llvm-6502/lib/Object/ELFYAML.cpp
Tim Northover 7a3eed6d22 Remove duplication of relocation names in lib/Object/ELFYAML.cpp
We can now use the ELF relocation .def files to create the mapping
of relocation numbers to names and avoid having to duplicate the
list of relocations.

Patch by Will Newton.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222567 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-21 20:16:09 +00:00

558 lines
15 KiB
C++

//===- ELFYAML.cpp - ELF YAMLIO implementation ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines classes for handling the YAML representation of ELF.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/ELFYAML.h"
#include "llvm/Support/Casting.h"
namespace llvm {
ELFYAML::Section::~Section() {}
namespace yaml {
void
ScalarEnumerationTraits<ELFYAML::ELF_ET>::enumeration(IO &IO,
ELFYAML::ELF_ET &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X);
ECase(ET_NONE)
ECase(ET_REL)
ECase(ET_EXEC)
ECase(ET_DYN)
ECase(ET_CORE)
#undef ECase
}
void
ScalarEnumerationTraits<ELFYAML::ELF_EM>::enumeration(IO &IO,
ELFYAML::ELF_EM &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X);
ECase(EM_NONE)
ECase(EM_M32)
ECase(EM_SPARC)
ECase(EM_386)
ECase(EM_68K)
ECase(EM_88K)
ECase(EM_486)
ECase(EM_860)
ECase(EM_MIPS)
ECase(EM_S370)
ECase(EM_MIPS_RS3_LE)
ECase(EM_PARISC)
ECase(EM_VPP500)
ECase(EM_SPARC32PLUS)
ECase(EM_960)
ECase(EM_PPC)
ECase(EM_PPC64)
ECase(EM_S390)
ECase(EM_SPU)
ECase(EM_V800)
ECase(EM_FR20)
ECase(EM_RH32)
ECase(EM_RCE)
ECase(EM_ARM)
ECase(EM_ALPHA)
ECase(EM_SH)
ECase(EM_SPARCV9)
ECase(EM_TRICORE)
ECase(EM_ARC)
ECase(EM_H8_300)
ECase(EM_H8_300H)
ECase(EM_H8S)
ECase(EM_H8_500)
ECase(EM_IA_64)
ECase(EM_MIPS_X)
ECase(EM_COLDFIRE)
ECase(EM_68HC12)
ECase(EM_MMA)
ECase(EM_PCP)
ECase(EM_NCPU)
ECase(EM_NDR1)
ECase(EM_STARCORE)
ECase(EM_ME16)
ECase(EM_ST100)
ECase(EM_TINYJ)
ECase(EM_X86_64)
ECase(EM_PDSP)
ECase(EM_PDP10)
ECase(EM_PDP11)
ECase(EM_FX66)
ECase(EM_ST9PLUS)
ECase(EM_ST7)
ECase(EM_68HC16)
ECase(EM_68HC11)
ECase(EM_68HC08)
ECase(EM_68HC05)
ECase(EM_SVX)
ECase(EM_ST19)
ECase(EM_VAX)
ECase(EM_CRIS)
ECase(EM_JAVELIN)
ECase(EM_FIREPATH)
ECase(EM_ZSP)
ECase(EM_MMIX)
ECase(EM_HUANY)
ECase(EM_PRISM)
ECase(EM_AVR)
ECase(EM_FR30)
ECase(EM_D10V)
ECase(EM_D30V)
ECase(EM_V850)
ECase(EM_M32R)
ECase(EM_MN10300)
ECase(EM_MN10200)
ECase(EM_PJ)
ECase(EM_OPENRISC)
ECase(EM_ARC_COMPACT)
ECase(EM_XTENSA)
ECase(EM_VIDEOCORE)
ECase(EM_TMM_GPP)
ECase(EM_NS32K)
ECase(EM_TPC)
ECase(EM_SNP1K)
ECase(EM_ST200)
ECase(EM_IP2K)
ECase(EM_MAX)
ECase(EM_CR)
ECase(EM_F2MC16)
ECase(EM_MSP430)
ECase(EM_BLACKFIN)
ECase(EM_SE_C33)
ECase(EM_SEP)
ECase(EM_ARCA)
