mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148550 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			767 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			767 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the SmallVector class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_SMALLVECTOR_H
 | |
| #define LLVM_ADT_SMALLVECTOR_H
 | |
| 
 | |
| #include "llvm/Support/type_traits.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <iterator>
 | |
| #include <memory>
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| namespace std {
 | |
| #if _MSC_VER <= 1310
 | |
|   // Work around flawed VC++ implementation of std::uninitialized_copy.  Define
 | |
|   // additional overloads so that elements with pointer types are recognized as
 | |
|   // scalars and not objects, causing bizarre type conversion errors.
 | |
|   template<class T1, class T2>
 | |
|   inline _Scalar_ptr_iterator_tag _Ptr_cat(T1 **, T2 **) {
 | |
|     _Scalar_ptr_iterator_tag _Cat;
 | |
|     return _Cat;
 | |
|   }
 | |
| 
 | |
|   template<class T1, class T2>
 | |
|   inline _Scalar_ptr_iterator_tag _Ptr_cat(T1* const *, T2 **) {
 | |
|     _Scalar_ptr_iterator_tag _Cat;
 | |
|     return _Cat;
 | |
|   }
 | |
| #else
 | |
| // FIXME: It is not clear if the problem is fixed in VS 2005.  What is clear
 | |
| // is that the above hack won't work if it wasn't fixed.
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// SmallVectorBase - This is all the non-templated stuff common to all
 | |
| /// SmallVectors.
 | |
| class SmallVectorBase {
 | |
| protected:
 | |
|   void *BeginX, *EndX, *CapacityX;
 | |
| 
 | |
|   // Allocate raw space for N elements of type T.  If T has a ctor or dtor, we
 | |
|   // don't want it to be automatically run, so we need to represent the space as
 | |
|   // something else.  An array of char would work great, but might not be
 | |
|   // aligned sufficiently.  Instead we use some number of union instances for
 | |
|   // the space, which guarantee maximal alignment.
 | |
|   union U {
 | |
|     double D;
 | |
|     long double LD;
 | |
|     long long L;
 | |
|     void *P;
 | |
|   } FirstEl;
 | |
|   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
 | |
| 
 | |
| protected:
 | |
|   SmallVectorBase(size_t Size)
 | |
|     : BeginX(&FirstEl), EndX(&FirstEl), CapacityX((char*)&FirstEl+Size) {}
 | |
| 
 | |
|   /// isSmall - Return true if this is a smallvector which has not had dynamic
 | |
|   /// memory allocated for it.
 | |
|   bool isSmall() const {
 | |
|     return BeginX == static_cast<const void*>(&FirstEl);
 | |
|   }
 | |
| 
 | |
|   /// grow_pod - This is an implementation of the grow() method which only works
 | |
|   /// on POD-like data types and is out of line to reduce code duplication.
 | |
|   void grow_pod(size_t MinSizeInBytes, size_t TSize);
 | |
| 
 | |
| public:
 | |
|   /// size_in_bytes - This returns size()*sizeof(T).
 | |
|   size_t size_in_bytes() const {
 | |
|     return size_t((char*)EndX - (char*)BeginX);
 | |
|   }
 | |
|   
 | |
|   /// capacity_in_bytes - This returns capacity()*sizeof(T).
 | |
|   size_t capacity_in_bytes() const {
 | |
|     return size_t((char*)CapacityX - (char*)BeginX);
 | |
|   }
 | |
| 
 | |
|   bool empty() const { return BeginX == EndX; }
 | |
| };
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| class SmallVectorTemplateCommon : public SmallVectorBase {
 | |
| protected:
 | |
|   SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(Size) {}
 | |
| 
 | |
|   void setEnd(T *P) { this->EndX = P; }
 | |
| public:
 | |
|   typedef size_t size_type;
 | |
|   typedef ptrdiff_t difference_type;
 | |
|   typedef T value_type;
 | |
|   typedef T *iterator;
 | |
|   typedef const T *const_iterator;
 | |
| 
 | |
|   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 | |
|   typedef std::reverse_iterator<iterator> reverse_iterator;
 | |
| 
 | |
|   typedef T &reference;
 | |
|   typedef const T &const_reference;
 | |
|   typedef T *pointer;
 | |
|   typedef const T *const_pointer;
 | |
| 
 | |
|   // forward iterator creation methods.
