mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37505 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			530 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			530 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a value numbering pass that value numbers load and call
 | 
						|
// instructions.  To do this, it finds lexically identical load instructions,
 | 
						|
// and uses alias analysis to determine which loads are guaranteed to produce
 | 
						|
// the same value.  To value number call instructions, it looks for calls to
 | 
						|
// functions that do not write to memory which do not have intervening
 | 
						|
// instructions that clobber the memory that is read from.
 | 
						|
//
 | 
						|
// This pass builds off of another value numbering pass to implement value
 | 
						|
// numbering for non-load and non-call instructions.  It uses Alias Analysis so
 | 
						|
// that it can disambiguate the load instructions.  The more powerful these base
 | 
						|
// analyses are, the more powerful the resultant value numbering will be.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LoadValueNumbering.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Analysis/ValueNumbering.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include <set>
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  // FIXME: This should not be a FunctionPass.
 | 
						|
  struct VISIBILITY_HIDDEN LoadVN : public FunctionPass, public ValueNumbering {
 | 
						|
    static char ID; // Class identification, replacement for typeinfo
 | 
						|
    LoadVN() : FunctionPass((intptr_t)&ID) {}
 | 
						|
 | 
						|
    /// Pass Implementation stuff.  This doesn't do any analysis.
 | 
						|
    ///
 | 
						|
    bool runOnFunction(Function &) { return false; }
 | 
						|
 | 
						|
    /// getAnalysisUsage - Does not modify anything.  It uses Value Numbering
 | 
						|
    /// and Alias Analysis.
 | 
						|
    ///
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | 
						|
 | 
						|
    /// getEqualNumberNodes - Return nodes with the same value number as the
 | 
						|
    /// specified Value.  This fills in the argument vector with any equal
 | 
						|
    /// values.
 | 
						|
    ///
 | 
						|
    virtual void getEqualNumberNodes(Value *V1,
 | 
						|
                                     std::vector<Value*> &RetVals) const;
 | 
						|
 | 
						|
    /// deleteValue - This method should be called whenever an LLVM Value is
 | 
						|
    /// deleted from the program, for example when an instruction is found to be
 | 
						|
    /// redundant and is eliminated.
 | 
						|
    ///
 | 
						|
    virtual void deleteValue(Value *V) {
 | 
						|
      getAnalysis<AliasAnalysis>().deleteValue(V);
 | 
						|
    }
 | 
						|
 | 
						|
    /// copyValue - This method should be used whenever a preexisting value in
 | 
						|
    /// the program is copied or cloned, introducing a new value.  Note that
 | 
						|
    /// analysis implementations should tolerate clients that use this method to
 | 
						|
    /// introduce the same value multiple times: if the analysis already knows
 | 
						|
    /// about a value, it should ignore the request.
 | 
						|
    ///
 | 
						|
    virtual void copyValue(Value *From, Value *To) {
 | 
						|
      getAnalysis<AliasAnalysis>().copyValue(From, To);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getCallEqualNumberNodes - Given a call instruction, find other calls
 | 
						|
    /// that have the same value number.
 | 
						|
    void getCallEqualNumberNodes(CallInst *CI,
 | 
						|
                                 std::vector<Value*> &RetVals) const;
 | 
						|
  };
 | 
						|
 | 
						|
  char LoadVN::ID = 0;
 | 
						|
  // Register this pass...
 | 
						|
  RegisterPass<LoadVN> X("load-vn", "Load Value Numbering");
 | 
						|
 | 
						|
  // Declare that we implement the ValueNumbering interface
 | 
						|
  RegisterAnalysisGroup<ValueNumbering> Y(X);
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createLoadValueNumberingPass() { return new LoadVN(); }
 | 
						|
 | 
						|
 | 
						|
/// getAnalysisUsage - Does not modify anything.  It uses Value Numbering and
 | 
						|
/// Alias Analysis.
