llvm-6502/lib/Target/Alpha/AlphaISelPattern.cpp
Chris Lattner 0fcd40f501 remove dead code
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24965 91177308-0d34-0410-b5e6-96231b3b80d8
2005-12-22 21:16:08 +00:00

1772 lines
62 KiB
C++

//===- AlphaISelPattern.cpp - A pattern matching inst selector for Alpha --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for Alpha.
//
//===----------------------------------------------------------------------===//
#include "Alpha.h"
#include "AlphaRegisterInfo.h"
#include "AlphaTargetMachine.h"
#include "AlphaISelLowering.h"
#include "llvm/Constants.h" // FIXME: REMOVE
#include "llvm/Function.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include <set>
#include <algorithm>
using namespace llvm;
namespace llvm {
cl::opt<bool> EnableAlphaIDIV("enable-alpha-intfpdiv",
cl::desc("Use the FP div instruction for integer div when possible"),
cl::Hidden);
cl::opt<bool> EnableAlphaCount("enable-alpha-count",
cl::desc("Print estimates on live ins and outs"),
cl::Hidden);
cl::opt<bool> EnableAlphaLSMark("enable-alpha-lsmark",
cl::desc("Emit symbols to correlate Mem ops to LLVM Values"),
cl::Hidden);
}
namespace {
//===--------------------------------------------------------------------===//
/// ISel - Alpha specific code to select Alpha machine instructions for
/// SelectionDAG operations.
//===--------------------------------------------------------------------===//
class AlphaISel : public SelectionDAGISel {
/// AlphaLowering - This object fully describes how to lower LLVM code to an
/// Alpha-specific SelectionDAG.
AlphaTargetLowering AlphaLowering;
SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform
// for sdiv and udiv until it is put into the future
// dag combiner.
/// ExprMap - As shared expressions are codegen'd, we keep track of which
/// vreg the value is produced in, so we only emit one copy of each compiled
/// tree.
static const unsigned notIn = (unsigned)(-1);
std::map<SDOperand, unsigned> ExprMap;
//CCInvMap sometimes (SetNE) we have the inverse CC code for free
std::map<SDOperand, unsigned> CCInvMap;
int count_ins;
int count_outs;
bool has_sym;
int max_depth;
public:
AlphaISel(TargetMachine &TM) : SelectionDAGISel(AlphaLowering),
AlphaLowering(TM)
{}
virtual const char *getPassName() const {
return "Alpha Pattern Instruction Selection";
}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
count_ins = 0;
count_outs = 0;
max_depth = 0;
has_sym = false;
// Codegen the basic block.
ISelDAG = &DAG;
max_depth = DAG.getRoot().getNodeDepth();
Select(DAG.getRoot());
if(has_sym)
++count_ins;
if(EnableAlphaCount)
std::cerr << "COUNT: "
<< BB->getParent()->getFunction ()->getName() << " "
<< BB->getNumber() << " "
<< max_depth << " "
<< count_ins << " "
<< count_outs << "\n";
// Clear state used for selection.
ExprMap.clear();
CCInvMap.clear();
}
unsigned SelectExpr(SDOperand N);
void Select(SDOperand N);
void SelectAddr(SDOperand N, unsigned& Reg, long& offset);
void SelectBranchCC(SDOperand N);
void MoveFP2Int(unsigned src, unsigned dst, bool isDouble);
void MoveInt2FP(unsigned src, unsigned dst, bool isDouble);
//returns whether the sense of the comparison was inverted
bool SelectFPSetCC(SDOperand N, unsigned dst);
// dag -> dag expanders for integer divide by constant
SDOperand BuildSDIVSequence(SDOperand N);
SDOperand BuildUDIVSequence(SDOperand N);
};
}
static bool isSIntImmediate(SDOperand N, int64_t& Imm) {
// test for constant
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
// retrieve value
Imm = CN->getSignExtended();
// passes muster
return true;
}
// not a constant
return false;
}
// isSIntImmediateBounded - This method tests to see if a constant operand
// bounded s.t. low <= Imm <= high
// If so Imm will receive the 64 bit value.
static bool isSIntImmediateBounded(SDOperand N, int64_t& Imm,
int64_t low, int64_t high) {
if (isSIntImmediate(N, Imm) && Imm <= high && Imm >= low)
return true;
return false;
}
static bool isUIntImmediate(SDOperand N, uint64_t& Imm) {
// test for constant
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
// retrieve value
Imm = (uint64_t)CN->getValue();
// passes muster
return true;
}
// not a constant
return false;
}
static bool isUIntImmediateBounded(SDOperand N, uint64_t& Imm,
uint64_t low, uint64_t high) {
if (isUIntImmediate(N, Imm) && Imm <= high && Imm >= low)
return true;
return false;
}
static void getValueInfo(const Value* v, int& type, int& fun, int& offset)
{
fun = type = offset = 0;
if (v == NULL) {
type = 0;
} else if (const GlobalValue* GV = dyn_cast<GlobalValue>(v)) {
type = 1;
const Module* M = GV->getParent();
for(Module::const_global_iterator ii = M->global_begin(); &*ii != GV; ++ii)
++offset;
} else if (const Argument* Arg = dyn_cast<Argument>(v)) {
type = 2;
const Function* F = Arg->getParent();
const Module* M = F->getParent();
for(Module::const_iterator ii = M->begin(); &*ii != F; ++ii)
++fun;
for(Function::const_arg_iterator ii = F->arg_begin(); &*ii != Arg; ++ii)
++offset;
} else if (const Instruction* I = dyn_cast<Instruction>(v)) {
assert(dyn_cast<PointerType>(I->getType()));
type = 3;
const BasicBlock* bb = I->getParent();
const Function* F = bb->getParent();
const Module* M = F->getParent();
for(Module::const_iterator ii = M->begin(); &*ii != F; ++ii)
++fun;
for(Function::const_iterator ii = F->begin(); &*ii != bb; ++ii)
offset += ii->size();
for(BasicBlock::const_iterator ii = bb->begin(); &*ii != I; ++ii)
++offset;
} else if (const Constant* C = dyn_cast<Constant>(v)) {
//Don't know how to look these up yet
type = 0;
} else {
assert(0 && "Error in value marking");
}
//type = 4: register spilling
//type = 5: global address loading or constant loading
}
static int getUID()
{
static int id = 0;
return ++id;
}
//Factorize a number using the list of constants
static bool factorize(int v[], int res[], int size, uint64_t c)
{
bool cont = true;
while (c != 1 && cont)
{
cont = false;
for(int i = 0; i < size; ++i)
{
if (c % v[i] == 0)
{
c /= v[i];
++res[i];
cont=true;
}
}
}
return c == 1;
}
//These describe LDAx
static const int IMM_LOW = -32768;
static const int IMM_HIGH = 32767;
static const int IMM_MULT = 65536;
static long getUpper16(long l)
{
long y = l / IMM_MULT;
if (l % IMM_MULT > IMM_HIGH)
++y;
return y;
}
static long getLower16(long l)
{
long h = getUpper16(l);
return l - h * IMM_MULT;
}
static unsigned GetRelVersion(unsigned opcode)
{
switch (opcode) {
default: assert(0 && "unknown load or store"); return 0;
case Alpha::LDQ: return Alpha::LDQr;
case Alpha::LDS: return Alpha::LDSr;
case Alpha::LDT: return Alpha::LDTr;
case Alpha::LDL: return Alpha::LDLr;
case Alpha::LDBU: return Alpha::LDBUr;
case Alpha::LDWU: return Alpha::LDWUr;
case Alpha::STB: return Alpha::STBr;
case Alpha::STW: return Alpha::STWr;
case Alpha::STL: return Alpha::STLr;
case Alpha::STQ: return Alpha::STQr;
case Alpha::STS: return Alpha::STSr;
case Alpha::STT: return Alpha::STTr;
}
}
void AlphaISel::MoveFP2Int(unsigned src, unsigned dst, bool isDouble)
{
unsigned Opc = Alpha::WTF;
if (TLI.getTargetMachine().getSubtarget<AlphaSubtarget>().hasF2I()) {
Opc = isDouble ? Alpha::FTOIT : Alpha::FTOIS;
BuildMI(BB, Opc, 1, dst).addReg(src).addReg(Alpha::F31);
} else {
//The hard way:
// Spill the integer to memory and reload it from there.