 | |
|   iterator begin() { return (iterator)this->BeginX; }
 | |
|   const_iterator begin() const { return (const_iterator)this->BeginX; }
 | |
|   iterator end() { return (iterator)this->EndX; }
 | |
|   const_iterator end() const { return (const_iterator)this->EndX; }
 | |
| protected:
 | |
|   iterator capacity_ptr() { return (iterator)this->CapacityX; }
 | |
|   const_iterator capacity_ptr() const { return (const_iterator)this->CapacityX;}
 | |
| public:
 | |
| 
 | |
|   // reverse iterator creation methods.
 | |
|   reverse_iterator rbegin()            { return reverse_iterator(end()); }
 | |
|   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
 | |
|   reverse_iterator rend()              { return reverse_iterator(begin()); }
 | |
|   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
 | |
| 
 | |
|   size_type size() const { return end()-begin(); }
 | |
|   size_type max_size() const { return size_type(-1) / sizeof(T); }
 | |
| 
 | |
|   /// capacity - Return the total number of elements in the currently allocated
 | |
|   /// buffer.
 | |
|   size_t capacity() const { return capacity_ptr() - begin(); }
 | |
| 
 | |
|   /// data - Return a pointer to the vector's buffer, even if empty().
 | |
|   pointer data() { return pointer(begin()); }
 | |
|   /// data - Return a pointer to the vector's buffer, even if empty().
 | |
|   const_pointer data() const { return const_pointer(begin()); }
 | |
| 
 | |
|   reference operator[](unsigned idx) {
 | |
|     assert(begin() + idx < end());
 | |
|     return begin()[idx];
 | |
|   }
 | |
|   const_reference operator[](unsigned idx) const {
 | |
|     assert(begin() + idx < end());
 | |
|     return begin()[idx];
 | |
|   }
 | |
| 
 | |
|   reference front() {
 | |
|     return begin()[0];
 | |
|   }
 | |
|   const_reference front() const {
 | |
|     return begin()[0];
 | |
|   }
 | |
| 
 | |
|   reference back() {
 | |
|     return end()[-1];
 | |
|   }
 | |
|   const_reference back() const {
 | |
|     return end()[-1];
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
 | |
| /// implementations that are designed to work with non-POD-like T's.
 | |
| template <typename T, bool isPodLike>
 | |
| class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
 | |
| protected:
 | |
|   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
 | |
| 
 | |
|   static void destroy_range(T *S, T *E) {
 | |
|     while (S != E) {
 | |
|       --E;
 | |
|       E->~T();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
 | |
|   /// starting with "Dest", constructing elements into it as needed.
 | |
|   template<typename It1, typename It2>
 | |
|   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
 | |
|     std::uninitialized_copy(I, E, Dest);
 | |
|   }
 | |
| 
 | |
|   /// grow - double the size of the allocated memory, guaranteeing space for at
 | |
|   /// least one more element or MinSize if specified.
 | |
|   void grow(size_t MinSize = 0);
 | |
| };
 | |
| 
 | |
| // Define this out-of-line to dissuade the C++ compiler from inlining it.
 | |
| template <typename T, bool isPodLike>
 | |
| void SmallVectorTemplateBase<T, isPodLike>::grow(size_t MinSize) {
 | |
|   size_t CurCapacity = this->capacity();
 | |
|   size_t CurSize = this->size();
 | |
|   size_t NewCapacity = 2*CurCapacity + 1; // Always grow, even from zero.
 | |
|   if (NewCapacity < MinSize)
 | |
|     NewCapacity = MinSize;
 | |
|   T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
 | |
| 
 | |
|   // Copy the elements over.
 | |
|   this->uninitialized_copy(this->begin(), this->end(), NewElts);
 | |
| 
 | |
|   // Destroy the original elements.
 | |
|   destroy_range(this->begin(), this->end());
 | |
| 
 | |
|   // If this wasn't grown from the inline copy, deallocate the old space.
 | |
|   if (!this->isSmall())
 | |
|     free(this->begin());
 | |
| 
 | |
|   this->setEnd(NewElts+CurSize);
 | |
|   this->BeginX = NewElts;
 | |
|   this->CapacityX = this->begin()+NewCapacity;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
 | |
| /// implementations that are designed to work with POD-like T's.