 | 
						|
///
 | 
						|
void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequiredTransitive<AliasAnalysis>();
 | 
						|
  AU.addRequired<ValueNumbering>();
 | 
						|
  AU.addRequiredTransitive<DominatorTree>();
 | 
						|
  AU.addRequiredTransitive<TargetData>();
 | 
						|
}
 | 
						|
 | 
						|
static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom,
 | 
						|
                                Value *Ptr, unsigned Size, AliasAnalysis &AA,
 | 
						|
                                std::set<BasicBlock*> &Visited,
 | 
						|
                                std::map<BasicBlock*, bool> &TransparentBlocks){
 | 
						|
  // If we have already checked out this path, or if we reached our destination,
 | 
						|
  // stop searching, returning success.
 | 
						|
  if (CurBlock == Dom || !Visited.insert(CurBlock).second)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check whether this block is known transparent or not.
 | 
						|
  std::map<BasicBlock*, bool>::iterator TBI =
 | 
						|
    TransparentBlocks.lower_bound(CurBlock);
 | 
						|
 | 
						|
  if (TBI == TransparentBlocks.end() || TBI->first != CurBlock) {
 | 
						|
    // If this basic block can modify the memory location, then the path is not
 | 
						|
    // transparent!
 | 
						|
    if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) {
 | 
						|
      TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true));
 | 
						|
  } else if (!TBI->second)
 | 
						|
    // This block is known non-transparent, so that path can't be either.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The current block is known to be transparent.  The entire path is
 | 
						|
  // transparent if all of the predecessors paths to the parent is also
 | 
						|
  // transparent to the memory location.
 | 
						|
  for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock);
 | 
						|
       PI != E; ++PI)
 | 
						|
    if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited,
 | 
						|
                             TransparentBlocks))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getCallEqualNumberNodes - Given a call instruction, find other calls that
 | 
						|
/// have the same value number.
 | 
						|
void LoadVN::getCallEqualNumberNodes(CallInst *CI,
 | 
						|
                                     std::vector<Value*> &RetVals) const {
 | 
						|
  Function *CF = CI->getCalledFunction();
 | 
						|
  if (CF == 0) return;  // Indirect call.
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
  AliasAnalysis::ModRefBehavior MRB = AA.getModRefBehavior(CF, CI);
 | 
						|
  if (MRB != AliasAnalysis::DoesNotAccessMemory &&
 | 
						|
      MRB != AliasAnalysis::OnlyReadsMemory)
 | 
						|
    return;  // Nothing we can do for now.
 | 
						|
 | 
						|
  // Scan all of the arguments of the function, looking for one that is not
 | 
						|
  // global.  In particular, we would prefer to have an argument or instruction
 | 
						|
  // operand to chase the def-use chains of.
 | 
						|
  Value *Op = CF;
 | 
						|
  for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
 | 
						|
    if (isa<Argument>(CI->getOperand(i)) ||
 | 
						|
        isa<Instruction>(CI->getOperand(i))) {
 | 
						|
      Op = CI->getOperand(i);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // Identify all lexically identical calls in this function.
 | 
						|
  std::vector<CallInst*> IdenticalCalls;
 | 
						|
 | 
						|
  Function *CIFunc = CI->getParent()->getParent();
 | 
						|
  for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E;
 | 
						|
       ++UI)
 | 
						|
    if (CallInst *C = dyn_cast<CallInst>(*UI))
 | 
						|
      if (C->getNumOperands() == CI->getNumOperands() &&
 | 
						|
          C->getOperand(0) == CI->getOperand(0) &&
 | 
						|
          C->getParent()->getParent() == CIFunc && C != CI) {
 | 
						|
        bool AllOperandsEqual = true;
 | 
						|
        for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
 | 
						|
          if (C->getOperand(i) != CI->getOperand(i)) {
 | 
						|
            AllOperandsEqual = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
        if (AllOperandsEqual)
 | 
						|
          IdenticalCalls.push_back(C);
 | 
						|
      }
 | 
						|
 | 
						|
  if (IdenticalCalls.empty()) return;
 | 
						|
 | 
						|
  // Eliminate duplicates, which could occur if we chose a value that is passed
 | 
						|
  // into a call site multiple times.
