begin();
 | |
| 
 | |
|   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
 | |
|   // Skip debug info if it is not identical.
 | |
|   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
 | |
|   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
 | |
|   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
 | |
|     while (isa<DbgInfoIntrinsic>(I1))
 | |
|       I1 = BB1_Itr++;
 | |
|     while (isa<DbgInfoIntrinsic>(I2))
 | |
|       I2 = BB2_Itr++;
 | |
|   }
 | |
|   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
 | |
|       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
 | |
|     return false;
 | |
| 
 | |
|   // If we get here, we can hoist at least one instruction.
 | |
|   BasicBlock *BIParent = BI->getParent();
 | |
| 
 | |
|   do {
 | |
|     // If we are hoisting the terminator instruction, don't move one (making a
 | |
|     // broken BB), instead clone it, and remove BI.
 | |
|     if (isa<TerminatorInst>(I1))
 | |
|       goto HoistTerminator;
 | |
| 
 | |
|     // For a normal instruction, we just move one to right before the branch,
 | |
|     // then replace all uses of the other with the first.  Finally, we remove
 | |
|     // the now redundant second instruction.
 | |
|     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
 | |
|     if (!I2->use_empty())
 | |
|       I2->replaceAllUsesWith(I1);
 | |
|     I1->intersectOptionalDataWith(I2);
 | |
|     I2->eraseFromParent();
 | |
| 
 | |
|     I1 = BB1_Itr++;
 | |
|     I2 = BB2_Itr++;
 | |
|     // Skip debug info if it is not identical.
 | |
|     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
 | |
|     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
 | |
|     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
 | |
|       while (isa<DbgInfoIntrinsic>(I1))
 | |
|         I1 = BB1_Itr++;
 | |
|       while (isa<DbgInfoIntrinsic>(I2))
 | |
|         I2 = BB2_Itr++;
 | |
|     }
 | |
|   } while (I1->isIdenticalToWhenDefined(I2));
 | |
| 
 | |
|   return true;
 | |
| 
 | |
| HoistTerminator:
 | |
|   // It may not be possible to hoist an invoke.
 | |
|   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
 | |
|     return true;
 | |
| 
 | |
|   // Okay, it is safe to hoist the terminator.
 | |
|   Instruction *NT = I1->clone();
 | |
|   BIParent->getInstList().insert(BI, NT);
 | |
|   if (!NT->getType()->isVoidTy()) {
 | |
|     I1->replaceAllUsesWith(NT);
 | |
|     I2->replaceAllUsesWith(NT);
 | |
|     NT->takeName(I1);
 | |
|   }
 | |
| 
 | |
|   IRBuilder<true, NoFolder> Builder(NT);
 | |
|   // Hoisting one of the terminators from our successor is a great thing.
 | |
|   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
 | |
|   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
 | |
|   // nodes, so we insert select instruction to compute the final result.
 | |
|   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
 | |
|   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
 | |
|     PHINode *PN;
 | |
|     for (BasicBlock::iterator BBI = SI->begin();
 | |
|          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
 | |
|       Value *BB1V = PN->getIncomingValueForBlock(BB1);
 | |
|       Value *BB2V = PN->getIncomingValueForBlock(BB2);
 | |
|       if (BB1V == BB2V) continue;
 | |
|       
 | |
|       // These values do not agree.  Insert a select instruction before NT
 | |
|       // that determines the right value.
 | |
|       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
 | |
|       if (SI == 0) 
 | |
|         SI = cast<SelectInst>
 | |
|           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
 | |
|                                 BB1V->getName()+"."+BB2V->getName()));
 | |
| 
 | |
|       // Make the PHI node use the select for all incoming values for BB1/BB2
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
 | |
|           PN->setIncomingValue(i, SI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update any PHI nodes in our new successors.
 | |
|   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
 | |
|     AddPredecessorToBlock(*SI, BIParent, BB1);
 | |
| 
 | |
|   EraseTerminatorInstAndDCECond(BI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
 | |
| /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
 | |
| /// (for now, restricted to a single instruction that's side effect free) from
 | |
| /// the BB1 into the branch block to speculatively execute it.
 | |
| ///
 | |
| /// Turn
 | |
| /// BB:
 | |
| ///     %t1 = icmp
 | |
| ///     br i1 %t1, label %BB1, label %BB2
 | |
| /// BB1:
 | |
| ///     %t3 = add %t2, c
 | |
| ///     br label BB2
 | |
| /// BB2:
 | |
| /// =>
 | |
| /// BB:
 | |
| ///     %t1 = icmp
 | |
| ///     %t4 = add %t2, c
 | |
| ///     %t3 = select i1 %t1, %t2, %t3
 | |
| static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
 | |
|   // Only speculatively execution a single instruction (not counting the
 | |
|   // terminator) for now.
 | |
|   Instruction *HInst = NULL;
 | |
|   Instruction *Term = BB1->getTerminator();
 | |
|   for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
 | |
|        BBI != BBE; ++BBI) {
 | |
|     Instruction *I = BBI;
 | |
|     // Skip debug info.
 | |
|     if (isa<DbgInfoIntrinsic>(I)) continue;
 | |
|     if (I == Term) break;
 | |
| 
 | |
|     if (HInst)
 | |
|       return false;
 | |
|     HInst = I;
 | |
|   }
 | |
| 
 | |
|   BasicBlock *BIParent = BI->getParent();
 | |
| 
 | |
|   // Check the instruction to be hoisted, if there is one.
 | |
|   if (HInst) {
 | |
|     // Don't hoist the instruction if it's unsafe or expensive.
 | |
|     if (!isSafeToSpeculativelyExecute(HInst))
 | |
|       return false;
 | |
|     if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
 | |
|       return false;
 | |
| 
 | |
|     // Do not hoist the instruction if any of its operands are defined but not
 | |
|     // used in this BB. The transformation will prevent the operand from
 | |
|     // being sunk into the use block.
 | |
|     for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end(); 
 | |
|          i != e; ++i) {
 | |
|       Instruction *OpI = dyn_cast<Instruction>(*i);
 | |
|       if (OpI && OpI->getParent() == BIParent &&
 | |
|           !OpI->mayHaveSideEffects() &&
 | |
|           !OpI->isUsedInBasicBlock(BIParent))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Be conservative for now. FP select instruction can often be expensive.
 | |
|   Value *BrCond = BI->getCondition();
 | |
|   if (isa<FCmpInst>(BrCond))
 | |
|     return false;
 | |
| 
 | |
|   // If BB1 is actually on the false edge of the conditional branch, remember
 | |
|   // to swap the select operands later.
 | |
|   bool Invert = false;
 | |
|   if (BB1 != BI->getSuccessor(0)) {
 | |
|     assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
 | |
|     Invert = true;
 | |
|   }
 | |
| 
 | |
|   // Collect interesting PHIs, and scan for hazards.
 | |
|   SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
 | |
|   BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
 | |
|   for (BasicBlock::iterator I = BB2->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|     Value *BB1V = PN->getIncomingValueForBlock(BB1);
 | |
|     Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
 | |
| 
 | |
|     // Skip PHIs which are trivial.
 | |
|     if (BB1V == BIParentV)
 | |
|       continue;
 | |
| 
 | |
|     // Check for saftey.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
 | |
|       // An unfolded ConstantExpr could end up getting expanded into
 | |
|       // Instructions. Don't speculate this and another instruction at
 | |
|       // the same time.
 | |
|       if (HInst)
 | |
|         return false;
 | |
|       if (!isSafeToSpeculativelyExecute(CE))
 | |
|         return false;
 | |
|       if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Ok, we may insert a select for this PHI.
 | |
|     PHIs.insert(std::make_pair(BB1V, BIParentV));
 | |
|   }
 | |
| 
 | |
|   // If there are no PHIs to process, bail early. This helps ensure idempotence
 | |
|   // as well.
 | |
|   if (PHIs.empty())
 | |
|     return false;
 | |
|   
 | |
|   // If we get here, we can hoist the instruction and if-convert.
 | |
|   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
 | |
| 
 | |
|   // Hoist the instruction.
 | |
|   if (HInst)
 | |
|     BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
 | |
| 
 | |
|   // Insert selects and rewrite the PHI operands.
 | |
|   IRBuilder<true, NoFolder> Builder(BI);
 | |
|   for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
 | |
|     Value *TrueV = PHIs[i].first;
 | |
|     Value *FalseV = PHIs[i].second;
 | |
| 
 | |
|     // Create a select whose true value is the speculatively executed value and
 | |
|     // false value is the previously determined FalseV.
 | |
|     SelectInst *SI;
 | |
|     if (Invert)
 | |
|       SI = cast<SelectInst>
 | |
|         (Builder.CreateSelect(BrCond, FalseV, TrueV,
 | |
|                               FalseV->getName() + "." + TrueV->getName()));
 | |
|     else
 | |
|       SI = cast<SelectInst>
 | |
|         (Builder.CreateSelect(BrCond, TrueV, FalseV,
 | |
|                               TrueV->getName() + "." + FalseV->getName()));
 | |
| 
 | |
|     // Make the PHI node use the select for all incoming values for "then" and
 | |
|     // "if" blocks.
 | |
|     for (BasicBlock::iterator I = BB2->begin();
 | |
|          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|       unsigned BB1I = PN->getBasicBlockIndex(BB1);
 | |
|       unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
 | |
|       Value *BB1V = PN->getIncomingValue(BB1I);
 | |
|       Value *BIParentV = PN->getIncomingValue(BIParentI);
 | |
|       if (TrueV == BB1V && FalseV == BIParentV) {
 | |
|         PN->setIncomingValue(BB1I, SI);
 | |
|         PN->setIncomingValue(BIParentI, SI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ++NumSpeculations;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
 | |
| /// across this block.
 | |
| static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
 | |
|   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
 | |
|   unsigned Size = 0;
 | |
|   
 | |
|   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
 | |
|     if (isa<DbgInfoIntrinsic>(BBI))
 | |
|       continue;
 | |
|     if (Size > 10) return false;  // Don't clone large BB's.
 | |
|     ++Size;
 | |
|     
 | |
|     // We can only support instructions that do not define values that are
 | |
|     // live outside of the current basic block.
 | |
|     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       Instruction *U = cast<Instruction>(*UI);
 | |
|       if (U->getParent() != BB || isa<PHINode>(U)) return false;
 | |
|     }
 | |
|     
 | |
|     // Looks ok, continue checking.