 | |
| template <typename T>
 | |
| class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
 | |
| protected:
 | |
|   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
 | |
| 
 | |
|   // No need to do a destroy loop for POD's.
 | |
|   static void destroy_range(T *, T *) {}
 | |
| 
 | |
|   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
 | |
|   /// starting with "Dest", constructing elements into it as needed.
 | |
|   template<typename It1, typename It2>
 | |
|   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
 | |
|     // Arbitrary iterator types; just use the basic implementation.
 | |
|     std::uninitialized_copy(I, E, Dest);
 | |
|   }
 | |
| 
 | |
|   /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
 | |
|   /// starting with "Dest", constructing elements into it as needed.
 | |
|   template<typename T1, typename T2>
 | |
|   static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
 | |
|     // Use memcpy for PODs iterated by pointers (which includes SmallVector
 | |
|     // iterators): std::uninitialized_copy optimizes to memmove, but we can
 | |
|     // use memcpy here.
 | |
|     memcpy(Dest, I, (E-I)*sizeof(T));
 | |
|   }
 | |
| 
 | |
|   /// grow - double the size of the allocated memory, guaranteeing space for at
 | |
|   /// least one more element or MinSize if specified.
 | |
|   void grow(size_t MinSize = 0) {
 | |
|     this->grow_pod(MinSize*sizeof(T), sizeof(T));
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// SmallVectorImpl - This class consists of common code factored out of the
 | |
| /// SmallVector class to reduce code duplication based on the SmallVector 'N'
 | |
| /// template parameter.
 | |
| template <typename T>
 | |
| class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
 | |
|   typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
 | |
| 
 | |
|   SmallVectorImpl(const SmallVectorImpl&); // DISABLED.
 | |
| public:
 | |
|   typedef typename SuperClass::iterator iterator;
 | |
|   typedef typename SuperClass::size_type size_type;
 | |
| 
 | |
| protected:
 | |
|   // Default ctor - Initialize to empty.
 | |
|   explicit SmallVectorImpl(unsigned N)
 | |
|     : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   ~SmallVectorImpl() {
 | |
|     // Destroy the constructed elements in the vector.
 | |
|     this->destroy_range(this->begin(), this->end());
 | |
| 
 | |
|     // If this wasn't grown from the inline copy, deallocate the old space.
 | |
|     if (!this->isSmall())
 | |
|       free(this->begin());
 | |
|   }
 | |
| 
 | |
| 
 | |
|   void clear() {
 | |
|     this->destroy_range(this->begin(), this->end());
 | |
|     this->EndX = this->BeginX;
 | |
|   }
 | |
| 
 | |
|   void resize(unsigned N) {
 | |
|     if (N < this->size()) {
 | |
|       this->destroy_range(this->begin()+N, this->end());
 | |
|       this->setEnd(this->begin()+N);
 | |
|     } else if (N > this->size()) {
 | |
|       if (this->capacity() < N)
 | |
|         this->grow(N);
 | |
|       this->construct_range(this->end(), this->begin()+N, T());
 | |
|       this->setEnd(this->begin()+N);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void resize(unsigned N, const T &NV) {
 | |
|     if (N < this->size()) {
 | |
|       this->destroy_range(this->begin()+N, this->end());
 | |
|       this->setEnd(this->begin()+N);
 | |
|     } else if (N > this->size()) {
 | |
|       if (this->capacity() < N)
 | |
|         this->grow(N);
 | |
|       construct_range(this->end(), this->begin()+N, NV);
 | |
|       this->setEnd(this->begin()+N);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void reserve(unsigned N) {
 | |
|     if (this->capacity() < N)
 | |
|       this->grow(N);
 | |
|   }
 | |
| 
 | |
|   void push_back(const T &Elt) {
 | |
|     if (this->EndX < this->CapacityX) {
 | |
|     Retry:
 | |
|       new (this->end()) T(Elt);
 | |
|       this->setEnd(this->end()+1);
 | |
|       return;
 | |
|     }
 | |
|     this->grow();
 | |
|     goto Retry;
 | |
|   }
 | |
| 
 | |
|   void pop_back() {
 | |
|     this->setEnd(this->end()-1);
 | |
|     this->end()->~T();
 | |
|   }
 | |
| 
 | |
|   T pop_back_val() {
 | |
|     T Result = this->back();
 | |
|     pop_back();
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   void swap(SmallVectorImpl &RHS);
 | |
| 
 | |
|   /// append - Add the specified range to the end of the SmallVector.