 | 
						|
  std::sort(IdenticalCalls.begin(), IdenticalCalls.end());
 | 
						|
  IdenticalCalls.erase(std::unique(IdenticalCalls.begin(),IdenticalCalls.end()),
 | 
						|
                       IdenticalCalls.end());
 | 
						|
 | 
						|
  // If the call reads memory, we must make sure that there are no stores
 | 
						|
  // between the calls in question.
 | 
						|
  //
 | 
						|
  // FIXME: This should use mod/ref information.  What we really care about it
 | 
						|
  // whether an intervening instruction could modify memory that is read, not
 | 
						|
  // ANY memory.
 | 
						|
  //
 | 
						|
  if (MRB == AliasAnalysis::OnlyReadsMemory) {
 | 
						|
    DominatorTree &DT = getAnalysis<DominatorTree>();
 | 
						|
    BasicBlock *CIBB = CI->getParent();
 | 
						|
    for (unsigned i = 0; i != IdenticalCalls.size(); ++i) {
 | 
						|
      CallInst *C = IdenticalCalls[i];
 | 
						|
      bool CantEqual = false;
 | 
						|
 | 
						|
      if (DT.dominates(CIBB, C->getParent())) {
 | 
						|
        // FIXME: we currently only handle the case where both calls are in the
 | 
						|
        // same basic block.
 | 
						|
        if (CIBB != C->getParent()) {
 | 
						|
          CantEqual = true;
 | 
						|
        } else {
 | 
						|
          Instruction *First = CI, *Second = C;
 | 
						|
          if (!DT.dominates(CI, C))
 | 
						|
            std::swap(First, Second);
 | 
						|
 | 
						|
          // Scan the instructions between the calls, checking for stores or
 | 
						|
          // calls to dangerous functions.
 | 
						|
          BasicBlock::iterator I = First;
 | 
						|
          for (++First; I != BasicBlock::iterator(Second); ++I) {
 | 
						|
            if (isa<StoreInst>(I)) {
 | 
						|
              // FIXME: We could use mod/ref information to make this much
 | 
						|
              // better!
 | 
						|
              CantEqual = true;
 | 
						|
              break;
 | 
						|
            } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
 | 
						|
              if (CI->getCalledFunction() == 0 ||
 | 
						|
                  !AA.onlyReadsMemory(CI->getCalledFunction())) {
 | 
						|
                CantEqual = true;
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            } else if (I->mayWriteToMemory()) {
 | 
						|
              CantEqual = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
      } else if (DT.dominates(C->getParent(), CIBB)) {
 | 
						|
        // FIXME: We could implement this, but we don't for now.
 | 
						|
        CantEqual = true;
 | 
						|
      } else {
 | 
						|
        // FIXME: if one doesn't dominate the other, we can't tell yet.
 | 
						|
        CantEqual = true;
 | 
						|
      }
 | 
						|
 | 
						|
 | 
						|
      if (CantEqual) {
 | 
						|
        // This call does not produce the same value as the one in the query.
 | 
						|
        std::swap(IdenticalCalls[i--], IdenticalCalls.back());
 | 
						|
        IdenticalCalls.pop_back();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Any calls that are identical and not destroyed will produce equal values!
 | 
						|
  for (unsigned i = 0, e = IdenticalCalls.size(); i != e; ++i)
 | 
						|
    RetVals.push_back(IdenticalCalls[i]);
 | 
						|
}
 | 
						|
 | 
						|
// getEqualNumberNodes - Return nodes with the same value number as the
 | 
						|
// specified Value.  This fills in the argument vector with any equal values.
 | 
						|
//
 | 
						|
void LoadVN::getEqualNumberNodes(Value *V,
 | 
						|
                                 std::vector<Value*> &RetVals) const {
 | 
						|
  // If the alias analysis has any must alias information to share with us, we
 | 
						|
  // can definitely use it.