ECase(EM_UNICORE)
ECase(EM_EXCESS)
ECase(EM_DXP)
ECase(EM_ALTERA_NIOS2)
ECase(EM_CRX)
ECase(EM_XGATE)
ECase(EM_C166)
ECase(EM_M16C)
ECase(EM_DSPIC30F)
ECase(EM_CE)
ECase(EM_M32C)
ECase(EM_TSK3000)
ECase(EM_RS08)
ECase(EM_SHARC)
ECase(EM_ECOG2)
ECase(EM_SCORE7)
ECase(EM_DSP24)
ECase(EM_VIDEOCORE3)
ECase(EM_LATTICEMICO32)
ECase(EM_SE_C17)
ECase(EM_TI_C6000)
ECase(EM_TI_C2000)
ECase(EM_TI_C5500)
ECase(EM_MMDSP_PLUS)
ECase(EM_CYPRESS_M8C)
ECase(EM_R32C)
ECase(EM_TRIMEDIA)
ECase(EM_HEXAGON)
ECase(EM_8051)
ECase(EM_STXP7X)
ECase(EM_NDS32)
ECase(EM_ECOG1)
ECase(EM_ECOG1X)
ECase(EM_MAXQ30)
ECase(EM_XIMO16)
ECase(EM_MANIK)
ECase(EM_CRAYNV2)
ECase(EM_RX)
ECase(EM_METAG)
ECase(EM_MCST_ELBRUS)
ECase(EM_ECOG16)
ECase(EM_CR16)
ECase(EM_ETPU)
ECase(EM_SLE9X)
ECase(EM_L10M)
ECase(EM_K10M)
ECase(EM_AARCH64)
ECase(EM_AVR32)
ECase(EM_STM8)
ECase(EM_TILE64)
ECase(EM_TILEPRO)
ECase(EM_CUDA)
ECase(EM_TILEGX)
ECase(EM_CLOUDSHIELD)
ECase(EM_COREA_1ST)
ECase(EM_COREA_2ND)
ECase(EM_ARC_COMPACT2)
ECase(EM_OPEN8)
ECase(EM_RL78)
ECase(EM_VIDEOCORE5)
ECase(EM_78KOR)
ECase(EM_56800EX)
#undef ECase
}
void ScalarEnumerationTraits<ELFYAML::ELF_ELFCLASS>::enumeration(
IO &IO, ELFYAML::ELF_ELFCLASS &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X);
// Since the semantics of ELFCLASSNONE is "invalid", just don't accept it
// here.
ECase(ELFCLASS32)
ECase(ELFCLASS64)
#undef ECase
}
void ScalarEnumerationTraits<ELFYAML::ELF_ELFDATA>::enumeration(
IO &IO, ELFYAML::ELF_ELFDATA &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X);
// Since the semantics of ELFDATANONE is "invalid", just don't accept it
// here.
ECase(ELFDATA2LSB)
ECase(ELFDATA2MSB)
#undef ECase
}
void ScalarEnumerationTraits<ELFYAML::ELF_ELFOSABI>::enumeration(
IO &IO, ELFYAML::ELF_ELFOSABI &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X);
ECase(ELFOSABI_NONE)
ECase(ELFOSABI_HPUX)
ECase(ELFOSABI_NETBSD)
ECase(ELFOSABI_GNU)
ECase(ELFOSABI_GNU)
ECase(ELFOSABI_HURD)
ECase(ELFOSABI_SOLARIS)
ECase(ELFOSABI_AIX)
ECase(ELFOSABI_IRIX)
ECase(ELFOSABI_FREEBSD)
ECase(ELFOSABI_TRU64)
ECase(ELFOSABI_MODESTO)
ECase(ELFOSABI_OPENBSD)
ECase(ELFOSABI_OPENVMS)
ECase(ELFOSABI_NSK)
ECase(ELFOSABI_AROS)
ECase(ELFOSABI_FENIXOS)
ECase(ELFOSABI_C6000_ELFABI)
ECase(ELFOSABI_C6000_LINUX)
ECase(ELFOSABI_ARM)
ECase(ELFOSABI_STANDALONE)
#undef ECase
}
void ScalarBitSetTraits<ELFYAML::ELF_EF>::bitset(IO &IO,
ELFYAML::ELF_EF &Value) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
assert(Object && "The IO context is not initialized");
#define BCase(X) IO.bitSetCase(Value, #X, ELF::X);
#define BCaseMask(X, M) IO.maskedBitSetCase(Value, #X, ELF::X, ELF::M);