 | |
|   ///
 | |
|   template<typename in_iter>
 | |
|   void append(in_iter in_start, in_iter in_end) {
 | |
|     size_type NumInputs = std::distance(in_start, in_end);
 | |
|     // Grow allocated space if needed.
 | |
|     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
 | |
|       this->grow(this->size()+NumInputs);
 | |
| 
 | |
|     // Copy the new elements over.
 | |
|     // TODO: NEED To compile time dispatch on whether in_iter is a random access
 | |
|     // iterator to use the fast uninitialized_copy.
 | |
|     std::uninitialized_copy(in_start, in_end, this->end());
 | |
|     this->setEnd(this->end() + NumInputs);
 | |
|   }
 | |
| 
 | |
|   /// append - Add the specified range to the end of the SmallVector.
 | |
|   ///
 | |
|   void append(size_type NumInputs, const T &Elt) {
 | |
|     // Grow allocated space if needed.
 | |
|     if (NumInputs > size_type(this->capacity_ptr()-this->end()))
 | |
|       this->grow(this->size()+NumInputs);
 | |
| 
 | |
|     // Copy the new elements over.
 | |
|     std::uninitialized_fill_n(this->end(), NumInputs, Elt);
 | |
|     this->setEnd(this->end() + NumInputs);
 | |
|   }
 | |
| 
 | |
|   void assign(unsigned NumElts, const T &Elt) {
 | |
|     clear();
 | |
|     if (this->capacity() < NumElts)
 | |
|       this->grow(NumElts);
 | |
|     this->setEnd(this->begin()+NumElts);
 | |
|     construct_range(this->begin(), this->end(), Elt);
 | |
|   }
 | |
| 
 | |
|   iterator erase(iterator I) {
 | |
|     iterator N = I;
 | |
|     // Shift all elts down one.
 | |
|     std::copy(I+1, this->end(), I);
 | |
|     // Drop the last elt.
 | |
|     pop_back();
 | |
|     return(N);
 | |
|   }
 | |
| 
 | |
|   iterator erase(iterator S, iterator E) {
 | |
|     iterator N = S;
 | |
|     // Shift all elts down.
 | |
|     iterator I = std::copy(E, this->end(), S);
 | |
|     // Drop the last elts.
 | |
|     this->destroy_range(I, this->end());
 | |
|     this->setEnd(I);
 | |
|     return(N);
 | |
|   }
 | |
| 
 | |
|   iterator insert(iterator I, const T &Elt) {
 | |
|     if (I == this->end()) {  // Important special case for empty vector.
 | |
|       push_back(Elt);
 | |
|       return this->end()-1;
 | |
|     }
 | |
| 
 | |
|     if (this->EndX < this->CapacityX) {
 | |
|     Retry:
 | |
|       new (this->end()) T(this->back());
 | |
|       this->setEnd(this->end()+1);
 | |
|       // Push everything else over.
 | |
|       std::copy_backward(I, this->end()-1, this->end());
 | |
| 
 | |
|       // If we just moved the element we're inserting, be sure to update
 | |
|       // the reference.
 | |
|       const T *EltPtr = &Elt;
 | |
|       if (I <= EltPtr && EltPtr < this->EndX)
 | |
|         ++EltPtr;
 | |
| 
 | |
|       *I = *EltPtr;
 | |
|       return I;
 | |
|     }
 | |
|     size_t EltNo = I-this->begin();
 | |
|     this->grow();
 | |
|     I = this->begin()+EltNo;
 | |
|     goto Retry;
 | |
|   }
 | |
| 
 | |
|   iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
 | |
|     if (I == this->end()) {  // Important special case for empty vector.
 | |
|       append(NumToInsert, Elt);
 | |
|       return this->end()-1;
 | |
|     }
 | |
| 
 | |
|     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
 | |
|     size_t InsertElt = I - this->begin();
 | |
| 
 | |
|     // Ensure there is enough space.
 | |
|     reserve(static_cast<unsigned>(this->size() + NumToInsert));
 | |
| 
 | |
|     // Uninvalidate the iterator.