unsigned Size = MVT::getSizeInBits(MVT::f64)/8;
MachineFunction *F = BB->getParent();
int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, 8);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(4).addImm(0).addImm(0)
.addImm(getUID());
Opc = isDouble ? Alpha::STT : Alpha::STS;
BuildMI(BB, Opc, 3).addReg(src).addFrameIndex(FrameIdx).addReg(Alpha::F31);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(4).addImm(0).addImm(0)
.addImm(getUID());
Opc = isDouble ? Alpha::LDQ : Alpha::LDL;
BuildMI(BB, Alpha::LDQ, 2, dst).addFrameIndex(FrameIdx).addReg(Alpha::F31);
}
}
void AlphaISel::MoveInt2FP(unsigned src, unsigned dst, bool isDouble)
{
unsigned Opc = Alpha::WTF;
if (TLI.getTargetMachine().getSubtarget<AlphaSubtarget>().hasF2I()) {
Opc = isDouble?Alpha::ITOFT:Alpha::ITOFS;
BuildMI(BB, Opc, 1, dst).addReg(src).addReg(Alpha::R31);
} else {
//The hard way:
// Spill the integer to memory and reload it from there.
unsigned Size = MVT::getSizeInBits(MVT::f64)/8;
MachineFunction *F = BB->getParent();
int FrameIdx = F->getFrameInfo()->CreateStackObject(Size, 8);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(4).addImm(0).addImm(0)
.addImm(getUID());
Opc = isDouble ? Alpha::STQ : Alpha::STL;
BuildMI(BB, Opc, 3).addReg(src).addFrameIndex(FrameIdx).addReg(Alpha::F31);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(4).addImm(0).addImm(0)
.addImm(getUID());
Opc = isDouble ? Alpha::LDT : Alpha::LDS;
BuildMI(BB, Opc, 2, dst).addFrameIndex(FrameIdx).addReg(Alpha::F31);
}
}
bool AlphaISel::SelectFPSetCC(SDOperand N, unsigned dst)
{
SDNode *SetCC = N.Val;
unsigned Tmp1, Tmp2, Tmp3, Opc = Alpha::WTF;
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
bool rev = false;
bool inv = false;
switch (CC) {
default: SetCC->dump(); assert(0 && "Unknown FP comparison!");
case ISD::SETEQ: Opc = Alpha::CMPTEQ; break;
case ISD::SETLT: Opc = Alpha::CMPTLT; break;
case ISD::SETLE: Opc = Alpha::CMPTLE; break;
case ISD::SETGT: Opc = Alpha::CMPTLT; rev = true; break;
case ISD::SETGE: Opc = Alpha::CMPTLE; rev = true; break;
case ISD::SETNE: Opc = Alpha::CMPTEQ; inv = true; break;
}
ConstantFPSDNode *CN;
if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(0)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
Tmp1 = Alpha::F31;
else
Tmp1 = SelectExpr(N.getOperand(0));
if ((CN = dyn_cast<ConstantFPSDNode>(SetCC->getOperand(1)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
Tmp2 = Alpha::F31;
else
Tmp2 = SelectExpr(N.getOperand(1));
//Can only compare doubles, and dag won't promote for me
if (SetCC->getOperand(0).getValueType() == MVT::f32)
assert(0 && "Setcc On float?\n");
if (SetCC->getOperand(1).getValueType() == MVT::f32)
assert (0 && "Setcc On float?\n");
if (rev) std::swap(Tmp1, Tmp2);
//do the comparison
BuildMI(BB, Opc, 2, dst).addReg(Tmp1).addReg(Tmp2);
return inv;
}
//Check to see if the load is a constant offset from a base register
void AlphaISel::SelectAddr(SDOperand N, unsigned& Reg, long& offset)
{
unsigned opcode = N.getOpcode();
if (opcode == ISD::ADD && N.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(N.getOperand(1))->getValue() <= 32767)
{ //Normal imm add
Reg = SelectExpr(N.getOperand(0));
offset = cast<ConstantSDNode>(N.getOperand(1))->getValue();
return;
}
Reg = SelectExpr(N);
offset = 0;
return;
}
void AlphaISel::SelectBranchCC(SDOperand N)
{
assert(N.getOpcode() == ISD::BRCOND && "Not a BranchCC???");
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
unsigned Opc = Alpha::WTF;
Select(N.getOperand(0)); //chain
SDOperand CC = N.getOperand(1);
if (CC.getOpcode() == ISD::SETCC)
{
ISD::CondCode cCode= cast<CondCodeSDNode>(CC.getOperand(2))->get();
if (MVT::isInteger(CC.getOperand(0).getValueType())) {
//Dropping the CC is only useful if we are comparing to 0
bool RightZero = CC.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(CC.getOperand(1))->getValue() == 0;
bool isNE = false;
//Fix up CC
if(cCode == ISD::SETNE)
isNE = true;
if (RightZero) {
switch (cCode) {
default: CC.Val->dump(); assert(0 && "Unknown integer comparison!");
case ISD::SETEQ: Opc = Alpha::BEQ; break;
case ISD::SETLT: Opc = Alpha::BLT; break;
case ISD::SETLE: Opc = Alpha::BLE; break;
case ISD::SETGT: Opc = Alpha::BGT; break;
case ISD::SETGE: Opc = Alpha::BGE; break;
case ISD::SETULT: assert(0 && "x (unsigned) < 0 is never true"); break;
case ISD::SETUGT: Opc = Alpha::BNE; break;
//Technically you could have this CC
case ISD::SETULE: Opc = Alpha::BEQ; break;
case ISD::SETUGE: assert(0 && "x (unsgined >= 0 is always true"); break;
case ISD::SETNE: Opc = Alpha::BNE; break;
}
unsigned Tmp1 = SelectExpr(CC.getOperand(0)); //Cond
BuildMI(BB, Opc, 2).addReg(Tmp1).addMBB(Dest);
return;
} else {
unsigned Tmp1 = SelectExpr(CC);
if (isNE)
BuildMI(BB, Alpha::BEQ, 2).addReg(CCInvMap[CC]).addMBB(Dest);
else
BuildMI(BB, Alpha::BNE, 2).addReg(Tmp1).addMBB(Dest);
return;
}
} else { //FP
//Any comparison between 2 values should be codegened as an folded
//branch, as moving CC to the integer register is very expensive
//for a cmp b: c = a - b;
//a = b: c = 0
//a < b: c < 0
//a > b: c > 0
bool invTest = false;
unsigned Tmp3;
ConstantFPSDNode *CN;
if ((CN = dyn_cast<ConstantFPSDNode>(CC.getOperand(1)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
Tmp3 = SelectExpr(CC.getOperand(0));
else if ((CN = dyn_cast<ConstantFPSDNode>(CC.getOperand(0)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
{
Tmp3 = SelectExpr(CC.getOperand(1));
invTest = true;
}
else
{
unsigned Tmp1 = SelectExpr(CC.getOperand(0));
unsigned Tmp2 = SelectExpr(CC.getOperand(1));
bool isD = CC.getOperand(0).getValueType() == MVT::f64;
Tmp3 = MakeReg(isD ? MVT::f64 : MVT::f32);
BuildMI(BB, isD ? Alpha::SUBT : Alpha::SUBS, 2, Tmp3)
.addReg(Tmp1).addReg(Tmp2);
}
switch (cCode) {
default: CC.Val->dump(); assert(0 && "Unknown FP comparison!");
case ISD::SETEQ: Opc = invTest ? Alpha::FBNE : Alpha::FBEQ; break;
case ISD::SETLT: Opc = invTest ? Alpha::FBGT : Alpha::FBLT; break;
case ISD::SETLE: Opc = invTest ? Alpha::FBGE : Alpha::FBLE; break;
case ISD::SETGT: Opc = invTest ? Alpha::FBLT : Alpha::FBGT; break;
case ISD::SETGE: Opc = invTest ? Alpha::FBLE : Alpha::FBGE; break;
case ISD::SETNE: Opc = invTest ? Alpha::FBEQ : Alpha::FBNE; break;
}
BuildMI(BB, Opc, 2).addReg(Tmp3).addMBB(Dest);
return;
}
abort(); //Should never be reached
} else {
//Giveup and do the stupid thing
unsigned Tmp1 = SelectExpr(CC);
BuildMI(BB, Alpha::BNE, 2).addReg(Tmp1).addMBB(Dest);
return;
}
abort(); //Should never be reached
}
unsigned AlphaISel::SelectExpr(SDOperand N) {
unsigned Result;
unsigned Tmp1, Tmp2 = 0, Tmp3;
unsigned Opc = 0;
unsigned opcode = N.getOpcode();
int64_t SImm = 0;
uint64_t UImm;
SDNode *Node = N.Val;
MVT::ValueType DestType = N.getValueType();
bool isFP = DestType == MVT::f64 || DestType == MVT::f32;
unsigned &Reg = ExprMap[N];
if (Reg) return Reg;
switch(N.getOpcode()) {
default:
Reg = Result = (N.getValueType() != MVT::Other) ?