switch (Object->Header.Machine) {
case ELF::EM_ARM:
BCase(EF_ARM_SOFT_FLOAT)
BCase(EF_ARM_VFP_FLOAT)
BCaseMask(EF_ARM_EABI_UNKNOWN, EF_ARM_EABIMASK)
BCaseMask(EF_ARM_EABI_VER1, EF_ARM_EABIMASK)
BCaseMask(EF_ARM_EABI_VER2, EF_ARM_EABIMASK)
BCaseMask(EF_ARM_EABI_VER3, EF_ARM_EABIMASK)
BCaseMask(EF_ARM_EABI_VER4, EF_ARM_EABIMASK)
BCaseMask(EF_ARM_EABI_VER5, EF_ARM_EABIMASK)
break;
case ELF::EM_MIPS:
BCase(EF_MIPS_NOREORDER)
BCase(EF_MIPS_PIC)
BCase(EF_MIPS_CPIC)
BCase(EF_MIPS_ABI2)
BCase(EF_MIPS_32BITMODE)
BCase(EF_MIPS_NAN2008)
BCase(EF_MIPS_ABI_O32)
BCase(EF_MIPS_MICROMIPS)
BCase(EF_MIPS_ARCH_ASE_M16)
BCaseMask(EF_MIPS_ARCH_1, EF_MIPS_ARCH)
BCaseMask(EF_MIPS_ARCH_2, EF_MIPS_ARCH)
BCaseMask(EF_MIPS_ARCH_3, EF_MIPS_ARCH)
BCaseMask(EF_MIPS_ARCH_4, EF_MIPS_ARCH)
BCaseMask(EF_MIPS_ARCH_5, EF_MIPS_ARCH)
BCaseMask(EF_MIPS_ARCH_32, EF_MIPS_ARCH)
BCaseMask(EF_MIPS_ARCH_64, EF_MIPS_ARCH)
BCaseMask(EF_MIPS_ARCH_32R2, EF_MIPS_ARCH)
BCaseMask(EF_MIPS_ARCH_64R2, EF_MIPS_ARCH)
BCaseMask(EF_MIPS_ARCH_32R6, EF_MIPS_ARCH)
BCaseMask(EF_MIPS_ARCH_64R6, EF_MIPS_ARCH)
break;
case ELF::EM_HEXAGON:
BCase(EF_HEXAGON_MACH_V2)
BCase(EF_HEXAGON_MACH_V3)
BCase(EF_HEXAGON_MACH_V4)
BCase(EF_HEXAGON_MACH_V5)
BCase(EF_HEXAGON_ISA_V2)
BCase(EF_HEXAGON_ISA_V3)
BCase(EF_HEXAGON_ISA_V4)
BCase(EF_HEXAGON_ISA_V5)
break;
default:
llvm_unreachable("Unsupported architecture");
}
#undef BCase
#undef BCaseMask
}
void ScalarEnumerationTraits<ELFYAML::ELF_SHT>::enumeration(
IO &IO, ELFYAML::ELF_SHT &Value) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
assert(Object && "The IO context is not initialized");
#define ECase(X) IO.enumCase(Value, #X, ELF::X);
ECase(SHT_NULL)
ECase(SHT_PROGBITS)
// No SHT_SYMTAB. Use the top-level `Symbols` key instead.
// FIXME: Issue a diagnostic with this information.
ECase(SHT_STRTAB)
ECase(SHT_RELA)
ECase(SHT_HASH)
ECase(SHT_DYNAMIC)
ECase(SHT_NOTE)
ECase(SHT_NOBITS)
ECase(SHT_REL)
ECase(SHT_SHLIB)
ECase(SHT_DYNSYM)
ECase(SHT_INIT_ARRAY)
ECase(SHT_FINI_ARRAY)
ECase(SHT_PREINIT_ARRAY)
ECase(SHT_GROUP)
ECase(SHT_SYMTAB_SHNDX)
ECase(SHT_LOOS)
ECase(SHT_GNU_ATTRIBUTES)
ECase(SHT_GNU_HASH)
ECase(SHT_GNU_verdef)
ECase(SHT_GNU_verneed)
ECase(SHT_GNU_versym)
ECase(SHT_HIOS)
ECase(SHT_LOPROC)
switch (Object->Header.Machine) {
case ELF::EM_ARM:
ECase(SHT_ARM_EXIDX)
ECase(SHT_ARM_PREEMPTMAP)
ECase(SHT_ARM_ATTRIBUTES)
ECase(SHT_ARM_DEBUGOVERLAY)
ECase(SHT_ARM_OVERLAYSECTION)
break;
case ELF::EM_HEXAGON:
ECase(SHT_HEX_ORDERED)
break;
case ELF::EM_X86_64:
ECase(SHT_X86_64_UNWIND)
break;
case ELF::EM_MIPS:
ECase(SHT_MIPS_REGINFO)
ECase(SHT_MIPS_OPTIONS)
ECase(SHT_MIPS_ABIFLAGS)
break;
default:
// Nothing to do.
