mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	I think I've audited all uses, so it should be dependable for address spaces, and the pointer+offset info should also be accurate when there. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114464 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			6461 lines
		
	
	
		
			232 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			6461 lines
		
	
	
		
			232 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the SelectionDAG class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "SDNodeOrdering.h"
 | |
| #include "SDNodeDbgValue.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalAlias.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetFrameInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetSelectionDAGInfo.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetIntrinsicInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/System/Mutex.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// makeVTList - Return an instance of the SDVTList struct initialized with the
 | |
| /// specified members.
 | |
| static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
 | |
|   SDVTList Res = {VTs, NumVTs};
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default: llvm_unreachable("Unknown FP format");
 | |
|   case MVT::f32:     return &APFloat::IEEEsingle;
 | |
|   case MVT::f64:     return &APFloat::IEEEdouble;
 | |
|   case MVT::f80:     return &APFloat::x87DoubleExtended;
 | |
|   case MVT::f128:    return &APFloat::IEEEquad;
 | |
|   case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              ConstantFPSDNode Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isExactlyValue - We don't rely on operator== working on double values, as
 | |
| /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 | |
| /// As such, this method can be used to do an exact bit-for-bit comparison of
 | |
| /// two floating point values.
 | |
| bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
 | |
|   return getValueAPF().bitwiseIsEqual(V);
 | |
| }
 | |
| 
 | |
| bool ConstantFPSDNode::isValueValidForType(EVT VT,
 | |
|                                            const APFloat& Val) {
 | |
|   assert(VT.isFloatingPoint() && "Can only convert between FP types");
 | |
| 
 | |
|   // PPC long double cannot be converted to any other type.
 | |
|   if (VT == MVT::ppcf128 ||
 | |
|       &Val.getSemantics() == &APFloat::PPCDoubleDouble)
 | |
|     return false;
 | |
| 
 | |
|   // convert modifies in place, so make a copy.
 | |
|   APFloat Val2 = APFloat(Val);
 | |
|   bool losesInfo;
 | |
|   (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
 | |
|                       &losesInfo);
 | |
|   return !losesInfo;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              ISD Namespace
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isBuildVectorAllOnes - Return true if the specified node is a
 | |
| /// BUILD_VECTOR where all of the elements are ~0 or undef.
 | |
| bool ISD::isBuildVectorAllOnes(const SDNode *N) {
 | |
|   // Look through a bit convert.
 | |
|   if (N->getOpcode() == ISD::BIT_CONVERT)
 | |
|     N = N->getOperand(0).getNode();
 | |
| 
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
 | |
| 
 | |
|   unsigned i = 0, e = N->getNumOperands();
 | |
| 
 | |
|   // Skip over all of the undef values.
 | |
|   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
 | |
|     ++i;
 | |
| 
 | |
|   // Do not accept an all-undef vector.
 | |
|   if (i == e) return false;
 | |
| 
 | |
|   // Do not accept build_vectors that aren't all constants or which have non-~0
 | |
|   // elements.
 | |
|   SDValue NotZero = N->getOperand(i);
 | |
|   if (isa<ConstantSDNode>(NotZero)) {
 | |
|     if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
 | |
|       return false;
 | |
|   } else if (isa<ConstantFPSDNode>(NotZero)) {
 | |
|     if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
 | |
|                 bitcastToAPInt().isAllOnesValue())
 | |
|       return false;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Okay, we have at least one ~0 value, check to see if the rest match or are
 | |
|   // undefs.
 | |
|   for (++i; i != e; ++i)
 | |
|     if (N->getOperand(i) != NotZero &&
 | |
|         N->getOperand(i).getOpcode() != ISD::UNDEF)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isBuildVectorAllZeros - Return true if the specified node is a
 | |
| /// BUILD_VECTOR where all of the elements are 0 or undef.
 | |
| bool ISD::isBuildVectorAllZeros(const SDNode *N) {
 | |
|   // Look through a bit convert.
 | |
|   if (N->getOpcode() == ISD::BIT_CONVERT)
 | |
|     N = N->getOperand(0).getNode();
 | |
| 
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
 | |
| 
 | |
|   unsigned i = 0, e = N->getNumOperands();
 | |
| 
 | |
|   // Skip over all of the undef values.