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
 | |
| /// that is defined in the same block as the branch and if any PHI entries are
 | |
| /// constants, thread edges corresponding to that entry to be branches to their
 | |
| /// ultimate destination.
 | |
| static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
 | |
|   BasicBlock *BB = BI->getParent();
 | |
|   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
 | |
|   // NOTE: we currently cannot transform this case if the PHI node is used
 | |
|   // outside of the block.
 | |
|   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
 | |
|     return false;
 | |
|   
 | |
|   // Degenerate case of a single entry PHI.
 | |
|   if (PN->getNumIncomingValues() == 1) {
 | |
|     FoldSingleEntryPHINodes(PN->getParent());
 | |
|     return true;    
 | |
|   }
 | |
| 
 | |
|   // Now we know that this block has multiple preds and two succs.
 | |
|   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
 | |
|   
 | |
|   // Okay, this is a simple enough basic block.  See if any phi values are
 | |
|   // constants.
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
 | |
|     if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
 | |
|     
 | |
|     // Okay, we now know that all edges from PredBB should be revectored to
 | |
|     // branch to RealDest.
 | |
|     BasicBlock *PredBB = PN->getIncomingBlock(i);
 | |
|     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
 | |
|     
 | |
|     if (RealDest == BB) continue;  // Skip self loops.
 | |
|     // Skip if the predecessor's terminator is an indirect branch.
 | |
|     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
 | |
|     
 | |
|     // The dest block might have PHI nodes, other predecessors and other
 | |
|     // difficult cases.  Instead of being smart about this, just insert a new
 | |
|     // block that jumps to the destination block, effectively splitting
 | |
|     // the edge we are about to create.
 | |
|     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
 | |
|                                             RealDest->getName()+".critedge",
 | |
|                                             RealDest->getParent(), RealDest);
 | |
|     BranchInst::Create(RealDest, EdgeBB);
 | |
|     
 | |
|     // Update PHI nodes.
 | |
|     AddPredecessorToBlock(RealDest, EdgeBB, BB);
 | |
| 
 | |
|     // BB may have instructions that are being threaded over.  Clone these
 | |
|     // instructions into EdgeBB.  We know that there will be no uses of the
 | |
|     // cloned instructions outside of EdgeBB.
 | |
|     BasicBlock::iterator InsertPt = EdgeBB->begin();
 | |
|     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
 | |
|     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
 | |
|         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
 | |
|         continue;
 | |
|       }
 | |
|       // Clone the instruction.
 | |
|       Instruction *N = BBI->clone();
 | |
|       if (BBI->hasName()) N->setName(BBI->getName()+".c");
 | |
|       
 | |
|       // Update operands due to translation.
 | |
|       for (User::op_iterator i = N->op_begin(), e = N->op_end();
 | |
|            i != e; ++i) {
 | |
|         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
 | |
|         if (PI != TranslateMap.end())
 | |
|           *i = PI->second;
 | |
|       }
 | |
|       
 | |
|       // Check for trivial simplification.
 | |
|       if (Value *V = SimplifyInstruction(N, TD)) {
 | |
|         TranslateMap[BBI] = V;
 | |
|         delete N;   // Instruction folded away, don't need actual inst
 | |
|       } else {
 | |
|         // Insert the new instruction into its new home.
 | |
|         EdgeBB->getInstList().insert(InsertPt, N);
 | |
|         if (!BBI->use_empty())
 | |
|           TranslateMap[BBI] = N;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Loop over all of the edges from PredBB to BB, changing them to branch
 | |
|     // to EdgeBB instead.
 | |
|     TerminatorInst *PredBBTI = PredBB->getTerminator();
 | |
|     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
 | |
|       if (PredBBTI->getSuccessor(i) == BB) {
 | |
|         BB->removePredecessor(PredBB);
 | |
|         PredBBTI->setSuccessor(i, EdgeBB);
 | |
|       }
 | |
| 
 | |
|     // Recurse, simplifying any other constants.
 | |
|     return FoldCondBranchOnPHI(BI, TD) | true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
 | |
| /// PHI node, see if we can eliminate it.
 | |
| static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
 | |
|   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
 | |
|   // statement", which has a very simple dominance structure.  Basically, we
 | |
|   // are trying to find the condition that is being branched on, which
 | |
|   // subsequently causes this merge to happen.  We really want control
 | |
|   // dependence information for this check, but simplifycfg can't keep it up
 | |
|   // to date, and this catches most of the cases we care about anyway.
 | |
|   BasicBlock *BB = PN->getParent();
 | |
|   BasicBlock *IfTrue, *IfFalse;
 | |
|   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
 | |
|   if (!IfCond ||
 | |
|       // Don't bother if the branch will be constant folded trivially.
 | |
|       isa<ConstantInt>(IfCond))
 | |
|     return false;
 | |
|   
 | |
|   // Okay, we found that we can merge this two-entry phi node into a select.
 | |
|   // Doing so would require us to fold *all* two entry phi nodes in this block.
 | |
|   // At some point this becomes non-profitable (particularly if the target
 | |
|   // doesn't support cmov's).  Only do this transformation if there are two or
 | |
|   // fewer PHI nodes in this block.
 | |
|   unsigned NumPhis = 0;
 | |
|   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
 | |
|     if (NumPhis > 2)
 | |
|       return false;
 | |
|   
 | |
|   // Loop over the PHI's seeing if we can promote them all to select
 | |
|   // instructions.  While we are at it, keep track of the instructions
 | |
|   // that need to be moved to the dominating block.
 | |
|   SmallPtrSet<Instruction*, 4> AggressiveInsts;
 | |
|   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
 | |
|            MaxCostVal1 = PHINodeFoldingThreshold;
 | |
|   
 | |
|   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
 | |
|     PHINode *PN = cast<PHINode>(II++);
 | |
|     if (Value *V = SimplifyInstruction(PN, TD)) {
 | |
|       PN->replaceAllUsesWith(V);
 | |
|       PN->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
 | |
|                              MaxCostVal0) ||
 | |
|         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
 | |
|                              MaxCostVal1))
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
 | |
|   // we ran out of PHIs then we simplified them all.
 | |
|   PN = dyn_cast<PHINode>(BB->begin());
 | |
|   if (PN == 0) return true;
 | |
|   
 | |
|   // Don't fold i1 branches on PHIs which contain binary operators.  These can
 | |
|   // often be turned into switches and other things.
 | |
|   if (PN->getType()->isIntegerTy(1) &&
 | |
|       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
 | |
|        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
 | |
|        isa<BinaryOperator>(IfCond)))
 | |
|     return false;
 | |
|   
 | |
|   // If we all PHI nodes are promotable, check to make sure that all
 | |
|   // instructions in the predecessor blocks can be promoted as well.  If
 | |
|   // not, we won't be able to get rid of the control flow, so it's not
 | |
|   // worth promoting to select instructions.
 | |
|   BasicBlock *DomBlock = 0;
 | |
|   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
 | |
|   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
 | |
|   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
 | |
|     IfBlock1 = 0;
 | |
|   } else {
 | |
|     DomBlock = *pred_begin(IfBlock1);
 | |
|     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
 | |
|       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
 | |
|         // This is not an aggressive instruction that we can promote.
 | |
|         // Because of this, we won't be able to get rid of the control
 | |
|         // flow, so the xform is not worth it.
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
|     
 | |
|   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
 | |
|     IfBlock2 = 0;
 | |
|   } else {
 | |
|     DomBlock = *pred_begin(IfBlock2);
 | |
|     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
 | |
|       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
 | |
|         // This is not an aggressive instruction that we can promote.
 | |
|         // Because of this, we won't be able to get rid of the control
 | |
|         // flow, so the xform is not worth it.
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
 | |
|                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
 | |
|       
 | |
|   // If we can still promote the PHI nodes after this gauntlet of tests,
 | |
|   // do all of the PHI's now.
 | |
|   Instruction *InsertPt = DomBlock->getTerminator();
 | |
|   IRBuilder<true, NoFolder> Builder(InsertPt);
 | |
|   
 | |
|   // Move all 'aggressive' instructions, which are defined in the
 | |
|   // conditional parts of the if's up to the dominating block.
 | |
|   if (IfBlock1)
 | |
|     DomBlock->getInstList().splice(InsertPt,
 | |
|                                    IfBlock1->getInstList(), IfBlock1->begin(),
 | |
|                                    IfBlock1->getTerminator());
 | |
|   if (IfBlock2)
 | |
|     DomBlock->getInstList().splice(InsertPt,
 | |
|                                    IfBlock2->getInstList(), IfBlock2->begin(),
 | |
|                                    IfBlock2->getTerminator());
 | |
|   
 | |
|   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
 | |
|     // Change the PHI node into a select instruction.
 | |
|     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
 | |
|     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
 | |
|     
 | |
|     SelectInst *NV = 
 | |
|       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
 | |
|     PN->replaceAllUsesWith(NV);
 | |
|     NV->takeName(PN);
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
|   
 | |
|   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
 | |
|   // has been flattened.  Change DomBlock to jump directly to our new block to
 | |
|   // avoid other simplifycfg's kicking in on the diamond.
 | |
|   TerminatorInst *OldTI = DomBlock->getTerminator();
 | |
|   Builder.SetInsertPoint(OldTI);
 | |
|   Builder.CreateBr(BB);
 | |
|   OldTI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
 | |
| /// to two returning blocks, try to merge them together into one return,
 | |
| /// introducing a select if the return values disagree.
 | |
| static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, 
 | |
|                                            IRBuilder<> &Builder) {
 | |
|   assert(BI->isConditional() && "Must be a conditional branch");
 | |
|   BasicBlock *TrueSucc = BI->getSuccessor(0);
 | |
|   BasicBlock *FalseSucc = BI->getSuccessor(1);
 | |
|   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
 | |
|   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
 | |
|   
 | |
|   // Check to ensure both blocks are empty (just a return) or optionally empty
 | |
|   // with PHI nodes.  If there are other instructions, merging would cause extra
 | |
|   // computation on one path or the other.
 | |
|   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
 | |
|     return false;
 | |
|   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
 | |
|     return false;
 | |
| 
 | |
|   Builder.SetInsertPoint(BI);
 | |
|   // Okay, we found a branch that is going to two return nodes.  If
 | |
|   // there is no return value for this function, just change the
 | |
|   // branch into a return.
 | |
|   if (FalseRet->getNumOperands() == 0) {
 | |
|     TrueSucc->removePredecessor(BI->getParent());
 | |
|     FalseSucc->removePredecessor(BI->getParent());
 | |
|     Builder.CreateRetVoid();
 | |
|     EraseTerminatorInstAndDCECond(BI);
 | |
|     return true;
 | |
|   }
 | |
|     
 | |
|   // Otherwise, figure out what the true and false return values are
 | |
|   // so we can insert a new select instruction.
 | |
|   Value *TrueValue = TrueRet->getReturnValue();
 | |
|   Value *FalseValue = FalseRet->getReturnValue();
 | |
|   
 | |
|   // Unwrap any PHI nodes in the return blocks.