 | |
|     I = this->begin()+InsertElt;
 | |
| 
 | |
|     // If there are more elements between the insertion point and the end of the
 | |
|     // range than there are being inserted, we can use a simple approach to
 | |
|     // insertion.  Since we already reserved space, we know that this won't
 | |
|     // reallocate the vector.
 | |
|     if (size_t(this->end()-I) >= NumToInsert) {
 | |
|       T *OldEnd = this->end();
 | |
|       append(this->end()-NumToInsert, this->end());
 | |
| 
 | |
|       // Copy the existing elements that get replaced.
 | |
|       std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
 | |
| 
 | |
|       std::fill_n(I, NumToInsert, Elt);
 | |
|       return I;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we're inserting more elements than exist already, and we're
 | |
|     // not inserting at the end.
 | |
| 
 | |
|     // Copy over the elements that we're about to overwrite.
 | |
|     T *OldEnd = this->end();
 | |
|     this->setEnd(this->end() + NumToInsert);
 | |
|     size_t NumOverwritten = OldEnd-I;
 | |
|     this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
 | |
| 
 | |
|     // Replace the overwritten part.
 | |
|     std::fill_n(I, NumOverwritten, Elt);
 | |
| 
 | |
|     // Insert the non-overwritten middle part.
 | |
|     std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   template<typename ItTy>
 | |
|   iterator insert(iterator I, ItTy From, ItTy To) {
 | |
|     if (I == this->end()) {  // Important special case for empty vector.
 | |
|       append(From, To);
 | |
|       return this->end()-1;
 | |
|     }
 | |
| 
 | |
|     size_t NumToInsert = std::distance(From, To);
 | |
|     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
 | |
|     size_t InsertElt = I - this->begin();
 | |
| 
 | |
|     // Ensure there is enough space.
 | |
|     reserve(static_cast<unsigned>(this->size() + NumToInsert));
 | |
| 
 | |
|     // Uninvalidate the iterator.
 | |
|     I = this->begin()+InsertElt;
 | |
| 
 | |
|     // If there are more elements between the insertion point and the end of the
 | |
|     // range than there are being inserted, we can use a simple approach to
 | |
|     // insertion.  Since we already reserved space, we know that this won't
 | |
|     // reallocate the vector.
 | |
|     if (size_t(this->end()-I) >= NumToInsert) {
 | |
|       T *OldEnd = this->end();
 | |
|       append(this->end()-NumToInsert, this->end());
 | |
| 
 | |
|       // Copy the existing elements that get replaced.
 | |
|       std::copy_backward(I, OldEnd-NumToInsert, OldEnd);
 | |
| 
 | |
|       std::copy(From, To, I);
 | |
|       return I;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we're inserting more elements than exist already, and we're
 | |
|     // not inserting at the end.
 | |
| 
 | |
|     // Copy over the elements that we're about to overwrite.
 | |
|     T *OldEnd = this->end();
 | |
|     this->setEnd(this->end() + NumToInsert);
 | |
|     size_t NumOverwritten = OldEnd-I;
 | |
|     this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);
 | |
| 
 | |
|     // Replace the overwritten part.
 | |
|     for (; NumOverwritten > 0; --NumOverwritten) {
 | |
|       *I = *From;
 | |
|       ++I; ++From;
 | |
|     }
 | |
| 
 | |
|     // Insert the non-overwritten middle part.
 | |
|     this->uninitialized_copy(From, To, OldEnd);
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   const SmallVectorImpl
 | |
|   &operator=(const SmallVectorImpl &RHS);
 | |
| 
 | |
|   bool operator==(const SmallVectorImpl &RHS) const {
 | |
|     if (this->size() != RHS.size()) return false;
 | |
|     return std::equal(this->begin(), this->end(), RHS.begin());
 | |
|   }
 | |
|   bool operator!=(const SmallVectorImpl &RHS) const {
 | |
|     return !(*this == RHS);
 | |
|   }
 | |
| 
 | |
|   bool operator<(const SmallVectorImpl &RHS) const {
 | |
|     return std::lexicographical_compare(this->begin(), this->end(),
 | |
|                                         RHS.begin(), RHS.end());
 | |
|   }
 | |
| 
 | |
|   /// set_size - Set the array size to \arg N, which the current array must have
 | |
|   /// enough capacity for.