 | |
|   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
 | |
|     ++i;
 | |
| 
 | |
|   // Do not accept an all-undef vector.
 | |
|   if (i == e) return false;
 | |
| 
 | |
|   // Do not accept build_vectors that aren't all constants or which have non-0
 | |
|   // elements.
 | |
|   SDValue Zero = N->getOperand(i);
 | |
|   if (isa<ConstantSDNode>(Zero)) {
 | |
|     if (!cast<ConstantSDNode>(Zero)->isNullValue())
 | |
|       return false;
 | |
|   } else if (isa<ConstantFPSDNode>(Zero)) {
 | |
|     if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
 | |
|       return false;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Okay, we have at least one 0 value, check to see if the rest match or are
 | |
|   // undefs.
 | |
|   for (++i; i != e; ++i)
 | |
|     if (N->getOperand(i) != Zero &&
 | |
|         N->getOperand(i).getOpcode() != ISD::UNDEF)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isScalarToVector - Return true if the specified node is a
 | |
| /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
 | |
| /// element is not an undef.
 | |
| bool ISD::isScalarToVector(const SDNode *N) {
 | |
|   if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
 | |
|     return true;
 | |
| 
 | |
|   if (N->getOpcode() != ISD::BUILD_VECTOR)
 | |
|     return false;
 | |
|   if (N->getOperand(0).getOpcode() == ISD::UNDEF)
 | |
|     return false;
 | |
|   unsigned NumElems = N->getNumOperands();
 | |
|   for (unsigned i = 1; i < NumElems; ++i) {
 | |
|     SDValue V = N->getOperand(i);
 | |
|     if (V.getOpcode() != ISD::UNDEF)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
 | |
| /// when given the operation for (X op Y).
 | |
| ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
 | |
|   // To perform this operation, we just need to swap the L and G bits of the
 | |
|   // operation.
 | |
|   unsigned OldL = (Operation >> 2) & 1;
 | |
|   unsigned OldG = (Operation >> 1) & 1;
 | |
|   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
 | |
|                        (OldL << 1) |       // New G bit
 | |
|                        (OldG << 2));       // New L bit.
 | |
| }
 | |
| 
 | |
| /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
 | |
| /// 'op' is a valid SetCC operation.
 | |
| ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
 | |
|   unsigned Operation = Op;
 | |
|   if (isInteger)
 | |
|     Operation ^= 7;   // Flip L, G, E bits, but not U.
 | |
|   else
 | |
|     Operation ^= 15;  // Flip all of the condition bits.
 | |
| 
 | |
|   if (Operation > ISD::SETTRUE2)
 | |
|     Operation &= ~8;  // Don't let N and U bits get set.
 | |
| 
 | |
|   return ISD::CondCode(Operation);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSignedOp - For an integer comparison, return 1 if the comparison is a
 | |
| /// signed operation and 2 if the result is an unsigned comparison.  Return zero
 | |
| /// if the operation does not depend on the sign of the input (setne and seteq).
 | |
| static int isSignedOp(ISD::CondCode Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: llvm_unreachable("Illegal integer setcc operation!");
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETNE: return 0;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETGE: return 1;
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETUGE: return 2;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getSetCCOrOperation - Return the result of a logical OR between different
 | |
| /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
 | |
| /// returns SETCC_INVALID if it is not possible to represent the resultant
 | |
| /// comparison.
 | |
| ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
 | |
|                                        bool isInteger) {
 | |
|   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
 | |
|     // Cannot fold a signed integer setcc with an unsigned integer setcc.
 | |
|     return ISD::SETCC_INVALID;
 | |
| 
 | |
|   unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
 | |
| 
 | |
|   // If the N and U bits get set then the resultant comparison DOES suddenly
 | |
|   // care about orderedness, and is true when ordered.
 | |
|   if (Op > ISD::SETTRUE2)
 | |
|     Op &= ~16;     // Clear the U bit if the N bit is set.
 | |
| 
 | |
|   // Canonicalize illegal integer setcc's.