 | |
|   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
 | |
|     if (TVPN->getParent() == TrueSucc)
 | |
|       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
 | |
|   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
 | |
|     if (FVPN->getParent() == FalseSucc)
 | |
|       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
 | |
|   
 | |
|   // In order for this transformation to be safe, we must be able to
 | |
|   // unconditionally execute both operands to the return.  This is
 | |
|   // normally the case, but we could have a potentially-trapping
 | |
|   // constant expression that prevents this transformation from being
 | |
|   // safe.
 | |
|   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
 | |
|     if (TCV->canTrap())
 | |
|       return false;
 | |
|   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
 | |
|     if (FCV->canTrap())
 | |
|       return false;
 | |
|   
 | |
|   // Okay, we collected all the mapped values and checked them for sanity, and
 | |
|   // defined to really do this transformation.  First, update the CFG.
 | |
|   TrueSucc->removePredecessor(BI->getParent());
 | |
|   FalseSucc->removePredecessor(BI->getParent());
 | |
|   
 | |
|   // Insert select instructions where needed.
 | |
|   Value *BrCond = BI->getCondition();
 | |
|   if (TrueValue) {
 | |
|     // Insert a select if the results differ.
 | |
|     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
 | |
|     } else if (isa<UndefValue>(TrueValue)) {
 | |
|       TrueValue = FalseValue;
 | |
|     } else {
 | |
|       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
 | |
|                                        FalseValue, "retval");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Value *RI = !TrueValue ? 
 | |
|     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
 | |
| 
 | |
|   (void) RI;
 | |
|       
 | |
|   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
 | |
|                << "\n  " << *BI << "NewRet = " << *RI
 | |
|                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
 | |
|       
 | |
|   EraseTerminatorInstAndDCECond(BI);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
 | |
| /// probabilities of the branch taking each edge. Fills in the two APInt
 | |
| /// parameters and return true, or returns false if no or invalid metadata was
 | |
| /// found.
 | |
| static bool ExtractBranchMetadata(BranchInst *BI,
 | |
|                                   APInt &ProbTrue, APInt &ProbFalse) {
 | |
|   assert(BI->isConditional() &&
 | |
|          "Looking for probabilities on unconditional branch?");
 | |
|   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
 | |
|   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
 | |
|   ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
 | |
|   ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
 | |
|   if (!CITrue || !CIFalse) return false;
 | |
|   ProbTrue = CITrue->getValue();
 | |
|   ProbFalse = CIFalse->getValue();
 | |
|   assert(ProbTrue.getBitWidth() == 32 && ProbFalse.getBitWidth() == 32 &&
 | |
|          "Branch probability metadata must be 32-bit integers");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// MultiplyAndLosePrecision - Multiplies A and B, then returns the result. In
 | |
| /// the event of overflow, logically-shifts all four inputs right until the
 | |
| /// multiply fits.
 | |
| static APInt MultiplyAndLosePrecision(APInt &A, APInt &B, APInt &C, APInt &D,
 | |
|                                       unsigned &BitsLost) {
 | |
|   BitsLost = 0;
 | |
|   bool Overflow = false;
 | |
|   APInt Result = A.umul_ov(B, Overflow);
 | |
|   if (Overflow) {
 | |
|     APInt MaxB = APInt::getMaxValue(A.getBitWidth()).udiv(A);
 | |
|     do {
 | |
|       B = B.lshr(1);
 | |
|       ++BitsLost;
 | |
|     } while (B.ugt(MaxB));
 | |
|     A = A.lshr(BitsLost);
 | |
|     C = C.lshr(BitsLost);
 | |
|     D = D.lshr(BitsLost);
 | |
|     Result = A * B;
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
 | |
| /// predecessor branches to us and one of our successors, fold the block into
 | |
| /// the predecessor and use logical operations to pick the right destination.
 | |
| bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
 | |
|   BasicBlock *BB = BI->getParent();
 | |
| 
 | |
|   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
 | |
|   if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
 | |
|     Cond->getParent() != BB || !Cond->hasOneUse())
 | |
|   return false;
 | |
| 
 | |
|   // Only allow this if the condition is a simple instruction that can be
 | |
|   // executed unconditionally.  It must be in the same block as the branch, and
 | |
|   // must be at the front of the block.
 | |
|   BasicBlock::iterator FrontIt = BB->front();
 | |
| 
 | |
|   // Ignore dbg intrinsics.
 | |
|   while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
 | |
| 
 | |
|   // Allow a single instruction to be hoisted in addition to the compare
 | |
|   // that feeds the branch.  We later ensure that any values that _it_ uses
 | |
|   // were also live in the predecessor, so that we don't unnecessarily create
 | |
|   // register pressure or inhibit out-of-order execution.
 | |
|   Instruction *BonusInst = 0;
 | |
|   if (&*FrontIt != Cond &&
 | |
|       FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
 | |
|       isSafeToSpeculativelyExecute(FrontIt)) {
 | |
|     BonusInst = &*FrontIt;
 | |
|     ++FrontIt;
 | |
|     
 | |
|     // Ignore dbg intrinsics.
 | |
|     while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
 | |
|   }
 | |
| 
 | |
|   // Only a single bonus inst is allowed.
 | |
|   if (&*FrontIt != Cond)
 | |
|     return false;
 | |
|   
 | |
|   // Make sure the instruction after the condition is the cond branch.
 | |
|   BasicBlock::iterator CondIt = Cond; ++CondIt;
 | |
| 
 | |
|   // Ingore dbg intrinsics.
 | |
|   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
 | |
|   
 | |
|   if (&*CondIt != BI)
 | |
|     return false;
 | |
| 
 | |
|   // Cond is known to be a compare or binary operator.  Check to make sure that
 | |
|   // neither operand is a potentially-trapping constant expression.
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
 | |
|     if (CE->canTrap())
 | |
|       return false;
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
 | |
|     if (CE->canTrap())
 | |
|       return false;
 | |
|   
 | |
|   // Finally, don't infinitely unroll conditional loops.
 | |
|   BasicBlock *TrueDest  = BI->getSuccessor(0);
 | |
|   BasicBlock *FalseDest = BI->getSuccessor(1);
 | |
|   if (TrueDest == BB || FalseDest == BB)
 | |
|     return false;
 | |
| 
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|     BasicBlock *PredBlock = *PI;
 | |
|     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
 | |
|     
 | |
|     // Check that we have two conditional branches.  If there is a PHI node in
 | |
|     // the common successor, verify that the same value flows in from both
 | |
|     // blocks.
 | |
|     if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
 | |
|       continue;
 | |
|     
 | |
|     // Determine if the two branches share a common destination.
 | |
|     Instruction::BinaryOps Opc;
 | |
|     bool InvertPredCond = false;
 | |
|     
 | |
|     if (PBI->getSuccessor(0) == TrueDest)
 | |
|       Opc = Instruction::Or;
 | |
|     else if (PBI->getSuccessor(1) == FalseDest)
 | |
|       Opc = Instruction::And;
 | |
|     else if (PBI->getSuccessor(0) == FalseDest)
 | |
|       Opc = Instruction::And, InvertPredCond = true;
 | |
|     else if (PBI->getSuccessor(1) == TrueDest)
 | |
|       Opc = Instruction::Or, InvertPredCond = true;
 | |
|     else
 | |
|       continue;
 | |
| 
 | |
|     // Ensure that any values used in the bonus instruction are also used
 | |
|     // by the terminator of the predecessor.  This means that those values
 | |
|     // must already have been resolved, so we won't be inhibiting the 
 | |
|     // out-of-order core by speculating them earlier.
 | |
|     if (BonusInst) {
 | |
|       // Collect the values used by the bonus inst
 | |
|       SmallPtrSet<Value*, 4> UsedValues;
 | |
|       for (Instruction::op_iterator OI = BonusInst->op_begin(),
 | |
|            OE = BonusInst->op_end(); OI != OE; ++OI) {
 | |
|         Value *V = *OI;
 | |
|         if (!isa<Constant>(V))
 | |
|           UsedValues.insert(V);
 | |
|       }
 | |
| 
 | |
|       SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
 | |
|       Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
 | |
|       
 | |
|       // Walk up to four levels back up the use-def chain of the predecessor's
 | |
|       // terminator to see if all those values were used.  The choice of four
 | |
|       // levels is arbitrary, to provide a compile-time-cost bound.
 | |
|       while (!Worklist.empty()) {
 | |
|         std::pair<Value*, unsigned> Pair = Worklist.back();
 | |
|         Worklist.pop_back();
 | |
|         
 | |
|         if (Pair.second >= 4) continue;
 | |
|         UsedValues.erase(Pair.first);
 | |
|         if (UsedValues.empty()) break;
 | |
|         
 | |
|         if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
 | |
|           for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
 | |
|                OI != OE; ++OI)
 | |
|             Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
 | |
|         }       
 | |
|       }
 | |
|       
 | |
|       if (!UsedValues.empty()) return false;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
 | |
|     IRBuilder<> Builder(PBI);    
 | |
| 
 | |
|     // If we need to invert the condition in the pred block to match, do so now.
 | |
|     if (InvertPredCond) {
 | |
|       Value *NewCond = PBI->getCondition();
 | |
|       
 | |
|       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
 | |
|         CmpInst *CI = cast<CmpInst>(NewCond);
 | |
|         CI->setPredicate(CI->getInversePredicate());
 | |
|       } else {
 | |
|         NewCond = Builder.CreateNot(NewCond, 
 | |
|                                     PBI->getCondition()->getName()+".not");
 | |
|       }
 | |
|       
 | |
|       PBI->setCondition(NewCond);
 | |
|       PBI->swapSuccessors();
 | |
|     }
 | |
|     
 | |
|     // If we have a bonus inst, clone it into the predecessor block.
 | |
|     Instruction *NewBonus = 0;
 | |
|     if (BonusInst) {
 | |
|       NewBonus = BonusInst->clone();
 | |
|       PredBlock->getInstList().insert(PBI, NewBonus);
 | |
|       NewBonus->takeName(BonusInst);
 | |
|       BonusInst->setName(BonusInst->getName()+".old");
 | |
|     }
 | |
|     
 | |
|     // Clone Cond into the predecessor basic block, and or/and the
 | |
|     // two conditions together.
 | |
|     Instruction *New = Cond->clone();
 | |
|     if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
 | |
|     PredBlock->getInstList().insert(PBI, New);
 | |
|     New->takeName(Cond);
 | |
|     Cond->setName(New->getName()+".old");
 | |
|     
 | |
|     Instruction *NewCond = 
 | |
|       cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
 | |
|                                             New, "or.cond"));
 | |
|     PBI->setCondition(NewCond);
 | |
|     if (PBI->getSuccessor(0) == BB) {
 | |
|       AddPredecessorToBlock(TrueDest, PredBlock, BB);
 | |
|       PBI->setSuccessor(0, TrueDest);
 | |
|     }
 | |
|     if (PBI->getSuccessor(1) == BB) {
 | |
|       AddPredecessorToBlock(FalseDest, PredBlock, BB);
 | |
|       PBI->setSuccessor(1, FalseDest);
 | |
|     }
 | |
| 
 | |
|     // TODO: If BB is reachable from all paths through PredBlock, then we
 | |
|     // could replace PBI's branch probabilities with BI's.