MakeReg(N.getValueType()) : notIn;
break;
case ISD::AssertSext:
case ISD::AssertZext:
return Reg = SelectExpr(N.getOperand(0));
case ISD::CALL:
case ISD::TAILCALL:
// If this is a call instruction, make sure to prepare ALL of the result
// values as well as the chain.
if (Node->getNumValues() == 1)
Reg = Result = notIn; // Void call, just a chain.
else {
Result = MakeReg(Node->getValueType(0));
ExprMap[N.getValue(0)] = Result;
for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
ExprMap[SDOperand(Node, Node->getNumValues()-1)] = notIn;
}
break;
}
switch (opcode) {
default:
Node->dump();
assert(0 && "Node not handled!\n");
case ISD::READCYCLECOUNTER:
Select(N.getOperand(0)); //Select chain
if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
BuildMI(BB, Alpha::RPCC, 1, Result).addReg(Alpha::R31);
return Result;
case ISD::CTPOP:
case ISD::CTTZ:
case ISD::CTLZ:
Opc = opcode == ISD::CTPOP ? Alpha::CTPOP :
(opcode == ISD::CTTZ ? Alpha::CTTZ : Alpha::CTLZ);
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
return Result;
case ISD::MULHU:
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Alpha::UMULH, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
case ISD::MULHS:
{
//MULHU - Ra<63>*Rb - Rb<63>*Ra
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Tmp3 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::UMULH, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
unsigned V1 = MakeReg(MVT::i64);
unsigned V2 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::CMOVGE, 3, V1).addReg(Tmp2).addReg(Alpha::R31)
.addReg(Tmp1);
BuildMI(BB, Alpha::CMOVGE, 3, V2).addReg(Tmp1).addReg(Alpha::R31)
.addReg(Tmp2);
unsigned IRes = MakeReg(MVT::i64);
BuildMI(BB, Alpha::SUBQ, 2, IRes).addReg(Tmp3).addReg(V1);
BuildMI(BB, Alpha::SUBQ, 2, Result).addReg(IRes).addReg(V2);
return Result;
}
case ISD::UNDEF: {
Opc = isFP ? (DestType == MVT::f32 ? Alpha::IDEF_F32 : Alpha::IDEF_F64)
: Alpha::IDEF_I;
BuildMI(BB, Opc, 0, Result);
return Result;
}
case ISD::DYNAMIC_STACKALLOC:
// Generate both result values.
if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
// FIXME: We are currently ignoring the requested alignment for handling
// greater than the stack alignment. This will need to be revisited at some
// point. Align = N.getOperand(2);
if (!isa<ConstantSDNode>(N.getOperand(2)) ||
cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
std::cerr << "Cannot allocate stack object with greater alignment than"
<< " the stack alignment yet!";
abort();
}
Select(N.getOperand(0));
if (isSIntImmediateBounded(N.getOperand(1), SImm, 0, 32767))
BuildMI(BB, Alpha::LDA, 2, Alpha::R30).addImm(-SImm).addReg(Alpha::R30);
else {
Tmp1 = SelectExpr(N.getOperand(1));
// Subtract size from stack pointer, thereby allocating some space.
BuildMI(BB, Alpha::SUBQ, 2, Alpha::R30).addReg(Alpha::R30).addReg(Tmp1);
}
// Put a pointer to the space into the result register, by copying the stack
// pointer.
BuildMI(BB, Alpha::BIS, 2, Result).addReg(Alpha::R30).addReg(Alpha::R30);
return Result;
case ISD::ConstantPool:
Tmp1 = BB->getParent()->getConstantPool()->
getConstantPoolIndex(cast<ConstantPoolSDNode>(N)->get());
AlphaLowering.restoreGP(BB);
Tmp2 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::LDAHr, 2, Tmp2).addConstantPoolIndex(Tmp1)
.addReg(Alpha::R29);
BuildMI(BB, Alpha::LDAr, 2, Result).addConstantPoolIndex(Tmp1)
.addReg(Tmp2);
return Result;
case ISD::FrameIndex:
BuildMI(BB, Alpha::LDA, 2, Result)
.addFrameIndex(cast<FrameIndexSDNode>(N)->getIndex())
.addReg(Alpha::F31);
return Result;
case ISD::EXTLOAD:
case ISD::ZEXTLOAD:
case ISD::SEXTLOAD:
case ISD::LOAD:
{
// Make sure we generate both values.
if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0);
SDOperand Address = N.getOperand(1);
Select(Chain);
bool fpext = true;
if (opcode == ISD::LOAD)
switch (Node->getValueType(0)) {
default: Node->dump(); assert(0 && "Bad load!");
case MVT::i64: Opc = Alpha::LDQ; break;
case MVT::f64: Opc = Alpha::LDT; break;
case MVT::f32: Opc = Alpha::LDS; break;
}
else
switch (cast<VTSDNode>(Node->getOperand(3))->getVT()) {
default: Node->dump(); assert(0 && "Bad sign extend!");
case MVT::i32: Opc = Alpha::LDL;
assert(opcode != ISD::ZEXTLOAD && "Not sext"); break;
case MVT::i16: Opc = Alpha::LDWU;
assert(opcode != ISD::SEXTLOAD && "Not zext"); break;
case MVT::i1: //FIXME: Treat i1 as i8 since there are problems otherwise
case MVT::i8: Opc = Alpha::LDBU;
assert(opcode != ISD::SEXTLOAD && "Not zext"); break;
}
int i, j, k;
if (EnableAlphaLSMark)
getValueInfo(dyn_cast<SrcValueSDNode>(N.getOperand(2))->getValue(),
i, j, k);
GlobalAddressSDNode *GASD = dyn_cast<GlobalAddressSDNode>(Address);
if (GASD && !GASD->getGlobal()->isExternal()) {
Tmp1 = MakeReg(MVT::i64);
AlphaLowering.restoreGP(BB);
BuildMI(BB, Alpha::LDAHr, 2, Tmp1)
.addGlobalAddress(GASD->getGlobal()).addReg(Alpha::R29);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(i).addImm(j).addImm(k)
.addImm(getUID());
BuildMI(BB, GetRelVersion(Opc), 2, Result)
.addGlobalAddress(GASD->getGlobal()).addReg(Tmp1);
} else if (ConstantPoolSDNode *CP =
dyn_cast<ConstantPoolSDNode>(Address)) {
unsigned CPIdx = BB->getParent()->getConstantPool()->
getConstantPoolIndex(CP->get());
AlphaLowering.restoreGP(BB);
has_sym = true;
Tmp1 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::LDAHr, 2, Tmp1).addConstantPoolIndex(CPIdx)
.addReg(Alpha::R29);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(i).addImm(j).addImm(k)
.addImm(getUID());
BuildMI(BB, GetRelVersion(Opc), 2, Result)
.addConstantPoolIndex(CPIdx).addReg(Tmp1);
} else if(Address.getOpcode() == ISD::FrameIndex) {
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(i).addImm(j).addImm(k)
.addImm(getUID());
BuildMI(BB, Opc, 2, Result)
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex())
.addReg(Alpha::F31);
} else {
long offset;
SelectAddr(Address, Tmp1, offset);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(i).addImm(j).addImm(k)
.addImm(getUID());
BuildMI(BB, Opc, 2, Result).addImm(offset).addReg(Tmp1);
}
return Result;
}
case ISD::GlobalAddress:
AlphaLowering.restoreGP(BB);
has_sym = true;
Reg = Result = MakeReg(MVT::i64);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(5).addImm(0).addImm(0)
.addImm(getUID());
BuildMI(BB, Alpha::LDQl, 2, Result)
.addGlobalAddress(cast<GlobalAddressSDNode>(N)->getGlobal())
.addReg(Alpha::R29);
return Result;
case ISD::ExternalSymbol:
AlphaLowering.restoreGP(BB);
has_sym = true;
Reg = Result = MakeReg(MVT::i64);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(5).addImm(0).addImm(0)
.addImm(getUID());
BuildMI(BB, Alpha::LDQl, 2, Result)
.addExternalSymbol(cast<ExternalSymbolSDNode>(N)->getSymbol())
.addReg(Alpha::R29);
return Result;
case ISD::TAILCALL:
case ISD::CALL:
{
Select(N.getOperand(0));
// The chain for this call is now lowered.