break;
}
#undef ECase
}
void ScalarBitSetTraits<ELFYAML::ELF_SHF>::bitset(IO &IO,
ELFYAML::ELF_SHF &Value) {
#define BCase(X) IO.bitSetCase(Value, #X, ELF::X);
BCase(SHF_WRITE)
BCase(SHF_ALLOC)
BCase(SHF_EXCLUDE)
BCase(SHF_EXECINSTR)
BCase(SHF_MERGE)
BCase(SHF_STRINGS)
BCase(SHF_INFO_LINK)
BCase(SHF_LINK_ORDER)
BCase(SHF_OS_NONCONFORMING)
BCase(SHF_GROUP)
BCase(SHF_TLS)
#undef BCase
}
void ScalarEnumerationTraits<ELFYAML::ELF_STT>::enumeration(
IO &IO, ELFYAML::ELF_STT &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X);
ECase(STT_NOTYPE)
ECase(STT_OBJECT)
ECase(STT_FUNC)
ECase(STT_SECTION)
ECase(STT_FILE)
ECase(STT_COMMON)
ECase(STT_TLS)
ECase(STT_GNU_IFUNC)
#undef ECase
}
void ScalarEnumerationTraits<ELFYAML::ELF_STV>::enumeration(
IO &IO, ELFYAML::ELF_STV &Value) {
#define ECase(X) IO.enumCase(Value, #X, ELF::X);
ECase(STV_DEFAULT)
ECase(STV_INTERNAL)
ECase(STV_HIDDEN)
ECase(STV_PROTECTED)
#undef ECase
}
void ScalarBitSetTraits<ELFYAML::ELF_STO>::bitset(IO &IO,
ELFYAML::ELF_STO &Value) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
assert(Object && "The IO context is not initialized");
#define BCase(X) IO.bitSetCase(Value, #X, ELF::X);
switch (Object->Header.Machine) {
case ELF::EM_MIPS:
BCase(STO_MIPS_OPTIONAL)
BCase(STO_MIPS_PLT)
BCase(STO_MIPS_PIC)
BCase(STO_MIPS_MICROMIPS)
break;
default:
break; // Nothing to do
}
#undef BCase
#undef BCaseMask
}
void ScalarEnumerationTraits<ELFYAML::ELF_REL>::enumeration(
IO &IO, ELFYAML::ELF_REL &Value) {
const auto *Object = static_cast<ELFYAML::Object *>(IO.getContext());
assert(Object && "The IO context is not initialized");
#define ELF_RELOC(X, Y) IO.enumCase(Value, #X, ELF::X);
switch (Object->Header.Machine) {
case ELF::EM_X86_64:
#include "llvm/Support/ELFRelocs/x86_64.def"
break;
case ELF::EM_MIPS:
#include "llvm/Support/ELFRelocs/Mips.def"
break;
case ELF::EM_HEXAGON:
#include "llvm/Support/ELFRelocs/Hexagon.def"
break;
case ELF::EM_386:
#include "llvm/Support/ELFRelocs/i386.def"
break;
case ELF::EM_AARCH64:
#include "llvm/Support/ELFRelocs/AArch64.def"
break;
default:
llvm_unreachable("Unsupported architecture");
}
#undef ELF_RELOC
}
void MappingTraits<ELFYAML::FileHeader>::mapping(IO &IO,
ELFYAML::FileHeader &FileHdr) {
IO.mapRequired("Class", FileHdr.Class);
IO.mapRequired("Data", FileHdr.Data);
IO.mapOptional("OSABI", FileHdr.OSABI, ELFYAML::ELF_ELFOSABI(0));
IO.mapRequired("Type", FileHdr.Type);
IO.mapRequired("Machine", FileHdr.Machine);
IO.mapOptional("Flags", FileHdr.Flags, ELFYAML::ELF_EF(0));
IO.mapOptional("Entry", FileHdr.Entry, Hex64(0));
}
namespace {
struct NormalizedOther {
NormalizedOther(IO &)
: Visibility(ELFYAML::ELF_STV(0)), Other(ELFYAML::ELF_STO(0)) {}
NormalizedOther(IO &, uint8_t Original)
: Visibility(Original & 0x3), Other(Original & ~0x3) {}
uint8_t denormalize(IO &) { return Visibility | Other; }
ELFYAML::ELF_STV Visibility;
ELFYAML::ELF_STO Other;
};
}
void MappingTraits<ELFYAML::Symbol>::mapping(IO &IO, ELFYAML::Symbol &Symbol) {
IO.mapOptional("Name", Symbol.Name, StringRef());