 | |
| 
 | |
|     // Merge probability data into PredBlock's branch.
 | |
|     APInt A, B, C, D;
 | |
|     if (ExtractBranchMetadata(PBI, C, D) && ExtractBranchMetadata(BI, A, B)) {
 | |
|       // Given IR which does:
 | |
|       //   bbA:
 | |
|       //     br i1 %x, label %bbB, label %bbC
 | |
|       //   bbB:
 | |
|       //     br i1 %y, label %bbD, label %bbC
 | |
|       // Let's call the probability that we take the edge from %bbA to %bbB
 | |
|       // 'a', from %bbA to %bbC, 'b', from %bbB to %bbD 'c' and from %bbB to
 | |
|       // %bbC probability 'd'.
 | |
|       //
 | |
|       // We transform the IR into:
 | |
|       //   bbA:
 | |
|       //     br i1 %z, label %bbD, label %bbC
 | |
|       // where the probability of going to %bbD is (a*c) and going to bbC is
 | |
|       // (b+a*d).
 | |
|       //
 | |
|       // Probabilities aren't stored as ratios directly. Using branch weights,
 | |
|       // we get:
 | |
|       // (a*c)% = A*C, (b+(a*d))% = A*D+B*C+B*D.
 | |
| 
 | |
|       // In the event of overflow, we want to drop the LSB of the input
 | |
|       // probabilities.
 | |
|       unsigned BitsLost;
 | |
| 
 | |
|       // Ignore overflow result on ProbTrue.
 | |
|       APInt ProbTrue = MultiplyAndLosePrecision(A, C, B, D, BitsLost);
 | |
| 
 | |
|       APInt Tmp1 = MultiplyAndLosePrecision(B, D, A, C, BitsLost);
 | |
|       if (BitsLost) {
 | |
|         ProbTrue = ProbTrue.lshr(BitsLost*2);
 | |
|       }
 | |
| 
 | |
|       APInt Tmp2 = MultiplyAndLosePrecision(A, D, C, B, BitsLost);
 | |
|       if (BitsLost) {
 | |
|         ProbTrue = ProbTrue.lshr(BitsLost*2);
 | |
|         Tmp1 = Tmp1.lshr(BitsLost*2);
 | |
|       }
 | |
| 
 | |
|       APInt Tmp3 = MultiplyAndLosePrecision(B, C, A, D, BitsLost);
 | |
|       if (BitsLost) {
 | |
|         ProbTrue = ProbTrue.lshr(BitsLost*2);
 | |
|         Tmp1 = Tmp1.lshr(BitsLost*2);
 | |
|         Tmp2 = Tmp2.lshr(BitsLost*2);
 | |
|       }
 | |
| 
 | |
|       bool Overflow1 = false, Overflow2 = false;
 | |
|       APInt Tmp4 = Tmp2.uadd_ov(Tmp3, Overflow1);
 | |
|       APInt ProbFalse = Tmp4.uadd_ov(Tmp1, Overflow2);
 | |
| 
 | |
|       if (Overflow1 || Overflow2) {
 | |
|         ProbTrue = ProbTrue.lshr(1);
 | |
|         Tmp1 = Tmp1.lshr(1);
 | |
|         Tmp2 = Tmp2.lshr(1);
 | |
|         Tmp3 = Tmp3.lshr(1);
 | |
|         Tmp4 = Tmp2 + Tmp3;
 | |
|         ProbFalse = Tmp4 + Tmp1;
 | |
|       }
 | |
| 
 | |
|       // The sum of branch weights must fit in 32-bits.
 | |
|       if (ProbTrue.isNegative() && ProbFalse.isNegative()) {
 | |
|         ProbTrue = ProbTrue.lshr(1);
 | |
|         ProbFalse = ProbFalse.lshr(1);
 | |
|       }
 | |
| 
 | |
|       if (ProbTrue != ProbFalse) {
 | |
|         // Normalize the result.
 | |
|         APInt GCD = APIntOps::GreatestCommonDivisor(ProbTrue, ProbFalse);
 | |
|         ProbTrue = ProbTrue.udiv(GCD);
 | |
|         ProbFalse = ProbFalse.udiv(GCD);
 | |
| 
 | |
|         LLVMContext &Context = BI->getContext();
 | |
|         Value *Ops[3];
 | |
|         Ops[0] = BI->getMetadata(LLVMContext::MD_prof)->getOperand(0);
 | |
|         Ops[1] = ConstantInt::get(Context, ProbTrue);
 | |
|         Ops[2] = ConstantInt::get(Context, ProbFalse);
 | |
|         PBI->setMetadata(LLVMContext::MD_prof, MDNode::get(Context, Ops));
 | |
|       } else {
 | |
|         PBI->setMetadata(LLVMContext::MD_prof, NULL);
 | |
|       }
 | |
|     } else {
 | |
|       PBI->setMetadata(LLVMContext::MD_prof, NULL);
 | |
|     }
 | |
| 
 | |
|     // Copy any debug value intrinsics into the end of PredBlock.
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       if (isa<DbgInfoIntrinsic>(*I))
 | |
|         I->clone()->insertBefore(PBI);
 | |
|       
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
 | |
| /// predecessor of another block, this function tries to simplify it.  We know
 | |
| /// that PBI and BI are both conditional branches, and BI is in one of the
 | |
| /// successor blocks of PBI - PBI branches to BI.
 | |
| static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
 | |
|   assert(PBI->isConditional() && BI->isConditional());
 | |
|   BasicBlock *BB = BI->getParent();
 | |
| 
 | |
|   // If this block ends with a branch instruction, and if there is a
 | |
|   // predecessor that ends on a branch of the same condition, make 
 | |
|   // this conditional branch redundant.
 | |
|   if (PBI->getCondition() == BI->getCondition() &&
 | |
|       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
 | |
|     // Okay, the outcome of this conditional branch is statically
 | |
|     // knowable.  If this block had a single pred, handle specially.
 | |
|     if (BB->getSinglePredecessor()) {
 | |
|       // Turn this into a branch on constant.
 | |
|       bool CondIsTrue = PBI->getSuccessor(0) == BB;
 | |
|       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 
 | |
|                                         CondIsTrue));
 | |
|       return true;  // Nuke the branch on constant.
 | |
|     }
 | |
|     
 | |
|     // Otherwise, if there are multiple predecessors, insert a PHI that merges
 | |
|     // in the constant and simplify the block result.  Subsequent passes of
 | |
|     // simplifycfg will thread the block.
 | |
|     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
 | |
|       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
 | |
|       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
 | |
|                                        std::distance(PB, PE),
 | |
|                                        BI->getCondition()->getName() + ".pr",
 | |
|                                        BB->begin());
 | |
|       // Okay, we're going to insert the PHI node.  Since PBI is not the only
 | |
|       // predecessor, compute the PHI'd conditional value for all of the preds.
 | |
|       // Any predecessor where the condition is not computable we keep symbolic.
 | |
|       for (pred_iterator PI = PB; PI != PE; ++PI) {
 | |
|         BasicBlock *P = *PI;
 | |
|         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
 | |
|             PBI != BI && PBI->isConditional() &&
 | |
|             PBI->getCondition() == BI->getCondition() &&
 | |
|             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
 | |
|           bool CondIsTrue = PBI->getSuccessor(0) == BB;
 | |
|           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()), 
 | |
|                                               CondIsTrue), P);
 | |
|         } else {
 | |
|           NewPN->addIncoming(BI->getCondition(), P);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       BI->setCondition(NewPN);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this is a conditional branch in an empty block, and if any
 | |
|   // predecessors is a conditional branch to one of our destinations,
 | |
|   // fold the conditions into logical ops and one cond br.
 | |
|   BasicBlock::iterator BBI = BB->begin();
 | |
|   // Ignore dbg intrinsics.
 | |
|   while (isa<DbgInfoIntrinsic>(BBI))
 | |
|     ++BBI;
 | |
|   if (&*BBI != BI)
 | |
|     return false;
 | |
| 
 | |
|   
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
 | |
|     if (CE->canTrap())
 | |
|       return false;
 | |
|   
 | |
|   int PBIOp, BIOp;
 | |
|   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
 | |
|     PBIOp = BIOp = 0;
 | |
|   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
 | |
|     PBIOp = 0, BIOp = 1;
 | |
|   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
 | |
|     PBIOp = 1, BIOp = 0;
 | |
|   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
 | |
|     PBIOp = BIOp = 1;
 | |
|   else
 | |
|     return false;
 | |
|     
 | |
|   // Check to make sure that the other destination of this branch
 | |
|   // isn't BB itself.  If so, this is an infinite loop that will
 | |
|   // keep getting unwound.
 | |
|   if (PBI->getSuccessor(PBIOp) == BB)
 | |
|     return false;
 | |
|     
 | |
|   // Do not perform this transformation if it would require 
 | |
|   // insertion of a large number of select instructions. For targets
 | |
|   // without predication/cmovs, this is a big pessimization.
 | |
|   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
 | |
|       
 | |
|   unsigned NumPhis = 0;
 | |
|   for (BasicBlock::iterator II = CommonDest->begin();
 | |
|        isa<PHINode>(II); ++II, ++NumPhis)
 | |
|     if (NumPhis > 2) // Disable this xform.
 | |
|       return false;
 | |
|     
 | |
|   // Finally, if everything is ok, fold the branches to logical ops.
 | |
|   BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
 | |
|   
 | |
|   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
 | |
|                << "AND: " << *BI->getParent());
 | |
|   
 | |
|   
 | |
|   // If OtherDest *is* BB, then BB is a basic block with a single conditional
 | |
|   // branch in it, where one edge (OtherDest) goes back to itself but the other
 | |
|   // exits.  We don't *know* that the program avoids the infinite loop
 | |
|   // (even though that seems likely).  If we do this xform naively, we'll end up
 | |
|   // recursively unpeeling the loop.  Since we know that (after the xform is
 | |
|   // done) that the block *is* infinite if reached, we just make it an obviously
 | |
|   // infinite loop with no cond branch.