ExprMap[N.getValue(Node->getNumValues()-1)] = notIn;
//grab the arguments
std::vector<unsigned> argvregs;
//assert(Node->getNumOperands() < 8 && "Only 6 args supported");
for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
argvregs.push_back(SelectExpr(N.getOperand(i)));
//in reg args
for(int i = 0, e = std::min(6, (int)argvregs.size()); i < e; ++i)
{
unsigned args_int[] = {Alpha::R16, Alpha::R17, Alpha::R18,
Alpha::R19, Alpha::R20, Alpha::R21};
unsigned args_float[] = {Alpha::F16, Alpha::F17, Alpha::F18,
Alpha::F19, Alpha::F20, Alpha::F21};
switch(N.getOperand(i+2).getValueType()) {
default:
Node->dump();
N.getOperand(i).Val->dump();
std::cerr << "Type for " << i << " is: " <<
N.getOperand(i+2).getValueType() << "\n";
assert(0 && "Unknown value type for call");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
BuildMI(BB, Alpha::BIS, 2, args_int[i]).addReg(argvregs[i])
.addReg(argvregs[i]);
break;
case MVT::f32:
BuildMI(BB, Alpha::CPYSS, 2, args_float[i]).addReg(argvregs[i])
.addReg(argvregs[i]);
break;
case MVT::f64:
BuildMI(BB, Alpha::CPYST, 2, args_float[i]).addReg(argvregs[i])
.addReg(argvregs[i]);
break;
}
}
//in mem args
for (int i = 6, e = argvregs.size(); i < e; ++i)
{
switch(N.getOperand(i+2).getValueType()) {
default:
Node->dump();
N.getOperand(i).Val->dump();
std::cerr << "Type for " << i << " is: " <<
N.getOperand(i+2).getValueType() << "\n";
assert(0 && "Unknown value type for call");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
BuildMI(BB, Alpha::STQ, 3).addReg(argvregs[i]).addImm((i - 6) * 8)
.addReg(Alpha::R30);
break;
case MVT::f32:
BuildMI(BB, Alpha::STS, 3).addReg(argvregs[i]).addImm((i - 6) * 8)
.addReg(Alpha::R30);
break;
case MVT::f64:
BuildMI(BB, Alpha::STT, 3).addReg(argvregs[i]).addImm((i - 6) * 8)
.addReg(Alpha::R30);
break;
}
}
//build the right kind of call
GlobalAddressSDNode *GASD = dyn_cast<GlobalAddressSDNode>(N.getOperand(1));
if (GASD && !GASD->getGlobal()->isExternal()) {
//use PC relative branch call
AlphaLowering.restoreGP(BB);
BuildMI(BB, Alpha::BSR, 1, Alpha::R26)
.addGlobalAddress(GASD->getGlobal(),true);
} else {
//no need to restore GP as we are doing an indirect call
Tmp1 = SelectExpr(N.getOperand(1));
BuildMI(BB, Alpha::BIS, 2, Alpha::R27).addReg(Tmp1).addReg(Tmp1);
BuildMI(BB, Alpha::JSR, 2, Alpha::R26).addReg(Alpha::R27).addImm(0);
}
//push the result into a virtual register
switch (Node->getValueType(0)) {
default: Node->dump(); assert(0 && "Unknown value type for call result!");
case MVT::Other: return notIn;
case MVT::i64:
BuildMI(BB, Alpha::BIS, 2, Result).addReg(Alpha::R0).addReg(Alpha::R0);
break;
case MVT::f32:
BuildMI(BB, Alpha::CPYSS, 2, Result).addReg(Alpha::F0).addReg(Alpha::F0);
break;
case MVT::f64:
BuildMI(BB, Alpha::CPYST, 2, Result).addReg(Alpha::F0).addReg(Alpha::F0);
break;
}
return Result+N.ResNo;
}
case ISD::SIGN_EXTEND_INREG:
{
//do SDIV opt for all levels of ints if not dividing by a constant
if (EnableAlphaIDIV && N.getOperand(0).getOpcode() == ISD::SDIV
&& N.getOperand(0).getOperand(1).getOpcode() != ISD::Constant)
{
unsigned Tmp4 = MakeReg(MVT::f64);
unsigned Tmp5 = MakeReg(MVT::f64);
unsigned Tmp6 = MakeReg(MVT::f64);
unsigned Tmp7 = MakeReg(MVT::f64);
unsigned Tmp8 = MakeReg(MVT::f64);
unsigned Tmp9 = MakeReg(MVT::f64);
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
MoveInt2FP(Tmp1, Tmp4, true);
MoveInt2FP(Tmp2, Tmp5, true);
BuildMI(BB, Alpha::CVTQT, 1, Tmp6).addReg(Alpha::F31).addReg(Tmp4);
BuildMI(BB, Alpha::CVTQT, 1, Tmp7).addReg(Alpha::F31).addReg(Tmp5);
BuildMI(BB, Alpha::DIVT, 2, Tmp8).addReg(Tmp6).addReg(Tmp7);
BuildMI(BB, Alpha::CVTTQ, 1, Tmp9).addReg(Alpha::F31).addReg(Tmp8);
MoveFP2Int(Tmp9, Result, true);
return Result;
}
//Alpha has instructions for a bunch of signed 32 bit stuff
if(cast<VTSDNode>(Node->getOperand(1))->getVT() == MVT::i32) {
switch (N.getOperand(0).getOpcode()) {
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
{
bool isAdd = N.getOperand(0).getOpcode() == ISD::ADD;
bool isMul = N.getOperand(0).getOpcode() == ISD::MUL;
//FIXME: first check for Scaled Adds and Subs!