 | |
|   ///
 | |
|   /// This does not construct or destroy any elements in the vector.
 | |
|   ///
 | |
|   /// Clients can use this in conjunction with capacity() to write past the end
 | |
|   /// of the buffer when they know that more elements are available, and only
 | |
|   /// update the size later. This avoids the cost of value initializing elements
 | |
|   /// which will only be overwritten.
 | |
|   void set_size(unsigned N) {
 | |
|     assert(N <= this->capacity());
 | |
|     this->setEnd(this->begin() + N);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   static void construct_range(T *S, T *E, const T &Elt) {
 | |
|     for (; S != E; ++S)
 | |
|       new (S) T(Elt);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
 | |
|   if (this == &RHS) return;
 | |
| 
 | |
|   // We can only avoid copying elements if neither vector is small.
 | |
|   if (!this->isSmall() && !RHS.isSmall()) {
 | |
|     std::swap(this->BeginX, RHS.BeginX);
 | |
|     std::swap(this->EndX, RHS.EndX);
 | |
|     std::swap(this->CapacityX, RHS.CapacityX);
 | |
|     return;
 | |
|   }
 | |
|   if (RHS.size() > this->capacity())
 | |
|     this->grow(RHS.size());
 | |
|   if (this->size() > RHS.capacity())
 | |
|     RHS.grow(this->size());
 | |
| 
 | |
|   // Swap the shared elements.
 | |
|   size_t NumShared = this->size();
 | |
|   if (NumShared > RHS.size()) NumShared = RHS.size();
 | |
|   for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
 | |
|     std::swap((*this)[i], RHS[i]);
 | |
| 
 | |
|   // Copy over the extra elts.
 | |
|   if (this->size() > RHS.size()) {
 | |
|     size_t EltDiff = this->size() - RHS.size();
 | |
|     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
 | |
|     RHS.setEnd(RHS.end()+EltDiff);
 | |
|     this->destroy_range(this->begin()+NumShared, this->end());
 | |
|     this->setEnd(this->begin()+NumShared);
 | |
|   } else if (RHS.size() > this->size()) {
 | |
|     size_t EltDiff = RHS.size() - this->size();
 | |
|     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
 | |
|     this->setEnd(this->end() + EltDiff);
 | |
|     this->destroy_range(RHS.begin()+NumShared, RHS.end());
 | |
|     RHS.setEnd(RHS.begin()+NumShared);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| const SmallVectorImpl<T> &SmallVectorImpl<T>::
 | |
|   operator=(const SmallVectorImpl<T> &RHS) {
 | |
|   // Avoid self-assignment.
 | |
|   if (this == &RHS) return *this;
 | |
| 
 | |
|   // If we already have sufficient space, assign the common elements, then
 | |
|   // destroy any excess.
 | |
|   size_t RHSSize = RHS.size();
 | |
|   size_t CurSize = this->size();
 | |
|   if (CurSize >= RHSSize) {
 | |
|     // Assign common elements.
 | |
|     iterator NewEnd;
 | |
|     if (RHSSize)
 | |
|       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
 | |
|     else
 | |
|       NewEnd = this->begin();
 | |
| 
 | |
|     // Destroy excess elements.
 | |
|     this->destroy_range(NewEnd, this->end());
 | |
| 
 | |
|     // Trim.
 | |
|     this->setEnd(NewEnd);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // If we have to grow to have enough elements, destroy the current elements.
 | |
|   // This allows us to avoid copying them during the grow.
 | |
|   if (this->capacity() < RHSSize) {
 | |
|     // Destroy current elements.
 | |
|     this->destroy_range(this->begin(), this->end());
 | |
|     this->setEnd(this->begin());
 | |
|     CurSize = 0;
 | |
|     this->grow(RHSSize);
 | |
|   } else if (CurSize) {
 | |
|     // Otherwise, use assignment for the already-constructed elements.
 | |
|     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
 | |
|   }
 | |
| 
 | |
|   // Copy construct the new elements in place.
 | |
|   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
 | |
|                            this->begin()+CurSize);
 | |
| 
 | |
|   // Set end.
 | |
|   this->setEnd(this->begin()+RHSSize);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
 | |
| /// for the case when the array is small.  It contains some number of elements
 | |
| /// in-place, which allows it to avoid heap allocation when the actual number of
 | |
| /// elements is below that threshold.  This allows normal "small" cases to be
 | |
| /// fast without losing generality for large inputs.