 | 
						|
  if (isa<PointerType>(V->getType()))
 | 
						|
    getAnalysis<AliasAnalysis>().getMustAliases(V, RetVals);
 | 
						|
 | 
						|
  if (!isa<LoadInst>(V)) {
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(V))
 | 
						|
      getCallEqualNumberNodes(CI, RetVals);
 | 
						|
 | 
						|
    // Not a load instruction?  Just chain to the base value numbering
 | 
						|
    // implementation to satisfy the request...
 | 
						|
    assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this &&
 | 
						|
           "getAnalysis() returned this!");
 | 
						|
 | 
						|
    return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
 | 
						|
  }
 | 
						|
 | 
						|
  // Volatile loads cannot be replaced with the value of other loads.
 | 
						|
  LoadInst *LI = cast<LoadInst>(V);
 | 
						|
  if (LI->isVolatile())
 | 
						|
    return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
 | 
						|
 | 
						|
  Value *LoadPtr = LI->getOperand(0);
 | 
						|
  BasicBlock *LoadBB = LI->getParent();
 | 
						|
  Function *F = LoadBB->getParent();
 | 
						|
 | 
						|
  // Find out how many bytes of memory are loaded by the load instruction...
 | 
						|
  unsigned LoadSize = getAnalysis<TargetData>().getTypeSize(LI->getType());
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  // Figure out if the load is invalidated from the entry of the block it is in
 | 
						|
  // until the actual instruction.  This scans the block backwards from LI.  If
 | 
						|
  // we see any candidate load or store instructions, then we know that the
 | 
						|
  // candidates have the same value # as LI.
 | 
						|
  bool LoadInvalidatedInBBBefore = false;
 | 
						|
  for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) {
 | 
						|
    --I;
 | 
						|
    if (I == LoadPtr) {
 | 
						|
      // If we run into an allocation of the value being loaded, then the
 | 
						|
      // contents are not initialized.
 | 
						|
      if (isa<AllocationInst>(I))
 | 
						|
        RetVals.push_back(UndefValue::get(LI->getType()));
 | 
						|
 | 
						|
      // Otherwise, since this is the definition of what we are loading, this
 | 
						|
      // loaded value cannot occur before this block.
 | 
						|
      LoadInvalidatedInBBBefore = true;
 | 
						|
      break;
 | 
						|
    } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
      // If this instruction is a candidate load before LI, we know there are no
 | 
						|
      // invalidating instructions between it and LI, so they have the same
 | 
						|
      // value number.
 | 
						|
      if (LI->getOperand(0) == LoadPtr && !LI->isVolatile())
 | 
						|
        RetVals.push_back(I);
 | 
						|
    }
 | 
						|
 | 
						|
    if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
 | 
						|
      // If the invalidating instruction is a store, and its in our candidate
 | 
						|
      // set, then we can do store-load forwarding: the load has the same value
 | 
						|
      // # as the stored value.
 | 
						|
      if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
        if (SI->getOperand(1) == LoadPtr)
 | 
						|
          RetVals.push_back(I->getOperand(0));
 | 
						|
 | 
						|
      LoadInvalidatedInBBBefore = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Figure out if the load is invalidated between the load and the exit of the
 | 
						|
  // block it is defined in.  While we are scanning the current basic block, if
 | 
						|
  // we see any candidate loads, then we know they have the same value # as LI.
 | 
						|
  //
 | 
						|
  bool LoadInvalidatedInBBAfter = false;
 | 
						|
  {
 | 
						|
    BasicBlock::iterator I = LI;
 | 
						|
    for (++I; I != LoadBB->end(); ++I) {
 | 
						|
      // If this instruction is a load, then this instruction returns the same
 | 
						|
      // value as LI.
 | 
						|
      if (isa<LoadInst>(I) && cast<LoadInst>(I)->getOperand(0) == LoadPtr)
 | 
						|
        RetVals.push_back(I);
 | 
						|
 | 
						|
      if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
 | 
						|
        LoadInvalidatedInBBAfter = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the pointer is clobbered on entry and on exit to the function, there is
 | 
						|
  // no need to do any global analysis at all.
 | 
						|
  if (LoadInvalidatedInBBBefore && LoadInvalidatedInBBAfter)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Now that we know the value is not neccesarily killed on entry or exit to
 | 
						|
  // the BB, find out how many load and store instructions (to this location)
 | 
						|
  // live in each BB in the function.