if(!isMul && N.getOperand(0).getOperand(0).getOpcode() == ISD::SHL &&
isSIntImmediateBounded(N.getOperand(0).getOperand(0).getOperand(1), SImm, 2, 3))
{
bool use4 = SImm == 2;
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
BuildMI(BB, isAdd?(use4?Alpha::S4ADDL:Alpha::S8ADDL):(use4?Alpha::S4SUBL:Alpha::S8SUBL),
2,Result).addReg(Tmp1).addReg(Tmp2);
}
else if(isAdd && N.getOperand(0).getOperand(1).getOpcode() == ISD::SHL &&
isSIntImmediateBounded(N.getOperand(0).getOperand(1).getOperand(1), SImm, 2, 3))
{
bool use4 = SImm == 2;
Tmp1 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, use4?Alpha::S4ADDL:Alpha::S8ADDL, 2,Result).addReg(Tmp1).addReg(Tmp2);
}
else if(isSIntImmediateBounded(N.getOperand(0).getOperand(1), SImm, 0, 255))
{ //Normal imm add/sub
Opc = isAdd ? Alpha::ADDLi : (isMul ? Alpha::MULLi : Alpha::SUBLi);
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(SImm);
}
else if(!isMul && isSIntImmediate(N.getOperand(0).getOperand(1), SImm) &&
(((SImm << 32) >> 32) >= -255) && (((SImm << 32) >> 32) <= 0))
{ //handle canonicalization
Opc = isAdd ? Alpha::SUBLi : Alpha::ADDLi;
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
SImm = 0 - ((SImm << 32) >> 32);
assert(SImm >= 0 && SImm <= 255);
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(SImm);
}
else
{ //Normal add/sub
Opc = isAdd ? Alpha::ADDL : (isMul ? Alpha::MULL : Alpha::SUBL);
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
}
default: break; //Fall Though;
}
} //Every thing else fall though too, including unhandled opcodes above
Tmp1 = SelectExpr(N.getOperand(0));
//std::cerr << "SrcT: " << MVN->getExtraValueType() << "\n";
switch(cast<VTSDNode>(Node->getOperand(1))->getVT()) {
default:
Node->dump();
assert(0 && "Sign Extend InReg not there yet");
break;
case MVT::i32:
{
BuildMI(BB, Alpha::ADDLi, 2, Result).addReg(Tmp1).addImm(0);
break;
}
case MVT::i16:
BuildMI(BB, Alpha::SEXTW, 1, Result).addReg(Tmp1);
break;
case MVT::i8:
BuildMI(BB, Alpha::SEXTB, 1, Result).addReg(Tmp1);
break;
case MVT::i1:
Tmp2 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::ANDi, 2, Tmp2).addReg(Tmp1).addImm(1);
BuildMI(BB, Alpha::SUBQ, 2, Result).addReg(Alpha::R31).addReg(Tmp2);
break;
}
return Result;
}
case ISD::SETCC:
{
ISD::CondCode CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
if (MVT::isInteger(N.getOperand(0).getValueType())) {
bool isConst = false;
int dir;
//Tmp1 = SelectExpr(N.getOperand(0));
if(isSIntImmediate(N.getOperand(1), SImm) && SImm <= 255 && SImm >= 0)
isConst = true;
switch (CC) {
default: Node->dump(); assert(0 && "Unknown integer comparison!");
case ISD::SETEQ:
Opc = isConst ? Alpha::CMPEQi : Alpha::CMPEQ; dir=1; break;
case ISD::SETLT:
Opc = isConst ? Alpha::CMPLTi : Alpha::CMPLT; dir = 1; break;
case ISD::SETLE:
Opc = isConst ? Alpha::CMPLEi : Alpha::CMPLE; dir = 1; break;
case ISD::SETGT: Opc = Alpha::CMPLT; dir = 2; break;
case ISD::SETGE: Opc = Alpha::CMPLE; dir = 2; break;
case ISD::SETULT:
Opc = isConst ? Alpha::CMPULTi : Alpha::CMPULT; dir = 1; break;
case ISD::SETUGT: Opc = Alpha::CMPULT; dir = 2; break;
case ISD::SETULE:
Opc = isConst ? Alpha::CMPULEi : Alpha::CMPULE; dir = 1; break;
case ISD::SETUGE: Opc = Alpha::CMPULE; dir = 2; break;
case ISD::SETNE: {//Handle this one special
//std::cerr << "Alpha does not have a setne.\n";
//abort();
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Tmp3 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::CMPEQ, 2, Tmp3).addReg(Tmp1).addReg(Tmp2);
//Remeber we have the Inv for this CC
CCInvMap[N] = Tmp3;
//and invert
BuildMI(BB, Alpha::CMPEQ, 2, Result).addReg(Alpha::R31).addReg(Tmp3);
return Result;
}
}
if (dir == 1) {
Tmp1 = SelectExpr(N.getOperand(0));
if (isConst) {
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(SImm);
} else {
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
} else { //if (dir == 2) {
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = SelectExpr(N.getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
} else {
//do the comparison
Tmp1 = MakeReg(MVT::f64);
bool inv = SelectFPSetCC(N, Tmp1);
//now arrange for Result (int) to have a 1 or 0
Tmp2 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::ADDQi, 2, Tmp2).addReg(Alpha::R31).addImm(1);
Opc = inv?Alpha::CMOVNEi_FP:Alpha::CMOVEQi_FP;
BuildMI(BB, Opc, 3, Result).addReg(Tmp2).addImm(0).addReg(Tmp1);
}
return Result;
}
case ISD::CopyFromReg:
{
++count_ins;
// Make sure we generate both values.
if (Result != notIn)
ExprMap[N.getValue(1)] = notIn; // Generate the token
else
Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
SDOperand Chain = N.getOperand(0);
Select(Chain);
unsigned r = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
//std::cerr << "CopyFromReg " << Result << " = " << r << "\n";
switch(N.getValue(0).getValueType()) {
case MVT::f32:
BuildMI(BB, Alpha::CPYSS, 2, Result).addReg(r).addReg(r);
break;
case MVT::f64:
BuildMI(BB, Alpha::CPYST, 2, Result).addReg(r).addReg(r);
break;
default:
BuildMI(BB, Alpha::BIS, 2, Result).addReg(r).addReg(r);
break;
}
return Result;
}
//Most of the plain arithmetic and logic share the same form, and the same
//constant immediate test
case ISD::XOR:
//Match Not
if (isSIntImmediate(N.getOperand(1), SImm) && SImm == -1) {
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::ORNOT, 2, Result).addReg(Alpha::R31).addReg(Tmp1);
return Result;
}
//Fall through
case ISD::AND:
//handle zap
if (opcode == ISD::AND && isUIntImmediate(N.getOperand(1), UImm))
{
unsigned int build = 0;
for(int i = 0; i < 8; ++i)
{
if ((UImm & 0x00FF) == 0x00FF)
build |= 1 << i;
else if ((UImm & 0x00FF) != 0)
{ build = 0; break; }
UImm >>= 8;
}
if (build)
{
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::ZAPNOTi, 2, Result).addReg(Tmp1).addImm(build);
return Result;
}
}
case ISD::OR:
//Check operand(0) == Not
if (N.getOperand(0).getOpcode() == ISD::XOR &&
isSIntImmediate(N.getOperand(0).getOperand(1), SImm) && SImm == -1) {
switch(opcode) {
case ISD::AND: Opc = Alpha::BIC; break;
case ISD::OR: Opc = Alpha::ORNOT; break;
case ISD::XOR: Opc = Alpha::EQV; break;
}
Tmp1 = SelectExpr(N.getOperand(1));
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
}
//Check operand(1) == Not
if (N.getOperand(1).getOpcode() == ISD::XOR &&
isSIntImmediate(N.getOperand(1).getOperand(1), SImm) && SImm == -1) {
switch(opcode) {
case ISD::AND: Opc = Alpha::BIC; break;
case ISD::OR: Opc = Alpha::ORNOT; break;
case ISD::XOR: Opc = Alpha::EQV; break;
}
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1).getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
}
//Fall through
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
case ISD::MUL:
if(isSIntImmediateBounded(N.getOperand(1), SImm, 0, 255)) {
switch(opcode) {
case ISD::AND: Opc = Alpha::ANDi; break;
case ISD::OR: Opc = Alpha::BISi; break;
case ISD::XOR: Opc = Alpha::XORi; break;
case ISD::SHL: Opc = Alpha::SLi; break;
case ISD::SRL: Opc = Alpha::SRLi; break;
case ISD::SRA: Opc = Alpha::SRAi; break;
case ISD::MUL: Opc = Alpha::MULQi; break;
};
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(SImm);
} else {
switch(opcode) {
case ISD::AND: Opc = Alpha::AND; break;
case ISD::OR: Opc = Alpha::BIS; break;
case ISD::XOR: Opc = Alpha::XOR; break;
case ISD::SHL: Opc = Alpha::SL; break;
case ISD::SRL: Opc = Alpha::SRL; break;
case ISD::SRA: Opc = Alpha::SRA; break;
case ISD::MUL: Opc = Alpha::MULQ; break;
};
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
case ISD::ADD:
case ISD::SUB:
{
bool isAdd = opcode == ISD::ADD;
//first check for Scaled Adds and Subs!