 | |
| ///
 | |
| /// Note that this does not attempt to be exception safe.
 | |
| ///
 | |
| template <typename T, unsigned N>
 | |
| class SmallVector : public SmallVectorImpl<T> {
 | |
|   /// InlineElts - These are 'N-1' elements that are stored inline in the body
 | |
|   /// of the vector.  The extra '1' element is stored in SmallVectorImpl.
 | |
|   typedef typename SmallVectorImpl<T>::U U;
 | |
|   enum {
 | |
|     // MinUs - The number of U's require to cover N T's.
 | |
|     MinUs = (static_cast<unsigned int>(sizeof(T))*N +
 | |
|              static_cast<unsigned int>(sizeof(U)) - 1) /
 | |
|             static_cast<unsigned int>(sizeof(U)),
 | |
| 
 | |
|     // NumInlineEltsElts - The number of elements actually in this array.  There
 | |
|     // is already one in the parent class, and we have to round up to avoid
 | |
|     // having a zero-element array.
 | |
|     NumInlineEltsElts = MinUs > 1 ? (MinUs - 1) : 1,
 | |
| 
 | |
|     // NumTsAvailable - The number of T's we actually have space for, which may
 | |
|     // be more than N due to rounding.
 | |
|     NumTsAvailable = (NumInlineEltsElts+1)*static_cast<unsigned int>(sizeof(U))/
 | |
|                      static_cast<unsigned int>(sizeof(T))
 | |
|   };
 | |
|   U InlineElts[NumInlineEltsElts];
 | |
| public:
 | |
|   SmallVector() : SmallVectorImpl<T>(NumTsAvailable) {
 | |
|   }
 | |
| 
 | |
|   explicit SmallVector(unsigned Size, const T &Value = T())
 | |
|     : SmallVectorImpl<T>(NumTsAvailable) {
 | |
|     this->reserve(Size);
 | |
|     while (Size--)
 | |
|       this->push_back(Value);
 | |
|   }
 | |
| 
 | |
|   template<typename ItTy>
 | |
|   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(NumTsAvailable) {
 | |
|     this->append(S, E);
 | |
|   }
 | |
| 
 | |
|   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(NumTsAvailable) {
 | |
|     if (!RHS.empty())
 | |
|       SmallVectorImpl<T>::operator=(RHS);
 | |
|   }
 | |
| 
 | |
|   const SmallVector &operator=(const SmallVector &RHS) {
 | |
|     SmallVectorImpl<T>::operator=(RHS);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| /// Specialize SmallVector at N=0.  This specialization guarantees
 | |
| /// that it can be instantiated at an incomplete T if none of its
 | |
| /// members are required.
 | |
| template <typename T>
 | |
| class SmallVector<T,0> : public SmallVectorImpl<T> {
 | |
| public:
 | |
|   SmallVector() : SmallVectorImpl<T>(0) {}
 | |
| 
 | |
|   explicit SmallVector(unsigned Size, const T &Value = T())
 | |
|     : SmallVectorImpl<T>(0) {
 | |
|     this->reserve(Size);
 | |
|     while (Size--)
 | |
|       this->push_back(Value);
 | |
|   }
 | |
| 
 | |
|   template<typename ItTy>
 | |
|   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(0) {
 | |
|     this->append(S, E);
 | |
|   }
 | |
| 
 | |
|   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(0) {
 | |
|     SmallVectorImpl<T>::operator=(RHS);
 | |
|   }
 | |
| 
 | |
|   SmallVector &operator=(const SmallVectorImpl<T> &RHS) {
 | |
|     return SmallVectorImpl<T>::operator=(RHS);
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| template<typename T, unsigned N>
 | |
| static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
 | |
|   return X.capacity_in_bytes();
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| namespace std {
 | |
|   /// Implement std::swap in terms of SmallVector swap.
 | |
|   template<typename T>
 | |
|   inline void
 | |
|   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
 | |
|     LHS.swap(RHS);
 | |
|   }
 | |
| 
 | |
|   /// Implement std::swap in terms of SmallVector swap.
 | |
|   template<typename T, unsigned N>
 | |
|   inline void
 | |
|   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
 | |
|     LHS.swap(RHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif
 |