 | |
|   if (OtherDest == BB) {
 | |
|     // Insert it at the end of the function, because it's either code,
 | |
|     // or it won't matter if it's hot. :)
 | |
|     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
 | |
|                                                   "infloop", BB->getParent());
 | |
|     BranchInst::Create(InfLoopBlock, InfLoopBlock);
 | |
|     OtherDest = InfLoopBlock;
 | |
|   }  
 | |
|   
 | |
|   DEBUG(dbgs() << *PBI->getParent()->getParent());
 | |
| 
 | |
|   // BI may have other predecessors.  Because of this, we leave
 | |
|   // it alone, but modify PBI.
 | |
|   
 | |
|   // Make sure we get to CommonDest on True&True directions.
 | |
|   Value *PBICond = PBI->getCondition();
 | |
|   IRBuilder<true, NoFolder> Builder(PBI);
 | |
|   if (PBIOp)
 | |
|     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
 | |
| 
 | |
|   Value *BICond = BI->getCondition();
 | |
|   if (BIOp)
 | |
|     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
 | |
| 
 | |
|   // Merge the conditions.
 | |
|   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
 | |
|   
 | |
|   // Modify PBI to branch on the new condition to the new dests.
 | |
|   PBI->setCondition(Cond);
 | |
|   PBI->setSuccessor(0, CommonDest);
 | |
|   PBI->setSuccessor(1, OtherDest);
 | |
|   
 | |
|   // OtherDest may have phi nodes.  If so, add an entry from PBI's
 | |
|   // block that are identical to the entries for BI's block.
 | |
|   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
 | |
|   
 | |
|   // We know that the CommonDest already had an edge from PBI to
 | |
|   // it.  If it has PHIs though, the PHIs may have different
 | |
|   // entries for BB and PBI's BB.  If so, insert a select to make
 | |
|   // them agree.
 | |
|   PHINode *PN;
 | |
|   for (BasicBlock::iterator II = CommonDest->begin();
 | |
|        (PN = dyn_cast<PHINode>(II)); ++II) {
 | |
|     Value *BIV = PN->getIncomingValueForBlock(BB);
 | |
|     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
 | |
|     Value *PBIV = PN->getIncomingValue(PBBIdx);
 | |
|     if (BIV != PBIV) {
 | |
|       // Insert a select in PBI to pick the right value.
 | |
|       Value *NV = cast<SelectInst>
 | |
|         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
 | |
|       PN->setIncomingValue(PBBIdx, NV);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
 | |
|   DEBUG(dbgs() << *PBI->getParent()->getParent());
 | |
|   
 | |
|   // This basic block is probably dead.  We know it has at least
 | |
|   // one fewer predecessor.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
 | |
| // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
 | |
| // Takes care of updating the successors and removing the old terminator.
 | |
| // Also makes sure not to introduce new successors by assuming that edges to
 | |
| // non-successor TrueBBs and FalseBBs aren't reachable.
 | |
| static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
 | |
|                                        BasicBlock *TrueBB, BasicBlock *FalseBB){
 | |
|   // Remove any superfluous successor edges from the CFG.
 | |
|   // First, figure out which successors to preserve.
 | |
|   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
 | |
|   // successor.
 | |
|   BasicBlock *KeepEdge1 = TrueBB;
 | |
|   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
 | |
| 
 | |
|   // Then remove the rest.
 | |
|   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
 | |
|     BasicBlock *Succ = OldTerm->getSuccessor(I);
 | |
|     // Make sure only to keep exactly one copy of each edge.
 | |
|     if (Succ == KeepEdge1)
 | |
|       KeepEdge1 = 0;
 | |
|     else if (Succ == KeepEdge2)
 | |
|       KeepEdge2 = 0;
 | |
|     else
 | |
|       Succ->removePredecessor(OldTerm->getParent());
 | |
|   }
 | |
| 
 | |
|   IRBuilder<> Builder(OldTerm);
 | |
|   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
 | |
| 
 | |
|   // Insert an appropriate new terminator.
 | |
|   if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
 | |
|     if (TrueBB == FalseBB)
 | |
|       // We were only looking for one successor, and it was present.
 | |
|       // Create an unconditional branch to it.
 | |
|       Builder.CreateBr(TrueBB);
 | |
|     else
 | |
|       // We found both of the successors we were looking for.
 | |
|       // Create a conditional branch sharing the condition of the select.
 | |
|       Builder.CreateCondBr(Cond, TrueBB, FalseBB);
 | |
|   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
 | |
|     // Neither of the selected blocks were successors, so this
 | |
|     // terminator must be unreachable.
 | |
|     new UnreachableInst(OldTerm->getContext(), OldTerm);
 | |
|   } else {
 | |
|     // One of the selected values was a successor, but the other wasn't.
 | |
|     // Insert an unconditional branch to the one that was found;
 | |
|     // the edge to the one that wasn't must be unreachable.
 | |
|     if (KeepEdge1 == 0)
 | |
|       // Only TrueBB was found.
 | |
|       Builder.CreateBr(TrueBB);
 | |
|     else
 | |
|       // Only FalseBB was found.
 | |
|       Builder.CreateBr(FalseBB);
 | |
|   }
 | |
| 
 | |
|   EraseTerminatorInstAndDCECond(OldTerm);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // SimplifySwitchOnSelect - Replaces
 | |
| //   (switch (select cond, X, Y)) on constant X, Y
 | |
| // with a branch - conditional if X and Y lead to distinct BBs,
 | |
| // unconditional otherwise.
 | |
| static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
 | |
|   // Check for constant integer values in the select.
 | |
|   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
 | |
|   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
 | |
|   if (!TrueVal || !FalseVal)
 | |
|     return false;
 | |
| 
 | |
|   // Find the relevant condition and destinations.
 | |
|   Value *Condition = Select->getCondition();
 | |
|   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
 | |
|   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
 | |
| 
 | |
|   // Perform the actual simplification.
 | |
|   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
 | |
| }
 | |
| 
 | |
| // SimplifyIndirectBrOnSelect - Replaces
 | |
| //   (indirectbr (select cond, blockaddress(@fn, BlockA),
 | |
| //                             blockaddress(@fn, BlockB)))
 | |
| // with
 | |
| //   (br cond, BlockA, BlockB).
 | |
| static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
 | |
|   // Check that both operands of the select are block addresses.
 | |
|   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
 | |
|   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
 | |
|   if (!TBA || !FBA)
 | |
|     return false;
 | |
| 
 | |
|   // Extract the actual blocks.
 | |
|   BasicBlock *TrueBB = TBA->getBasicBlock();
 | |
|   BasicBlock *FalseBB = FBA->getBasicBlock();
 | |
| 
 | |
|   // Perform the actual simplification.
 | |
|   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
 | |
| }
 | |
| 
 | |
| /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
 | |
| /// instruction (a seteq/setne with a constant) as the only instruction in a
 | |
| /// block that ends with an uncond branch.  We are looking for a very specific
 | |
| /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
 | |
| /// this case, we merge the first two "or's of icmp" into a switch, but then the
 | |
| /// default value goes to an uncond block with a seteq in it, we get something
 | |
| /// like:
 | |
| ///
 | |
| ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
 | |
| /// DEFAULT:
 | |
| ///   %tmp = icmp eq i8 %A, 92
 | |
| ///   br label %end
 | |
| /// end:
 | |
| ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
 | |
| /// 
 | |
| /// We prefer to split the edge to 'end' so that there is a true/false entry to
 | |
| /// the PHI, merging the third icmp into the switch.
 | |
| static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
 | |
|                                                   const TargetData *TD,
 | |
|                                                   IRBuilder<> &Builder) {
 | |
|   BasicBlock *BB = ICI->getParent();
 | |
| 
 | |
|   // If the block has any PHIs in it or the icmp has multiple uses, it is too
 | |
|   // complex.
 | |
|   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
 | |
| 
 | |
|   Value *V = ICI->getOperand(0);
 | |
|   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
 | |
|   
 | |
|   // The pattern we're looking for is where our only predecessor is a switch on
 | |
|   // 'V' and this block is the default case for the switch.  In this case we can
 | |
|   // fold the compared value into the switch to simplify things.
 | |
|   BasicBlock *Pred = BB->getSinglePredecessor();
 | |
|   if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
 | |
|   
 | |
|   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
 | |
|   if (SI->getCondition() != V)
 | |
|     return false;
 | |
|   
 | |
|   // If BB is reachable on a non-default case, then we simply know the value of
 | |
|   // V in this block.  Substitute it and constant fold the icmp instruction
 | |
|   // away.
 | |
|   if (SI->getDefaultDest() != BB) {
 | |
|     ConstantInt *VVal = SI->findCaseDest(BB);
 | |
|     assert(VVal && "Should have a unique destination value");
 | |
|     ICI->setOperand(0, VVal);
 | |
|     
 | |
|     if (Value *V = SimplifyInstruction(ICI, TD)) {
 | |
|       ICI->replaceAllUsesWith(V);
 | |
|       ICI->eraseFromParent();
 | |
|     }
 | |
|     // BB is now empty, so it is likely to simplify away.
 | |
|     return SimplifyCFG(BB) | true;
 | |
|   }
 | |
|   
 | |
|   // Ok, the block is reachable from the default dest.  If the constant we're
 | |
|   // comparing exists in one of the other edges, then we can constant fold ICI
 | |
|   // and zap it.
 | |
|   if (SI->findCaseValue(Cst) != SI->case_default()) {
 | |
|     Value *V;
 | |
|     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | |
|       V = ConstantInt::getFalse(BB->getContext());
 | |
|     else
 | |
|       V = ConstantInt::getTrue(BB->getContext());
 | |
|     
 | |
|     ICI->replaceAllUsesWith(V);
 | |
|     ICI->eraseFromParent();
 | |
|     // BB is now empty, so it is likely to simplify away.
 | |
|     return SimplifyCFG(BB) | true;
 | |
|   }
 | |
|   
 | |
|   // The use of the icmp has to be in the 'end' block, by the only PHI node in
 | |
|   // the block.
 | |
|   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
 | |
|   PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
 | |
|   if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
 | |
|       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
 | |
|     return false;
 | |
| 
 | |
|   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
 | |
|   // true in the PHI.
 | |
|   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
 | |
|   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
 | |
| 
 | |
|   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
 | |
|     std::swap(DefaultCst, NewCst);
 | |
| 
 | |
|   // Replace ICI (which is used by the PHI for the default value) with true or
 | |
|   // false depending on if it is EQ or NE.
 | |
|   ICI->replaceAllUsesWith(DefaultCst);
 | |
|   ICI->eraseFromParent();
 | |
| 
 | |
|   // Okay, the switch goes to this block on a default value.  Add an edge from
 | |
|   // the switch to the merge point on the compared value.
 | |
|   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
 | |
|                                          BB->getParent(), BB);
 | |
|   SI->addCase(Cst, NewBB);
 | |
|   
 | |
|   // NewBB branches to the phi block, add the uncond branch and the phi entry.