//Valid for add and sub
if(N.getOperand(0).getOpcode() == ISD::SHL &&
isSIntImmediate(N.getOperand(0).getOperand(1), SImm) &&
(SImm == 2 || SImm == 3)) {
bool use4 = SImm == 2;
Tmp2 = SelectExpr(N.getOperand(0).getOperand(0));
if (isSIntImmediateBounded(N.getOperand(1), SImm, 0, 255))
BuildMI(BB, isAdd?(use4?Alpha::S4ADDQi:Alpha::S8ADDQi):(use4?Alpha::S4SUBQi:Alpha::S8SUBQi),
2, Result).addReg(Tmp2).addImm(SImm);
else {
Tmp1 = SelectExpr(N.getOperand(1));
BuildMI(BB, isAdd?(use4?Alpha::S4ADDQi:Alpha::S8ADDQi):(use4?Alpha::S4SUBQi:Alpha::S8SUBQi),
2, Result).addReg(Tmp2).addReg(Tmp1);
}
}
//Position prevents subs
else if(N.getOperand(1).getOpcode() == ISD::SHL && isAdd &&
isSIntImmediate(N.getOperand(1).getOperand(1), SImm) &&
(SImm == 2 || SImm == 3)) {
bool use4 = SImm == 2;
Tmp2 = SelectExpr(N.getOperand(1).getOperand(0));
if (isSIntImmediateBounded(N.getOperand(0), SImm, 0, 255))
BuildMI(BB, use4?Alpha::S4ADDQi:Alpha::S8ADDQi, 2, Result).addReg(Tmp2).addImm(SImm);
else {
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, use4?Alpha::S4ADDQ:Alpha::S8ADDQ, 2, Result).addReg(Tmp2).addReg(Tmp1);
}
}
//small addi
else if(isSIntImmediateBounded(N.getOperand(1), SImm, 0, 255))
{ //Normal imm add/sub
Opc = isAdd ? Alpha::ADDQi : Alpha::SUBQi;
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(SImm);
}
else if(isSIntImmediateBounded(N.getOperand(1), SImm, -255, 0))
{ //inverted imm add/sub
Opc = isAdd ? Alpha::SUBQi : Alpha::ADDQi;
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addImm(-SImm);
}
//larger addi
else if(isSIntImmediateBounded(N.getOperand(1), SImm, -32767, 32767))
{ //LDA
Tmp1 = SelectExpr(N.getOperand(0));
if (!isAdd)
SImm = -SImm;
BuildMI(BB, Alpha::LDA, 2, Result).addImm(SImm).addReg(Tmp1);
}
//give up and do the operation
else {
//Normal add/sub
Opc = isAdd ? Alpha::ADDQ : Alpha::SUBQ;
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
}
return Result;
}
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV: {
if (opcode == ISD::FADD)
Opc = DestType == MVT::f64 ? Alpha::ADDT : Alpha::ADDS;
else if (opcode == ISD::FSUB)
Opc = DestType == MVT::f64 ? Alpha::SUBT : Alpha::SUBS;
else if (opcode == ISD::FMUL)
Opc = DestType == MVT::f64 ? Alpha::MULT : Alpha::MULS;
else
Opc = DestType == MVT::f64 ? Alpha::DIVT : Alpha::DIVS;
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2);
return Result;
}
case ISD::SDIV:
{
//check if we can convert into a shift!
if (isSIntImmediate(N.getOperand(1), SImm) &&
SImm != 0 && isPowerOf2_64(llabs(SImm))) {
unsigned k = Log2_64(llabs(SImm));
Tmp1 = SelectExpr(N.getOperand(0));
if (k == 1)
Tmp2 = Tmp1;
else
{
Tmp2 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::SRAi, 2, Tmp2).addReg(Tmp1).addImm(k - 1);
}
Tmp3 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::SRLi, 2, Tmp3).addReg(Tmp2).addImm(64-k);
unsigned Tmp4 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::ADDQ, 2, Tmp4).addReg(Tmp3).addReg(Tmp1);
if (SImm > 0)
BuildMI(BB, Alpha::SRAi, 2, Result).addReg(Tmp4).addImm(k);
else
{
unsigned Tmp5 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::SRAi, 2, Tmp5).addReg(Tmp4).addImm(k);
BuildMI(BB, Alpha::SUBQ, 2, Result).addReg(Alpha::R31).addReg(Tmp5);
}
return Result;
}
}
//Else fall through
case ISD::UDIV:
//else fall though
case ISD::UREM:
case ISD::SREM: {
const char* opstr = 0;
switch(opcode) {
case ISD::UREM: opstr = "__remqu"; break;
case ISD::SREM: opstr = "__remq"; break;
case ISD::UDIV: opstr = "__divqu"; break;
case ISD::SDIV: opstr = "__divq"; break;
}
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
SDOperand Addr =
ISelDAG->getExternalSymbol(opstr, AlphaLowering.getPointerTy());
Tmp3 = SelectExpr(Addr);
//set up regs explicitly (helps Reg alloc)
BuildMI(BB, Alpha::BIS, 2, Alpha::R24).addReg(Tmp1).addReg(Tmp1);
BuildMI(BB, Alpha::BIS, 2, Alpha::R25).addReg(Tmp2).addReg(Tmp2);
BuildMI(BB, Alpha::BIS, 2, Alpha::R27).addReg(Tmp3).addReg(Tmp3);
BuildMI(BB, Alpha::JSRs, 2, Alpha::R23).addReg(Alpha::R27).addImm(0);
BuildMI(BB, Alpha::BIS, 2, Result).addReg(Alpha::R27).addReg(Alpha::R27);
return Result;
}
case ISD::SELECT:
if (isFP) {
//Tmp1 = SelectExpr(N.getOperand(0)); //Cond
unsigned TV = SelectExpr(N.getOperand(1)); //Use if TRUE
unsigned FV = SelectExpr(N.getOperand(2)); //Use if FALSE
SDOperand CC = N.getOperand(0);
if (CC.getOpcode() == ISD::SETCC &&
!MVT::isInteger(CC.getOperand(0).getValueType())) {
//FP Setcc -> Select yay!
//for a cmp b: c = a - b;
//a = b: c = 0
//a < b: c < 0
//a > b: c > 0
bool invTest = false;
unsigned Tmp3;
bool isD = CC.getOperand(0).getValueType() == MVT::f64;
ConstantFPSDNode *CN;
if ((CN = dyn_cast<ConstantFPSDNode>(CC.getOperand(1)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
Tmp3 = SelectExpr(CC.getOperand(0));
else if ((CN = dyn_cast<ConstantFPSDNode>(CC.getOperand(0)))
&& (CN->isExactlyValue(+0.0) || CN->isExactlyValue(-0.0)))
{
Tmp3 = SelectExpr(CC.getOperand(1));
invTest = true;
}
else
{
unsigned Tmp1 = SelectExpr(CC.getOperand(0));
unsigned Tmp2 = SelectExpr(CC.getOperand(1));
Tmp3 = MakeReg(isD ? MVT::f64 : MVT::f32);
BuildMI(BB, isD ? Alpha::SUBT : Alpha::SUBS, 2, Tmp3)
.addReg(Tmp1).addReg(Tmp2);
}
if(isD)
switch (cast<CondCodeSDNode>(CC.getOperand(2))->get()) {
default: CC.Val->dump(); assert(0 && "Unknown FP comparison!");
case ISD::SETEQ: Opc = invTest ? Alpha::FCMOVNET : Alpha::FCMOVEQT; break;
case ISD::SETLT: Opc = invTest ? Alpha::FCMOVGTT : Alpha::FCMOVLTT; break;
case ISD::SETLE: Opc = invTest ? Alpha::FCMOVGET : Alpha::FCMOVLET; break;
case ISD::SETGT: Opc = invTest ? Alpha::FCMOVLTT : Alpha::FCMOVGTT; break;
case ISD::SETGE: Opc = invTest ? Alpha::FCMOVLET : Alpha::FCMOVGET; break;
case ISD::SETNE: Opc = invTest ? Alpha::FCMOVEQT : Alpha::FCMOVNET; break;
}
else
switch (cast<CondCodeSDNode>(CC.getOperand(2))->get()) {
default: CC.Val->dump(); assert(0 && "Unknown FP comparison!");
case ISD::SETEQ: Opc = invTest ? Alpha::FCMOVNES : Alpha::FCMOVEQS; break;
case ISD::SETLT: Opc = invTest ? Alpha::FCMOVGTS : Alpha::FCMOVLTS; break;
case ISD::SETLE: Opc = invTest ? Alpha::FCMOVGES : Alpha::FCMOVLES; break;
case ISD::SETGT: Opc = invTest ? Alpha::FCMOVLTS : Alpha::FCMOVGTS; break;
case ISD::SETGE: Opc = invTest ? Alpha::FCMOVLES : Alpha::FCMOVGES; break;
case ISD::SETNE: Opc = invTest ? Alpha::FCMOVEQS : Alpha::FCMOVNES; break;
}
BuildMI(BB, Opc, 3, Result).addReg(FV).addReg(TV).addReg(Tmp3);
return Result;
}
else
{
Tmp1 = SelectExpr(N.getOperand(0)); //Cond
BuildMI(BB, Alpha::FCMOVEQ_INT, 3, Result).addReg(TV).addReg(FV)
.addReg(Tmp1);
// // Spill the cond to memory and reload it from there.