 | 
						|
  //
 | 
						|
  std::map<BasicBlock*, unsigned>  CandidateLoads;
 | 
						|
  std::set<BasicBlock*> CandidateStores;
 | 
						|
 | 
						|
  for (Value::use_iterator UI = LoadPtr->use_begin(), UE = LoadPtr->use_end();
 | 
						|
       UI != UE; ++UI)
 | 
						|
    if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) {// Is a load of source?
 | 
						|
      if (Cand->getParent()->getParent() == F &&   // In the same function?
 | 
						|
          // Not in LI's block?
 | 
						|
          Cand->getParent() != LoadBB && !Cand->isVolatile())
 | 
						|
        ++CandidateLoads[Cand->getParent()];       // Got one.
 | 
						|
    } else if (StoreInst *Cand = dyn_cast<StoreInst>(*UI)) {
 | 
						|
      if (Cand->getParent()->getParent() == F && !Cand->isVolatile() &&
 | 
						|
          Cand->getOperand(1) == LoadPtr) // It's a store THROUGH the ptr.
 | 
						|
        CandidateStores.insert(Cand->getParent());
 | 
						|
    }
 | 
						|
 | 
						|
  // Get dominators.
 | 
						|
  DominatorTree &DT = getAnalysis<DominatorTree>();
 | 
						|
 | 
						|
  // TransparentBlocks - For each basic block the load/store is alive across,
 | 
						|
  // figure out if the pointer is invalidated or not.  If it is invalidated, the
 | 
						|
  // boolean is set to false, if it's not it is set to true.  If we don't know
 | 
						|
  // yet, the entry is not in the map.
 | 
						|
  std::map<BasicBlock*, bool> TransparentBlocks;
 | 
						|
 | 
						|
  // Loop over all of the basic blocks that also load the value.  If the value
 | 
						|
  // is live across the CFG from the source to destination blocks, and if the
 | 
						|
  // value is not invalidated in either the source or destination blocks, add it
 | 
						|
  // to the equivalence sets.
 | 
						|
  for (std::map<BasicBlock*, unsigned>::iterator
 | 
						|
         I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) {
 | 
						|
    bool CantEqual = false;
 | 
						|
 | 
						|
    // Right now we only can handle cases where one load dominates the other.
 | 
						|
    // FIXME: generalize this!
 | 
						|
    BasicBlock *BB1 = I->first, *BB2 = LoadBB;
 | 
						|
    if (DT.dominates(BB1, BB2)) {
 | 
						|
      // The other load dominates LI.  If the loaded value is killed entering
 | 
						|
      // the LoadBB block, we know the load is not live.
 | 
						|
      if (LoadInvalidatedInBBBefore)
 | 
						|
        CantEqual = true;
 | 
						|
    } else if (DT.dominates(BB2, BB1)) {
 | 
						|
      std::swap(BB1, BB2);          // Canonicalize
 | 
						|
      // LI dominates the other load.  If the loaded value is killed exiting
 | 
						|
      // the LoadBB block, we know the load is not live.
 | 
						|
      if (LoadInvalidatedInBBAfter)
 | 
						|
        CantEqual = true;
 | 
						|
    } else {
 | 
						|
      // None of these loads can VN the same.
 | 
						|
      CantEqual = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!CantEqual) {
 | 
						|
      // Ok, at this point, we know that BB1 dominates BB2, and that there is
 | 
						|
      // nothing in the LI block that kills the loaded value.  Check to see if
 | 
						|
      // the value is live across the CFG.
 | 
						|
      std::set<BasicBlock*> Visited;
 | 
						|
      for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI)
 | 
						|
        if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA,
 | 
						|
                                 Visited, TransparentBlocks)) {
 | 
						|
          // None of these loads can VN the same.
 | 
						|
          CantEqual = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the loads can equal so far, scan the basic block that contains the
 | 
						|
    // loads under consideration to see if they are invalidated in the block.