 | |
|   Builder.SetInsertPoint(NewBB);
 | |
|   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
 | |
|   Builder.CreateBr(SuccBlock);
 | |
|   PHIUse->addIncoming(NewCst, NewBB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
 | |
| /// Check to see if it is branching on an or/and chain of icmp instructions, and
 | |
| /// fold it into a switch instruction if so.
 | |
| static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
 | |
|                                       IRBuilder<> &Builder) {
 | |
|   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
 | |
|   if (Cond == 0) return false;
 | |
|   
 | |
|   
 | |
|   // Change br (X == 0 | X == 1), T, F into a switch instruction.
 | |
|   // If this is a bunch of seteq's or'd together, or if it's a bunch of
 | |
|   // 'setne's and'ed together, collect them.
 | |
|   Value *CompVal = 0;
 | |
|   std::vector<ConstantInt*> Values;
 | |
|   bool TrueWhenEqual = true;
 | |
|   Value *ExtraCase = 0;
 | |
|   unsigned UsedICmps = 0;
 | |
|   
 | |
|   if (Cond->getOpcode() == Instruction::Or) {
 | |
|     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
 | |
|                                      UsedICmps);
 | |
|   } else if (Cond->getOpcode() == Instruction::And) {
 | |
|     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
 | |
|                                      UsedICmps);
 | |
|     TrueWhenEqual = false;
 | |
|   }
 | |
|   
 | |
|   // If we didn't have a multiply compared value, fail.
 | |
|   if (CompVal == 0) return false;
 | |
| 
 | |
|   // Avoid turning single icmps into a switch.
 | |
|   if (UsedICmps <= 1)
 | |
|     return false;
 | |
| 
 | |
|   // There might be duplicate constants in the list, which the switch
 | |
|   // instruction can't handle, remove them now.
 | |
|   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
 | |
|   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
 | |
|   
 | |
|   // If Extra was used, we require at least two switch values to do the
 | |
|   // transformation.  A switch with one value is just an cond branch.
 | |
|   if (ExtraCase && Values.size() < 2) return false;
 | |
|   
 | |
|   // Figure out which block is which destination.
 | |
|   BasicBlock *DefaultBB = BI->getSuccessor(1);
 | |
|   BasicBlock *EdgeBB    = BI->getSuccessor(0);
 | |
|   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
 | |
|   
 | |
|   BasicBlock *BB = BI->getParent();
 | |
|   
 | |
|   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
 | |
|                << " cases into SWITCH.  BB is:\n" << *BB);
 | |
|   
 | |
|   // If there are any extra values that couldn't be folded into the switch
 | |
|   // then we evaluate them with an explicit branch first.  Split the block
 | |
|   // right before the condbr to handle it.
 | |
|   if (ExtraCase) {
 | |
|     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
 | |
|     // Remove the uncond branch added to the old block.
 | |
|     TerminatorInst *OldTI = BB->getTerminator();
 | |
|     Builder.SetInsertPoint(OldTI);
 | |
| 
 | |
|     if (TrueWhenEqual)
 | |
|       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
 | |
|     else
 | |
|       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
 | |
|       
 | |
|     OldTI->eraseFromParent();
 | |
|     
 | |
|     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
 | |
|     // for the edge we just added.
 | |
|     AddPredecessorToBlock(EdgeBB, BB, NewBB);
 | |
|     
 | |
|     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
 | |
|           << "\nEXTRABB = " << *BB);
 | |
|     BB = NewBB;
 | |
|   }
 | |
| 
 | |
|   Builder.SetInsertPoint(BI);
 | |
|   // Convert pointer to int before we switch.
 | |
|   if (CompVal->getType()->isPointerTy()) {
 | |
|     assert(TD && "Cannot switch on pointer without TargetData");
 | |
|     CompVal = Builder.CreatePtrToInt(CompVal,
 | |
|                                      TD->getIntPtrType(CompVal->getContext()),
 | |
|                                      "magicptr");
 | |
|   }
 | |
|   
 | |
|   // Create the new switch instruction now.
 | |
|   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
 | |
| 
 | |
|   // Add all of the 'cases' to the switch instruction.
 | |
|   for (unsigned i = 0, e = Values.size(); i != e; ++i)
 | |
|     New->addCase(Values[i], EdgeBB);
 | |
|   
 | |
|   // We added edges from PI to the EdgeBB.  As such, if there were any
 | |
|   // PHI nodes in EdgeBB, they need entries to be added corresponding to
 | |
|   // the number of edges added.
 | |
|   for (BasicBlock::iterator BBI = EdgeBB->begin();
 | |
|        isa<PHINode>(BBI); ++BBI) {
 | |
|     PHINode *PN = cast<PHINode>(BBI);
 | |
|     Value *InVal = PN->getIncomingValueForBlock(BB);
 | |
|     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
 | |
|       PN->addIncoming(InVal, BB);
 | |
|   }
 | |
|   
 | |
|   // Erase the old branch instruction.
 | |
|   EraseTerminatorInstAndDCECond(BI);
 | |
|   
 | |
|   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
 | |
|   // If this is a trivial landing pad that just continues unwinding the caught
 | |
|   // exception then zap the landing pad, turning its invokes into calls.
 | |
|   BasicBlock *BB = RI->getParent();
 | |
|   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
 | |
|   if (RI->getValue() != LPInst)
 | |
|     // Not a landing pad, or the resume is not unwinding the exception that
 | |
|     // caused control to branch here.
 | |
|     return false;
 | |
| 
 | |
|   // Check that there are no other instructions except for debug intrinsics.
 | |
|   BasicBlock::iterator I = LPInst, E = RI;
 | |
|   while (++I != E)
 | |
|     if (!isa<DbgInfoIntrinsic>(I))
 | |
|       return false;
 | |
| 
 | |
|   // Turn all invokes that unwind here into calls and delete the basic block.
 | |
|   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
 | |
|     InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
 | |
|     SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
 | |
|     // Insert a call instruction before the invoke.
 | |
|     CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
 | |
|     Call->takeName(II);
 | |
|     Call->setCallingConv(II->getCallingConv());
 | |
|     Call->setAttributes(II->getAttributes());
 | |
|     Call->setDebugLoc(II->getDebugLoc());
 | |
| 
 | |
|     // Anything that used the value produced by the invoke instruction now uses
 | |
|     // the value produced by the call instruction.  Note that we do this even
 | |
|     // for void functions and calls with no uses so that the callgraph edge is
 | |
|     // updated.
 | |
|     II->replaceAllUsesWith(Call);
 | |
|     BB->removePredecessor(II->getParent());
 | |
| 
 | |
|     // Insert a branch to the normal destination right before the invoke.
 | |
|     BranchInst::Create(II->getNormalDest(), II);
 | |
| 
 | |
|     // Finally, delete the invoke instruction!
 | |
|     II->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // The landingpad is now unreachable.  Zap it.
 | |
|   BB->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
 | |
|   BasicBlock *BB = RI->getParent();
 | |
|   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
 | |
|   
 | |
|   // Find predecessors that end with branches.
 | |
|   SmallVector<BasicBlock*, 8> UncondBranchPreds;
 | |
|   SmallVector<BranchInst*, 8> CondBranchPreds;
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|     BasicBlock *P = *PI;
 | |
|     TerminatorInst *PTI = P->getTerminator();
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
 | |
|       if (BI->isUnconditional())
 | |
|         UncondBranchPreds.push_back(P);
 | |
|       else
 | |
|         CondBranchPreds.push_back(BI);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we found some, do the transformation!
 | |
|   if (!UncondBranchPreds.empty() && DupRet) {
 | |
|     while (!UncondBranchPreds.empty()) {
 | |
|       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
 | |
|       DEBUG(dbgs() << "FOLDING: " << *BB
 | |
|             << "INTO UNCOND BRANCH PRED: " << *Pred);
 | |
|       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
 | |
|     }
 | |
|     
 | |
|     // If we eliminated all predecessors of the block, delete the block now.
 | |
|     if (pred_begin(BB) == pred_end(BB))
 | |
|       // We know there are no successors, so just nuke the block.
 | |
|       BB->eraseFromParent();
 | |
|     
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Check out all of the conditional branches going to this return
 | |
|   // instruction.  If any of them just select between returns, change the
 | |
|   // branch itself into a select/return pair.
 | |
|   while (!CondBranchPreds.empty()) {
 | |
|     BranchInst *BI = CondBranchPreds.pop_back_val();
 | |
|     
 | |
|     // Check to see if the non-BB successor is also a return block.
 | |
|     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
 | |
|         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
 | |
|         SimplifyCondBranchToTwoReturns(BI, Builder))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
 | |
|   BasicBlock *BB = UI->getParent();
 | |
|   
 | |
|   bool Changed = false;
 | |
|   
 | |
|   // If there are any instructions immediately before the unreachable that can
 | |
|   // be removed, do so.
 | |
|   while (UI != BB->begin()) {
 | |
|     BasicBlock::iterator BBI = UI;
 | |
|     --BBI;
 | |
|     // Do not delete instructions that can have side effects which might cause
 | |
|     // the unreachable to not be reachable; specifically, calls and volatile
 | |
|     // operations may have this effect.
 | |
|     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
 | |
| 
 | |
|     if (BBI->mayHaveSideEffects()) {
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
 | |
|         if (SI->isVolatile())
 | |
|           break;
 | |
|       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|         if (LI->isVolatile())
 | |
|           break;
 | |
|       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
 | |
|         if (RMWI->isVolatile())
 | |
|           break;
 | |
|       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
 | |
|         if (CXI->isVolatile())
 | |
|           break;
 | |
|       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
 | |
|                  !isa<LandingPadInst>(BBI)) {
 | |
|         break;
 | |
|       }
 | |
|       // Note that deleting LandingPad's here is in fact okay, although it
 | |
|       // involves a bit of subtle reasoning. If this inst is a LandingPad,
 | |
|       // all the predecessors of this block will be the unwind edges of Invokes,
 | |
|       // and we can therefore guarantee this block will be erased.
 | |
|     }
 | |
| 
 | |
|     // Delete this instruction (any uses are guaranteed to be dead)
 | |
|     if (!BBI->use_empty())
 | |
|       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
 | |
|     BBI->eraseFromParent();
 | |
|     Changed = true;
 | |
|   }
 | |
|   
 | |
|   // If the unreachable instruction is the first in the block, take a gander
 | |
|   // at all of the predecessors of this instruction, and simplify them.