IO.mapOptional("Type", Symbol.Type, ELFYAML::ELF_STT(0));
IO.mapOptional("Section", Symbol.Section, StringRef());
IO.mapOptional("Value", Symbol.Value, Hex64(0));
IO.mapOptional("Size", Symbol.Size, Hex64(0));
MappingNormalization<NormalizedOther, uint8_t> Keys(IO, Symbol.Other);
IO.mapOptional("Visibility", Keys->Visibility, ELFYAML::ELF_STV(0));
IO.mapOptional("Other", Keys->Other, ELFYAML::ELF_STO(0));
}
void MappingTraits<ELFYAML::LocalGlobalWeakSymbols>::mapping(
IO &IO, ELFYAML::LocalGlobalWeakSymbols &Symbols) {
IO.mapOptional("Local", Symbols.Local);
IO.mapOptional("Global", Symbols.Global);
IO.mapOptional("Weak", Symbols.Weak);
}
static void commonSectionMapping(IO &IO, ELFYAML::Section &Section) {
IO.mapOptional("Name", Section.Name, StringRef());
IO.mapRequired("Type", Section.Type);
IO.mapOptional("Flags", Section.Flags, ELFYAML::ELF_SHF(0));
IO.mapOptional("Address", Section.Address, Hex64(0));
IO.mapOptional("Link", Section.Link, StringRef());
IO.mapOptional("AddressAlign", Section.AddressAlign, Hex64(0));
}
static void sectionMapping(IO &IO, ELFYAML::RawContentSection &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Content", Section.Content);
IO.mapOptional("Size", Section.Size, Hex64(Section.Content.binary_size()));
}
static void sectionMapping(IO &IO, ELFYAML::RelocationSection &Section) {
commonSectionMapping(IO, Section);
IO.mapOptional("Info", Section.Info, StringRef());
IO.mapOptional("Relocations", Section.Relocations);
}
void MappingTraits<std::unique_ptr<ELFYAML::Section>>::mapping(
IO &IO, std::unique_ptr<ELFYAML::Section> &Section) {
ELFYAML::ELF_SHT sectionType;
if (IO.outputting())
sectionType = Section->Type;
else
IO.mapRequired("Type", sectionType);
switch (sectionType) {
case ELF::SHT_REL:
case ELF::SHT_RELA:
if (!IO.outputting())
Section.reset(new ELFYAML::RelocationSection());
sectionMapping(IO, *cast<ELFYAML::RelocationSection>(Section.get()));
break;
default:
if (!IO.outputting())
Section.reset(new ELFYAML::RawContentSection());
sectionMapping(IO, *cast<ELFYAML::RawContentSection>(Section.get()));
}
}
StringRef MappingTraits<std::unique_ptr<ELFYAML::Section>>::validate(
IO &io, std::unique_ptr<ELFYAML::Section> &Section) {
const auto *RawSection = dyn_cast<ELFYAML::RawContentSection>(Section.get());
if (!RawSection || RawSection->Size >= RawSection->Content.binary_size())
return StringRef();
return "Section size must be greater or equal to the content size";
}
void MappingTraits<ELFYAML::Relocation>::mapping(IO &IO,
ELFYAML::Relocation &Rel) {
IO.mapRequired("Offset", Rel.Offset);
IO.mapRequired("Symbol", Rel.Symbol);
IO.mapRequired("Type", Rel.Type);
IO.mapOptional("Addend", Rel.Addend);
}
void MappingTraits<ELFYAML::Object>::mapping(IO &IO, ELFYAML::Object &Object) {
assert(!IO.getContext() && "The IO context is initialized already");
IO.setContext(&Object);
IO.mapRequired("FileHeader", Object.Header);
IO.mapOptional("Sections", Object.Sections);
IO.mapOptional("Symbols", Object.Symbols);
IO.setContext(nullptr);
}
} // end namespace yaml
} // end namespace llvm