// unsigned Tmp4 = MakeReg(MVT::f64);
// MoveIntFP(Tmp1, Tmp4, true);
// //now ideally, we don't have to do anything to the flag...
// // Get the condition into the zero flag.
// BuildMI(BB, Alpha::FCMOVEQ, 3, Result).addReg(TV).addReg(FV).addReg(Tmp4);
return Result;
}
} else {
//FIXME: look at parent to decide if intCC can be folded, or if setCC(FP)
//and can save stack use
//Tmp1 = SelectExpr(N.getOperand(0)); //Cond
//Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
//Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
// Get the condition into the zero flag.
//BuildMI(BB, Alpha::CMOVEQ, 2, Result).addReg(Tmp2).addReg(Tmp3).addReg(Tmp1);
SDOperand CC = N.getOperand(0);
if (CC.getOpcode() == ISD::SETCC &&
!MVT::isInteger(CC.getOperand(0).getValueType()))
{ //FP Setcc -> Int Select
Tmp1 = MakeReg(MVT::f64);
Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
bool inv = SelectFPSetCC(CC, Tmp1);
BuildMI(BB, inv?Alpha::CMOVNE_FP:Alpha::CMOVEQ_FP, 2, Result)
.addReg(Tmp2).addReg(Tmp3).addReg(Tmp1);
return Result;
}
if (CC.getOpcode() == ISD::SETCC) {
//Int SetCC -> Select
//Dropping the CC is only useful if we are comparing to 0
if(isSIntImmediateBounded(CC.getOperand(1), SImm, 0, 0)) {
//figure out a few things
bool useImm = isSIntImmediateBounded(N.getOperand(2), SImm, 0, 255);
//Fix up CC
ISD::CondCode cCode= cast<CondCodeSDNode>(CC.getOperand(2))->get();
if (useImm) //Invert sense to get Imm field right
cCode = ISD::getSetCCInverse(cCode, true);
//Choose the CMOV
switch (cCode) {
default: CC.Val->dump(); assert(0 && "Unknown integer comparison!");
case ISD::SETEQ: Opc = useImm?Alpha::CMOVEQi:Alpha::CMOVEQ; break;
case ISD::SETLT: Opc = useImm?Alpha::CMOVLTi:Alpha::CMOVLT; break;
case ISD::SETLE: Opc = useImm?Alpha::CMOVLEi:Alpha::CMOVLE; break;
case ISD::SETGT: Opc = useImm?Alpha::CMOVGTi:Alpha::CMOVGT; break;
case ISD::SETGE: Opc = useImm?Alpha::CMOVGEi:Alpha::CMOVGE; break;
case ISD::SETULT: assert(0 && "unsigned < 0 is never true"); break;
case ISD::SETUGT: Opc = useImm?Alpha::CMOVNEi:Alpha::CMOVNE; break;
//Technically you could have this CC
case ISD::SETULE: Opc = useImm?Alpha::CMOVEQi:Alpha::CMOVEQ; break;
case ISD::SETUGE: assert(0 && "unsgined >= 0 is always true"); break;
case ISD::SETNE: Opc = useImm?Alpha::CMOVNEi:Alpha::CMOVNE; break;
}
Tmp1 = SelectExpr(CC.getOperand(0)); //Cond
if (useImm) {
Tmp3 = SelectExpr(N.getOperand(1)); //Use if FALSE
BuildMI(BB, Opc, 2, Result).addReg(Tmp3).addImm(SImm).addReg(Tmp1);
} else {
Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
BuildMI(BB, Opc, 2, Result).addReg(Tmp3).addReg(Tmp2).addReg(Tmp1);
}
return Result;
}
//Otherwise, fall though
}
Tmp1 = SelectExpr(N.getOperand(0)); //Cond
Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
BuildMI(BB, Alpha::CMOVEQ, 2, Result).addReg(Tmp2).addReg(Tmp3)
.addReg(Tmp1);
return Result;
}
case ISD::Constant:
{
int64_t val = (int64_t)cast<ConstantSDNode>(N)->getValue();
int zero_extend_top = 0;
if (val > 0 && (val & 0xFFFFFFFF00000000ULL) == 0 &&
((int32_t)val < 0)) {
//try a small load and zero extend
val = (int32_t)val;
zero_extend_top = 15;
}
if (val <= IMM_HIGH && val >= IMM_LOW) {
if(!zero_extend_top)
BuildMI(BB, Alpha::LDA, 2, Result).addImm(val).addReg(Alpha::R31);
else {
Tmp1 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::LDA, 2, Tmp1).addImm(val).addReg(Alpha::R31);
BuildMI(BB, Alpha::ZAPNOT, 2, Result).addReg(Tmp1).addImm(zero_extend_top);
}
}
else if (val <= (int64_t)IMM_HIGH +(int64_t)IMM_HIGH* (int64_t)IMM_MULT &&
val >= (int64_t)IMM_LOW + (int64_t)IMM_LOW * (int64_t)IMM_MULT) {
Tmp1 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::LDAH, 2, Tmp1).addImm(getUpper16(val))
.addReg(Alpha::R31);
if (!zero_extend_top)
BuildMI(BB, Alpha::LDA, 2, Result).addImm(getLower16(val)).addReg(Tmp1);
else {
Tmp3 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::LDA, 2, Tmp3).addImm(getLower16(val)).addReg(Tmp1);
BuildMI(BB, Alpha::ZAPNOT, 2, Result).addReg(Tmp3).addImm(zero_extend_top);
}
}
else {
//re-get the val since we are going to mem anyway
val = (int64_t)cast<ConstantSDNode>(N)->getValue();
MachineConstantPool *CP = BB->getParent()->getConstantPool();
ConstantUInt *C =
ConstantUInt::get(Type::getPrimitiveType(Type::ULongTyID) , val);
unsigned CPI = CP->getConstantPoolIndex(C);
AlphaLowering.restoreGP(BB);
has_sym = true;
Tmp1 = MakeReg(MVT::i64);
BuildMI(BB, Alpha::LDAHr, 2, Tmp1).addConstantPoolIndex(CPI)
.addReg(Alpha::R29);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(5).addImm(0).addImm(0)
.addImm(getUID());
BuildMI(BB, Alpha::LDQr, 2, Result).addConstantPoolIndex(CPI)
.addReg(Tmp1);
}
return Result;
}
case ISD::FNEG:
if(ISD::FABS == N.getOperand(0).getOpcode())
{
Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
BuildMI(BB, DestType == MVT::f64 ? Alpha::CPYSNT : Alpha::CPYSNS,
2, Result).addReg(Alpha::F31).addReg(Tmp1);
} else {
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, DestType == MVT::f64 ? Alpha::CPYSNT : Alpha::CPYSNS
, 2, Result).addReg(Tmp1).addReg(Tmp1);
}
return Result;
case ISD::FABS:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, DestType == MVT::f64 ? Alpha::CPYST : Alpha::CPYSS, 2, Result)
.addReg(Alpha::F31).addReg(Tmp1);
return Result;
case ISD::FP_ROUND:
assert (DestType == MVT::f32 &&
N.getOperand(0).getValueType() == MVT::f64 &&
"only f64 to f32 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CVTTS, 1, Result).addReg(Tmp1);
return Result;
case ISD::FP_EXTEND:
assert (DestType == MVT::f64 &&
N.getOperand(0).getValueType() == MVT::f32 &&
"only f32 to f64 conversion supported here");
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CVTST, 1, Result).addReg(Tmp1);
return Result;
case ISD::ConstantFP:
if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N)) {
if (CN->isExactlyValue(+0.0)) {
BuildMI(BB, DestType == MVT::f64 ? Alpha::CPYST : Alpha::CPYSS
, 2, Result).addReg(Alpha::F31)
.addReg(Alpha::F31);
} else if ( CN->isExactlyValue(-0.0)) {
BuildMI(BB, DestType == MVT::f64 ? Alpha::CPYSNT : Alpha::CPYSNS,
2, Result).addReg(Alpha::F31)
.addReg(Alpha::F31);
} else {
abort();
}
}
return Result;
case AlphaISD::CVTQT_:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CVTQT, 1, Result).addReg(Tmp1);
return Result;
case AlphaISD::CVTQS_:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CVTQS, 1, Result).addReg(Tmp1);
return Result;
case AlphaISD::CVTTQ_:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::CVTTQ, 1, Result).addReg(Tmp1);
return Result;
case AlphaISD::ITOFT_:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::ITOFT, 1, Result).addReg(Tmp1);
return Result;
case AlphaISD::FTOIT_:
Tmp1 = SelectExpr(N.getOperand(0));
BuildMI(BB, Alpha::FTOIT, 1, Result).addReg(Tmp1);
return Result;
case ISD::AssertSext:
case ISD::AssertZext:
return SelectExpr(N.getOperand(0));
}
return 0;
}
void AlphaISel::Select(SDOperand N) {
unsigned Tmp1, Tmp2, Opc = Alpha::WTF;
unsigned opcode = N.getOpcode();
if (!ExprMap.insert(std::make_pair(N, notIn)).second)
return; // Already selected.