 | |
|   if (&BB->front() != UI) return Changed;
 | |
|   
 | |
|   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
 | |
|   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
 | |
|     TerminatorInst *TI = Preds[i]->getTerminator();
 | |
|     IRBuilder<> Builder(TI);
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (BI->isUnconditional()) {
 | |
|         if (BI->getSuccessor(0) == BB) {
 | |
|           new UnreachableInst(TI->getContext(), TI);
 | |
|           TI->eraseFromParent();
 | |
|           Changed = true;
 | |
|         }
 | |
|       } else {
 | |
|         if (BI->getSuccessor(0) == BB) {
 | |
|           Builder.CreateBr(BI->getSuccessor(1));
 | |
|           EraseTerminatorInstAndDCECond(BI);
 | |
|         } else if (BI->getSuccessor(1) == BB) {
 | |
|           Builder.CreateBr(BI->getSuccessor(0));
 | |
|           EraseTerminatorInstAndDCECond(BI);
 | |
|           Changed = true;
 | |
|         }
 | |
|       }
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
 | |
|            i != e; ++i)
 | |
|         if (i.getCaseSuccessor() == BB) {
 | |
|           BB->removePredecessor(SI->getParent());
 | |
|           SI->removeCase(i);
 | |
|           --i; --e;
 | |
|           Changed = true;
 | |
|         }
 | |
|       // If the default value is unreachable, figure out the most popular
 | |
|       // destination and make it the default.
 | |
|       if (SI->getDefaultDest() == BB) {
 | |
|         std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
 | |
|         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
 | |
|              i != e; ++i) {
 | |
|           std::pair<unsigned, unsigned> &entry =
 | |
|               Popularity[i.getCaseSuccessor()];
 | |
|           if (entry.first == 0) {
 | |
|             entry.first = 1;
 | |
|             entry.second = i.getCaseIndex();
 | |
|           } else {
 | |
|             entry.first++;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Find the most popular block.
 | |
|         unsigned MaxPop = 0;
 | |
|         unsigned MaxIndex = 0;
 | |
|         BasicBlock *MaxBlock = 0;
 | |
|         for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
 | |
|              I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
 | |
|           if (I->second.first > MaxPop || 
 | |
|               (I->second.first == MaxPop && MaxIndex > I->second.second)) {
 | |
|             MaxPop = I->second.first;
 | |
|             MaxIndex = I->second.second;
 | |
|             MaxBlock = I->first;
 | |
|           }
 | |
|         }
 | |
|         if (MaxBlock) {
 | |
|           // Make this the new default, allowing us to delete any explicit
 | |
|           // edges to it.
 | |
|           SI->setDefaultDest(MaxBlock);
 | |
|           Changed = true;
 | |
|           
 | |
|           // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
 | |
|           // it.
 | |
|           if (isa<PHINode>(MaxBlock->begin()))
 | |
|             for (unsigned i = 0; i != MaxPop-1; ++i)
 | |
|               MaxBlock->removePredecessor(SI->getParent());
 | |
|           
 | |
|           for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
 | |
|                i != e; ++i)
 | |
|             if (i.getCaseSuccessor() == MaxBlock) {
 | |
|               SI->removeCase(i);
 | |
|               --i; --e;
 | |
|             }
 | |
|         }
 | |
|       }
 | |
|     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
 | |
|       if (II->getUnwindDest() == BB) {
 | |
|         // Convert the invoke to a call instruction.  This would be a good
 | |
|         // place to note that the call does not throw though.
 | |
|         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
 | |
|         II->removeFromParent();   // Take out of symbol table
 | |
|         
 | |
|         // Insert the call now...
 | |
|         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
 | |
|         Builder.SetInsertPoint(BI);
 | |
|         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
 | |
|                                           Args, II->getName());
 | |
|         CI->setCallingConv(II->getCallingConv());
 | |
|         CI->setAttributes(II->getAttributes());
 | |
|         // If the invoke produced a value, the call does now instead.
 | |
|         II->replaceAllUsesWith(CI);
 | |
|         delete II;
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If this block is now dead, remove it.
 | |
|   if (pred_begin(BB) == pred_end(BB) &&
 | |
|       BB != &BB->getParent()->getEntryBlock()) {
 | |
|     // We know there are no successors, so just nuke the block.
 | |
|     BB->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
 | |
| /// integer range comparison into a sub, an icmp and a branch.
 | |
| static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
 | |
|   assert(SI->getNumCases() > 1 && "Degenerate switch?");
 | |
| 
 | |
|   // Make sure all cases point to the same destination and gather the values.
 | |
|   SmallVector<ConstantInt *, 16> Cases;
 | |
|   SwitchInst::CaseIt I = SI->case_begin();
 | |
|   Cases.push_back(I.getCaseValue());
 | |
|   SwitchInst::CaseIt PrevI = I++;
 | |
|   for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
 | |
|     if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
 | |
|       return false;
 | |
|     Cases.push_back(I.getCaseValue());
 | |
|   }
 | |
|   assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
 | |
| 
 | |
|   // Sort the case values, then check if they form a range we can transform.
 | |
|   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
 | |
|   for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
 | |
|     if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   Constant *Offset = ConstantExpr::getNeg(Cases.back());
 | |
|   Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
 | |
| 
 | |
|   Value *Sub = SI->getCondition();
 | |
|   if (!Offset->isNullValue())
 | |
|     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
 | |
|   Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
 | |
|   Builder.CreateCondBr(
 | |
|       Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
 | |
| 
 | |
|   // Prune obsolete incoming values off the successor's PHI nodes.
 | |
|   for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
 | |
|        isa<PHINode>(BBI); ++BBI) {
 | |
|     for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
 | |
|       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
 | |
|   }
 | |
|   SI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
 | |
| /// and use it to remove dead cases.
 | |
| static bool EliminateDeadSwitchCases(SwitchInst *SI) {
 | |
|   Value *Cond = SI->getCondition();
 | |
|   unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
 | |
|   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
 | |
|   ComputeMaskedBits(Cond, APInt::getAllOnesValue(Bits), KnownZero, KnownOne);
 | |
| 
 | |
|   // Gather dead cases.
 | |
|   SmallVector<ConstantInt*, 8> DeadCases;
 | |
|   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
 | |
|     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
 | |
|         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
 | |
|       DeadCases.push_back(I.getCaseValue());
 | |
|       DEBUG(dbgs() << "SimplifyCFG: switch case '"
 | |
|                    << I.getCaseValue() << "' is dead.\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove dead cases from the switch.
 | |
|   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
 | |
|     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
 | |
|     assert(Case != SI->case_default() &&
 | |
|            "Case was not found. Probably mistake in DeadCases forming.");
 | |
|     // Prune unused values from PHI nodes.
 | |
|     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
 | |
|     SI->removeCase(Case);
 | |
|   }
 | |
| 
 | |
|   return !DeadCases.empty();
 | |
| }
 | |
| 
 | |
| /// FindPHIForConditionForwarding - If BB would be eligible for simplification
 | |
| /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
 | |
| /// by an unconditional branch), look at the phi node for BB in the successor
 | |
| /// block and see if the incoming value is equal to CaseValue. If so, return
 | |
| /// the phi node, and set PhiIndex to BB's index in the phi node.
 | |
| static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
 | |
|                                               BasicBlock *BB,
 | |
|                                               int *PhiIndex) {
 | |
|   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
 | |
|     return NULL; // BB must be empty to be a candidate for simplification.
 | |
|   if (!BB->getSinglePredecessor())
 | |
|     return NULL; // BB must be dominated by the switch.
 | |
| 
 | |
|   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
 | |
|   if (!Branch || !Branch->isUnconditional())
 | |
|     return NULL; // Terminator must be unconditional branch.
 | |
| 
 | |
|   BasicBlock *Succ = Branch->getSuccessor(0);
 | |
| 
 | |
|   BasicBlock::iterator I = Succ->begin();
 | |
|   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
 | |
|     int Idx = PHI->getBasicBlockIndex(BB);
 | |
|     assert(Idx >= 0 && "PHI has no entry for predecessor?");
 | |
| 
 | |
|     Value *InValue = PHI->getIncomingValue(Idx);
 | |
|     if (InValue != CaseValue) continue;
 | |
| 
 | |
|     *PhiIndex = Idx;
 | |
|     return PHI;
 | |
|   }
 | |
| 
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
 | |
| /// instruction to a phi node dominated by the switch, if that would mean that
 | |
| /// some of the destination blocks of the switch can be folded away.
 | |
| /// Returns true if a change is made.
 | |
| static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
 | |
|   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
 | |
|   ForwardingNodesMap ForwardingNodes;
 | |
| 
 | |
|   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
 | |
|     ConstantInt *CaseValue = I.getCaseValue();
 | |
|     BasicBlock *CaseDest = I.getCaseSuccessor();
 | |
| 
 | |
|     int PhiIndex;
 | |
|     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
 | |
|                                                  &PhiIndex);
 | |
|     if (!PHI) continue;
 | |
| 
 | |
|     ForwardingNodes[PHI].push_back(PhiIndex);
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
 | |
|        E = ForwardingNodes.end(); I != E; ++I) {
 | |
|     PHINode *Phi = I->first;
 | |
|     SmallVector<int,4> &Indexes = I->second;
 | |
| 
 | |
|     if (Indexes.size() < 2) continue;
 | |
| 
 | |
|     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
 | |
|       Phi->setIncomingValue(Indexes[I], SI->getCondition());
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
 | |
|   // If this switch is too complex to want to look at, ignore it.
 | |
|   if (!isValueEqualityComparison(SI))
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *BB = SI->getParent();
 | |
| 
 | |
|   // If we only have one predecessor, and if it is a branch on this value,
 | |
|   // see if that predecessor totally determines the outcome of this switch.
 | |
|   if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
 | |
|     if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
 | |
|       return SimplifyCFG(BB) | true;
 | |
| 
 | |
|   Value *Cond = SI->getCondition();
 | |
|   if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
 | |
|     if (SimplifySwitchOnSelect(SI, Select))
 | |
|       return SimplifyCFG(BB) | true;
 | |
| 
 | |
|   // If the block only contains the switch, see if we can fold the block
 | |
|   // away into any preds.
 | |
|   BasicBlock::iterator BBI = BB->begin();
 | |
|   // Ignore dbg intrinsics.
 | |
|   while (isa<DbgInfoIntrinsic>(BBI))
 | |
|     ++BBI;
 | |
|   if (SI == &*BBI)
 | |
|     if (FoldValueComparisonIntoPredecessors(SI, Builder))
 | |
|       return SimplifyCFG(BB) | true;
 | |
| 
 | |
|   // Try to transform the switch into an icmp and a branch.
 | |
|   if (TurnSwitchRangeIntoICmp(SI, Builder))
 | |
|     return SimplifyCFG(BB) | true;
 | |
| 
 | |
|   // Remove unreachable cases.
 | |
|   if (EliminateDeadSwitchCases(SI))
 | |
|     return SimplifyCFG(BB) | true;
 | |
| 
 | |
|   if (ForwardSwitchConditionToPHI(SI))
 | |
|     return SimplifyCFG(BB) | true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
 | |
|   BasicBlock *BB = IBI->getParent();
 | |
|   bool Changed = false;
 | |
|   
 | |
|   // Eliminate redundant destinations.