 | |
|   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
 | |
|     Op = ISD::SETNE;
 | |
| 
 | |
|   return ISD::CondCode(Op);
 | |
| }
 | |
| 
 | |
| /// getSetCCAndOperation - Return the result of a logical AND between different
 | |
| /// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
 | |
| /// function returns zero if it is not possible to represent the resultant
 | |
| /// comparison.
 | |
| ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
 | |
|                                         bool isInteger) {
 | |
|   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
 | |
|     // Cannot fold a signed setcc with an unsigned setcc.
 | |
|     return ISD::SETCC_INVALID;
 | |
| 
 | |
|   // Combine all of the condition bits.
 | |
|   ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
 | |
| 
 | |
|   // Canonicalize illegal integer setcc's.
 | |
|   if (isInteger) {
 | |
|     switch (Result) {
 | |
|     default: break;
 | |
|     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
 | |
|     case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
 | |
|     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
 | |
|     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
 | |
|     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           SDNode Profile Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
 | |
| ///
 | |
| static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
 | |
|   ID.AddInteger(OpC);
 | |
| }
 | |
| 
 | |
| /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
 | |
| /// solely with their pointer.
 | |
| static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
 | |
|   ID.AddPointer(VTList.VTs);
 | |
| }
 | |
| 
 | |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
 | |
| ///
 | |
| static void AddNodeIDOperands(FoldingSetNodeID &ID,
 | |
|                               const SDValue *Ops, unsigned NumOps) {
 | |
|   for (; NumOps; --NumOps, ++Ops) {
 | |
|     ID.AddPointer(Ops->getNode());
 | |
|     ID.AddInteger(Ops->getResNo());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
 | |
| ///
 | |
| static void AddNodeIDOperands(FoldingSetNodeID &ID,
 | |
|                               const SDUse *Ops, unsigned NumOps) {
 | |
|   for (; NumOps; --NumOps, ++Ops) {
 | |
|     ID.AddPointer(Ops->getNode());
 | |
|     ID.AddInteger(Ops->getResNo());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void AddNodeIDNode(FoldingSetNodeID &ID,
 | |
|                           unsigned short OpC, SDVTList VTList,
 | |
|                           const SDValue *OpList, unsigned N) {
 | |
|   AddNodeIDOpcode(ID, OpC);
 | |
|   AddNodeIDValueTypes(ID, VTList);
 | |
|   AddNodeIDOperands(ID, OpList, N);
 | |
| }
 | |
| 
 | |
| /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
 | |
| /// the NodeID data.
 | |
| static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
 | |
|   switch (N->getOpcode()) {
 | |
|   case ISD::TargetExternalSymbol:
 | |
|   case ISD::ExternalSymbol:
 | |
|     llvm_unreachable("Should only be used on nodes with operands");
 | |
|   default: break;  // Normal nodes don't need extra info.
 | |
|   case ISD::TargetConstant:
 | |
|   case ISD::Constant:
 | |
|     ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
 | |
|     break;
 | |
|   case ISD::TargetConstantFP:
 | |
|   case ISD::ConstantFP: {
 | |
|     ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TargetGlobalAddress:
 | |
|   case ISD::GlobalAddress:
 | |
|   case ISD::TargetGlobalTLSAddress:
 | |
|   case ISD::GlobalTLSAddress: {
 | |
|     const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
 | |
|     ID.AddPointer(GA->getGlobal());
 | |
|     ID.AddInteger(GA->getOffset());
 | |
|     ID.AddInteger(GA->getTargetFlags());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BasicBlock:
 | |
|     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
 | |
|     break;
 | |
|   case ISD::Register:
 | |
|     ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
 | |
|     break;
 | |
| 
 | |
|   case ISD::SRCVALUE:
 | |
|     ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
 | |
|     break;
 | |
|   case ISD::FrameIndex:
 | |
|   case ISD::TargetFrameIndex:
 | |
|     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
 | |
|     break;
 | |
|   case ISD::JumpTable:
 | |
|   case ISD::TargetJumpTable:
 | |