 | 
						|
    // For any loads that are not invalidated, add them to the equivalence
 | 
						|
    // set!
 | 
						|
    if (!CantEqual) {
 | 
						|
      unsigned NumLoads = I->second;
 | 
						|
      if (BB1 == LoadBB) {
 | 
						|
        // If LI dominates the block in question, check to see if any of the
 | 
						|
        // loads in this block are invalidated before they are reached.
 | 
						|
        for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) {
 | 
						|
          if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | 
						|
            if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) {
 | 
						|
              // The load is in the set!
 | 
						|
              RetVals.push_back(BBI);
 | 
						|
              if (--NumLoads == 0) break;  // Found last load to check.
 | 
						|
            }
 | 
						|
          } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
 | 
						|
                                & AliasAnalysis::Mod) {
 | 
						|
            // If there is a modifying instruction, nothing below it will value
 | 
						|
            // # the same.
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // If the block dominates LI, make sure that the loads in the block are
 | 
						|
        // not invalidated before the block ends.
 | 
						|
        BasicBlock::iterator BBI = I->first->end();
 | 
						|
        while (1) {
 | 
						|
          --BBI;
 | 
						|
          if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | 
						|
            if (LI->getOperand(0) == LoadPtr && !LI->isVolatile()) {
 | 
						|
              // The load is the same as this load!
 | 
						|
              RetVals.push_back(BBI);
 | 
						|
              if (--NumLoads == 0) break;  // Found all of the laods.
 | 
						|
            }
 | 
						|
          } else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
 | 
						|
                             & AliasAnalysis::Mod) {
 | 
						|
            // If there is a modifying instruction, nothing above it will value
 | 
						|
            // # the same.
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle candidate stores.  If the loaded location is clobbered on entrance
 | 
						|
  // to the LoadBB, no store outside of the LoadBB can value number equal, so
 | 
						|
  // quick exit.
 | 
						|
  if (LoadInvalidatedInBBBefore)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Stores in the load-bb are handled above.
 | 
						|
  CandidateStores.erase(LoadBB);
 | 
						|
 | 
						|
  for (std::set<BasicBlock*>::iterator I = CandidateStores.begin(),
 | 
						|
         E = CandidateStores.end(); I != E; ++I)
 | 
						|
    if (DT.dominates(*I, LoadBB)) {
 | 
						|
      BasicBlock *StoreBB = *I;
 | 
						|
 | 
						|
      // Check to see if the path from the store to the load is transparent
 | 
						|
      // w.r.t. the memory location.
 | 
						|
      bool CantEqual = false;
 | 
						|
      std::set<BasicBlock*> Visited;
 | 
						|
      for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
 | 
						|
           PI != E; ++PI)
 | 
						|
        if (!isPathTransparentTo(*PI, StoreBB, LoadPtr, LoadSize, AA,
 | 
						|
                                 Visited, TransparentBlocks)) {
 | 
						|
          // None of these stores can VN the same.
 | 
						|
          CantEqual = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      Visited.clear();
 | 
						|
      if (!CantEqual) {
 | 
						|
        // Okay, the path from the store block to the load block is clear, and
 | 
						|
        // we know that there are no invalidating instructions from the start
 | 
						|
        // of the load block to the load itself.  Now we just scan the store
 | 
						|
        // block.
 | 
						|
 | 
						|
        BasicBlock::iterator BBI = StoreBB->end();
 | 
						|
        while (1) {
 | 
						|
          assert(BBI != StoreBB->begin() &&
 | 
						|
                 "There is a store in this block of the pointer, but the store"
 | 
						|
                 " doesn't mod the address being stored to??  Must be a bug in"
 | 
						|
                 " the alias analysis implementation!");
 | 
						|
          --BBI;
 | 
						|
          if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
 | 
						|
            // If the invalidating instruction is one of the candidates,
 | 
						|
            // then it provides the value the load loads.
 | 
						|
            if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
 | 
						|
              if (SI->getOperand(1) == LoadPtr)
 | 
						|
                RetVals.push_back(SI->getOperand(0));
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
}
 |