 | |
|   SmallPtrSet<Value *, 8> Succs;
 | |
|   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
 | |
|     BasicBlock *Dest = IBI->getDestination(i);
 | |
|     if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
 | |
|       Dest->removePredecessor(BB);
 | |
|       IBI->removeDestination(i);
 | |
|       --i; --e;
 | |
|       Changed = true;
 | |
|     }
 | |
|   } 
 | |
| 
 | |
|   if (IBI->getNumDestinations() == 0) {
 | |
|     // If the indirectbr has no successors, change it to unreachable.
 | |
|     new UnreachableInst(IBI->getContext(), IBI);
 | |
|     EraseTerminatorInstAndDCECond(IBI);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   if (IBI->getNumDestinations() == 1) {
 | |
|     // If the indirectbr has one successor, change it to a direct branch.
 | |
|     BranchInst::Create(IBI->getDestination(0), IBI);
 | |
|     EraseTerminatorInstAndDCECond(IBI);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
 | |
|     if (SimplifyIndirectBrOnSelect(IBI, SI))
 | |
|       return SimplifyCFG(BB) | true;
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
 | |
|   BasicBlock *BB = BI->getParent();
 | |
|   
 | |
|   // If the Terminator is the only non-phi instruction, simplify the block.
 | |
|   BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
 | |
|   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
 | |
|       TryToSimplifyUncondBranchFromEmptyBlock(BB))
 | |
|     return true;
 | |
|   
 | |
|   // If the only instruction in the block is a seteq/setne comparison
 | |
|   // against a constant, try to simplify the block.
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
 | |
|     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
 | |
|       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
 | |
|         ;
 | |
|       if (I->isTerminator() &&
 | |
|           TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
 | |
|         return true;
 | |
|     }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
 | |
|   BasicBlock *BB = BI->getParent();
 | |
|   
 | |
|   // Conditional branch
 | |
|   if (isValueEqualityComparison(BI)) {
 | |
|     // If we only have one predecessor, and if it is a branch on this value,
 | |
|     // see if that predecessor totally determines the outcome of this
 | |
|     // switch.
 | |
|     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
 | |
|       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
 | |
|         return SimplifyCFG(BB) | true;
 | |
|     
 | |
|     // This block must be empty, except for the setcond inst, if it exists.
 | |
|     // Ignore dbg intrinsics.
 | |
|     BasicBlock::iterator I = BB->begin();
 | |
|     // Ignore dbg intrinsics.
 | |
|     while (isa<DbgInfoIntrinsic>(I))
 | |
|       ++I;
 | |
|     if (&*I == BI) {
 | |
|       if (FoldValueComparisonIntoPredecessors(BI, Builder))
 | |
|         return SimplifyCFG(BB) | true;
 | |
|     } else if (&*I == cast<Instruction>(BI->getCondition())){
 | |
|       ++I;
 | |
|       // Ignore dbg intrinsics.
 | |
|       while (isa<DbgInfoIntrinsic>(I))
 | |
|         ++I;
 | |
|       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
 | |
|         return SimplifyCFG(BB) | true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
 | |
|   if (SimplifyBranchOnICmpChain(BI, TD, Builder))
 | |
|     return true;
 | |
|   
 | |
|   // If this basic block is ONLY a compare and a branch, and if a predecessor
 | |
|   // branches to us and one of our successors, fold the comparison into the
 | |
|   // predecessor and use logical operations to pick the right destination.
 | |
|   if (FoldBranchToCommonDest(BI))
 | |
|     return SimplifyCFG(BB) | true;
 | |
|   
 | |
|   // We have a conditional branch to two blocks that are only reachable
 | |
|   // from BI.  We know that the condbr dominates the two blocks, so see if
 | |
|   // there is any identical code in the "then" and "else" blocks.  If so, we
 | |
|   // can hoist it up to the branching block.
 | |
|   if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
 | |
|     if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
 | |
|       if (HoistThenElseCodeToIf(BI))
 | |
|         return SimplifyCFG(BB) | true;
 | |
|     } else {
 | |
|       // If Successor #1 has multiple preds, we may be able to conditionally
 | |
|       // execute Successor #0 if it branches to successor #1.
 | |
|       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
 | |
|       if (Succ0TI->getNumSuccessors() == 1 &&
 | |
|           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
 | |
|         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
 | |
|           return SimplifyCFG(BB) | true;
 | |
|     }
 | |
|   } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
 | |
|     // If Successor #0 has multiple preds, we may be able to conditionally
 | |
|     // execute Successor #1 if it branches to successor #0.
 | |
|     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
 | |
|     if (Succ1TI->getNumSuccessors() == 1 &&
 | |
|         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
 | |
|       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
 | |
|         return SimplifyCFG(BB) | true;
 | |
|   }
 | |
|   
 | |
|   // If this is a branch on a phi node in the current block, thread control
 | |
|   // through this block if any PHI node entries are constants.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
 | |
|     if (PN->getParent() == BI->getParent())
 | |
|       if (FoldCondBranchOnPHI(BI, TD))
 | |
|         return SimplifyCFG(BB) | true;
 | |
|   
 | |
|   // Scan predecessor blocks for conditional branches.
 | |
|   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
 | |
|       if (PBI != BI && PBI->isConditional())
 | |
|         if (SimplifyCondBranchToCondBranch(PBI, BI))
 | |
|           return SimplifyCFG(BB) | true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check if passing a value to an instruction will cause undefined behavior.
 | |
| static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
 | |
|   Constant *C = dyn_cast<Constant>(V);
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
 | |
|     return false;
 | |
| 
 | |
|   if (C->isNullValue()) {
 | |
|     Instruction *Use = I->use_back();
 | |
| 
 | |
|     // Now make sure that there are no instructions in between that can alter
 | |
|     // control flow (eg. calls)
 | |
|     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
 | |
|       if (i == I->getParent()->end() || i->mayHaveSideEffects())
 | |
|         return false;
 | |
| 
 | |
|     // Look through GEPs. A load from a GEP derived from NULL is still undefined
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
 | |
|       if (GEP->getPointerOperand() == I)
 | |
|         return passingValueIsAlwaysUndefined(V, GEP);
 | |
| 
 | |
|     // Look through bitcasts.
 | |
|     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
 | |
|       return passingValueIsAlwaysUndefined(V, BC);
 | |
| 
 | |
|     // Load from null is undefined.
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
 | |
|       return LI->getPointerAddressSpace() == 0;
 | |
| 
 | |
|     // Store to null is undefined.
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
 | |
|       return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// If BB has an incoming value that will always trigger undefined behavior
 | |
| /// (eg. null pointer dereference), remove the branch leading here.
 | |
| static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
 | |
|   for (BasicBlock::iterator i = BB->begin();
 | |
|        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
 | |
|     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
 | |
|       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
 | |
|         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
 | |
|         IRBuilder<> Builder(T);
 | |
|         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
 | |
|           BB->removePredecessor(PHI->getIncomingBlock(i));
 | |
|           // Turn uncoditional branches into unreachables and remove the dead
 | |
|           // destination from conditional branches.
 | |
|           if (BI->isUnconditional())
 | |
|             Builder.CreateUnreachable();
 | |
|           else
 | |
|             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
 | |
|                                                          BI->getSuccessor(0));
 | |
|           BI->eraseFromParent();
 | |
|           return true;
 | |
|         }
 | |
|         // TODO: SwitchInst.
 | |
|       }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SimplifyCFGOpt::run(BasicBlock *BB) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   assert(BB && BB->getParent() && "Block not embedded in function!");
 | |
|   assert(BB->getTerminator() && "Degenerate basic block encountered!");
 | |
| 
 | |
|   // Remove basic blocks that have no predecessors (except the entry block)...
 | |
|   // or that just have themself as a predecessor.  These are unreachable.
 | |
|   if ((pred_begin(BB) == pred_end(BB) &&
 | |
|        BB != &BB->getParent()->getEntryBlock()) ||
 | |
|       BB->getSinglePredecessor() == BB) {
 | |
|     DEBUG(dbgs() << "Removing BB: \n" << *BB);
 | |
|     DeleteDeadBlock(BB);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Check to see if we can constant propagate this terminator instruction
 | |
|   // away...
 | |
|   Changed |= ConstantFoldTerminator(BB, true);
 | |
| 
 | |
|   // Check for and eliminate duplicate PHI nodes in this block.
 | |
|   Changed |= EliminateDuplicatePHINodes(BB);
 | |
| 
 | |
|   // Check for and remove branches that will always cause undefined behavior.
 | |
|   Changed |= removeUndefIntroducingPredecessor(BB);
 | |
| 
 | |
|   // Merge basic blocks into their predecessor if there is only one distinct
 | |
|   // pred, and if there is only one distinct successor of the predecessor, and
 | |
|   // if there are no PHI nodes.
 | |
|   //
 | |
|   if (MergeBlockIntoPredecessor(BB))
 | |
|     return true;
 | |
|   
 | |
|   IRBuilder<> Builder(BB);
 | |
| 
 | |
|   // If there is a trivial two-entry PHI node in this basic block, and we can
 | |
|   // eliminate it, do so now.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
 | |
|     if (PN->getNumIncomingValues() == 2)
 | |
|       Changed |= FoldTwoEntryPHINode(PN, TD);
 | |
| 
 | |
|   Builder.SetInsertPoint(BB->getTerminator());
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | |
|     if (BI->isUnconditional()) {
 | |
|       if (SimplifyUncondBranch(BI, Builder)) return true;
 | |
|     } else {
 | |
|       if (SimplifyCondBranch(BI, Builder)) return true;
 | |
|     }
 | |
|   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
 | |
|     if (SimplifyReturn(RI, Builder)) return true;
 | |
|   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
 | |
|     if (SimplifyResume(RI, Builder)) return true;
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
 | |
|     if (SimplifySwitch(SI, Builder)) return true;
 | |
|   } else if (UnreachableInst *UI =
 | |
|                dyn_cast<UnreachableInst>(BB->getTerminator())) {
 | |
|     if (SimplifyUnreachable(UI)) return true;
 | |
|   } else if (IndirectBrInst *IBI =
 | |
|                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
 | |
|     if (SimplifyIndirectBr(IBI)) return true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// SimplifyCFG - This function is used to do simplification of a CFG.  For
 | |
| /// example, it adjusts branches to branches to eliminate the extra hop, it
 | |
| /// eliminates unreachable basic blocks, and does other "peephole" optimization
 | |
| /// of the CFG.  It returns true if a modification was made.
 | |
| ///
 | |
| bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
 | |
|   return SimplifyCFGOpt(TD).run(BB);
 | |
| }
 |