SDNode *Node = N.Val;
switch (opcode) {
default:
Node->dump(); std::cerr << "\n";
assert(0 && "Node not handled yet!");
case ISD::BRCOND: {
SelectBranchCC(N);
return;
}
case ISD::BR: {
MachineBasicBlock *Dest =
cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
Select(N.getOperand(0));
BuildMI(BB, Alpha::BR, 1, Alpha::R31).addMBB(Dest);
return;
}
case ISD::EntryToken: return; // Noop
case ISD::TokenFactor:
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Select(Node->getOperand(i));
//N.Val->dump(); std::cerr << "\n";
//assert(0 && "Node not handled yet!");
return;
case ISD::CopyToReg:
++count_outs;
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(2));
Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg();
if (Tmp1 != Tmp2) {
switch(N.getOperand(2).getValueType()) {
case MVT::f64:
BuildMI(BB, Alpha::CPYST, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
break;
case MVT::f32:
BuildMI(BB, Alpha::CPYSS, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
break;
default:
BuildMI(BB, Alpha::BIS, 2, Tmp2).addReg(Tmp1).addReg(Tmp1);
break;
}
}
return;
case ISD::RET:
++count_outs;
switch (N.getNumOperands()) {
default:
std::cerr << N.getNumOperands() << "\n";
for (unsigned i = 0; i < N.getNumOperands(); ++i)
std::cerr << N.getOperand(i).getValueType() << "\n";
Node->dump();
assert(0 && "Unknown return instruction!");
case 2:
Select(N.getOperand(0));
Tmp1 = SelectExpr(N.getOperand(1));
switch (N.getOperand(1).getValueType()) {
default: Node->dump();
assert(0 && "All other types should have been promoted!!");
case MVT::f64:
BuildMI(BB, Alpha::CPYST, 2, Alpha::F0).addReg(Tmp1).addReg(Tmp1);
break;
case MVT::f32:
BuildMI(BB, Alpha::CPYSS, 2, Alpha::F0).addReg(Tmp1).addReg(Tmp1);
break;
case MVT::i32:
case MVT::i64:
BuildMI(BB, Alpha::BIS, 2, Alpha::R0).addReg(Tmp1).addReg(Tmp1);
break;
}
break;
case 1:
Select(N.getOperand(0));
break;
}
// Just emit a 'ret' instruction
AlphaLowering.restoreRA(BB);
BuildMI(BB, Alpha::RET, 2, Alpha::R31).addReg(Alpha::R26).addImm(1);
return;
case ISD::TRUNCSTORE:
case ISD::STORE:
{
SDOperand Chain = N.getOperand(0);
SDOperand Value = N.getOperand(1);
SDOperand Address = N.getOperand(2);
Select(Chain);
Tmp1 = SelectExpr(Value); //value
if (opcode == ISD::STORE) {
switch(Value.getValueType()) {
default: assert(0 && "unknown Type in store");
case MVT::i64: Opc = Alpha::STQ; break;
case MVT::f64: Opc = Alpha::STT; break;
case MVT::f32: Opc = Alpha::STS; break;
}
} else { //ISD::TRUNCSTORE
switch(cast<VTSDNode>(Node->getOperand(4))->getVT()) {
default: assert(0 && "unknown Type in store");
case MVT::i8: Opc = Alpha::STB; break;
case MVT::i16: Opc = Alpha::STW; break;
case MVT::i32: Opc = Alpha::STL; break;
}
}
int i, j, k;
if (EnableAlphaLSMark)
getValueInfo(cast<SrcValueSDNode>(N.getOperand(3))->getValue(),
i, j, k);
GlobalAddressSDNode *GASD = dyn_cast<GlobalAddressSDNode>(Address);
if (GASD && !GASD->getGlobal()->isExternal()) {
Tmp2 = MakeReg(MVT::i64);
AlphaLowering.restoreGP(BB);
BuildMI(BB, Alpha::LDAHr, 2, Tmp2)
.addGlobalAddress(GASD->getGlobal()).addReg(Alpha::R29);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(i).addImm(j).addImm(k)
.addImm(getUID());
BuildMI(BB, GetRelVersion(Opc), 3).addReg(Tmp1)
.addGlobalAddress(GASD->getGlobal()).addReg(Tmp2);
} else if(Address.getOpcode() == ISD::FrameIndex) {
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(i).addImm(j).addImm(k)
.addImm(getUID());
BuildMI(BB, Opc, 3).addReg(Tmp1)
.addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex())
.addReg(Alpha::F31);
} else {
long offset;
SelectAddr(Address, Tmp2, offset);
if (EnableAlphaLSMark)
BuildMI(BB, Alpha::MEMLABEL, 4).addImm(i).addImm(j).addImm(k)
.addImm(getUID());
BuildMI(BB, Opc, 3).addReg(Tmp1).addImm(offset).addReg(Tmp2);
}
return;
}
case ISD::EXTLOAD:
case ISD::SEXTLOAD:
case ISD::ZEXTLOAD:
case ISD::LOAD:
case ISD::CopyFromReg:
case ISD::TAILCALL:
case ISD::CALL:
case ISD::READCYCLECOUNTER:
case ISD::DYNAMIC_STACKALLOC:
ExprMap.erase(N);
SelectExpr(N);
return;
case ISD::CALLSEQ_START:
case ISD::CALLSEQ_END:
Select(N.getOperand(0));
Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
Opc = N.getOpcode() == ISD::CALLSEQ_START ? Alpha::ADJUSTSTACKDOWN :
Alpha::ADJUSTSTACKUP;
BuildMI(BB, Opc, 1).addImm(Tmp1);
return;
case ISD::PCMARKER:
Select(N.getOperand(0)); //Chain
BuildMI(BB, Alpha::PCLABEL, 2)
.addImm( cast<ConstantSDNode>(N.getOperand(1))->getValue());
return;
}
assert(0 && "Should not be reached!");
}
/// createAlphaPatternInstructionSelector - This pass converts an LLVM function
/// into a machine code representation using pattern matching and a machine
/// description file.
///
FunctionPass *llvm::createAlphaPatternInstructionSelector(TargetMachine &TM) {
return new AlphaISel(TM);
}