|     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
 | |
|     ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
 | |
|     break;
 | |
|   case ISD::ConstantPool:
 | |
|   case ISD::TargetConstantPool: {
 | |
|     const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
 | |
|     ID.AddInteger(CP->getAlignment());
 | |
|     ID.AddInteger(CP->getOffset());
 | |
|     if (CP->isMachineConstantPoolEntry())
 | |
|       CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
 | |
|     else
 | |
|       ID.AddPointer(CP->getConstVal());
 | |
|     ID.AddInteger(CP->getTargetFlags());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     const LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|     ID.AddInteger(LD->getMemoryVT().getRawBits());
 | |
|     ID.AddInteger(LD->getRawSubclassData());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::STORE: {
 | |
|     const StoreSDNode *ST = cast<StoreSDNode>(N);
 | |
|     ID.AddInteger(ST->getMemoryVT().getRawBits());
 | |
|     ID.AddInteger(ST->getRawSubclassData());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ATOMIC_CMP_SWAP:
 | |
|   case ISD::ATOMIC_SWAP:
 | |
|   case ISD::ATOMIC_LOAD_ADD:
 | |
|   case ISD::ATOMIC_LOAD_SUB:
 | |
|   case ISD::ATOMIC_LOAD_AND:
 | |
|   case ISD::ATOMIC_LOAD_OR:
 | |
|   case ISD::ATOMIC_LOAD_XOR:
 | |
|   case ISD::ATOMIC_LOAD_NAND:
 | |
|   case ISD::ATOMIC_LOAD_MIN:
 | |
|   case ISD::ATOMIC_LOAD_MAX:
 | |
|   case ISD::ATOMIC_LOAD_UMIN:
 | |
|   case ISD::ATOMIC_LOAD_UMAX: {
 | |
|     const AtomicSDNode *AT = cast<AtomicSDNode>(N);
 | |
|     ID.AddInteger(AT->getMemoryVT().getRawBits());
 | |
|     ID.AddInteger(AT->getRawSubclassData());
 | |
|     break;
 | |
|   }
 | |
|   case ISD::VECTOR_SHUFFLE: {
 | |
|     const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
 | |
|     for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
 | |
|          i != e; ++i)
 | |
|       ID.AddInteger(SVN->getMaskElt(i));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TargetBlockAddress:
 | |
|   case ISD::BlockAddress: {
 | |
|     ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
 | |
|     ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
 | |
|     break;
 | |
|   }
 | |
|   } // end switch (N->getOpcode())
 | |
| }
 | |
| 
 | |
| /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
 | |
| /// data.
 | |
| static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
 | |
|   AddNodeIDOpcode(ID, N->getOpcode());
 | |
|   // Add the return value info.
 | |
|   AddNodeIDValueTypes(ID, N->getVTList());
 | |
|   // Add the operand info.
 | |
|   AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
 | |
| 
 | |
|   // Handle SDNode leafs with special info.
 | |
|   AddNodeIDCustom(ID, N);
 | |
| }
 | |
| 
 | |
| /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
 | |
| /// the CSE map that carries volatility, temporalness, indexing mode, and
 | |
| /// extension/truncation information.
 | |
| ///
 | |
| static inline unsigned
 | |
| encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
 | |
|                      bool isNonTemporal) {
 | |
|   assert((ConvType & 3) == ConvType &&
 | |
|          "ConvType may not require more than 2 bits!");
 | |
|   assert((AM & 7) == AM &&
 | |
|          "AM may not require more than 3 bits!");
 | |
|   return ConvType |
 | |
|          (AM << 2) |
 | |
|          (isVolatile << 5) |
 | |
|          (isNonTemporal << 6);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              SelectionDAG Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// doNotCSE - Return true if CSE should not be performed for this node.
 | |
| static bool doNotCSE(SDNode *N) {
 | |
|   if (N->getValueType(0) == MVT::Flag)
 | |
|     return true; // Never CSE anything that produces a flag.
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::HANDLENODE:
 | |
|   case ISD::EH_LABEL:
 | |
|     return true;   // Never CSE these nodes.
 | |
|   }
 | |
| 
 | |
|   // Check that remaining values produced are not flags.
 | |
|   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
 | |
|     if (N->getValueType(i) == MVT::Flag)
 | |
|       return true; // Never CSE anything that produces a flag.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RemoveDeadNodes - This method deletes all unreachable nodes in the
 | |
| /// SelectionDAG.
 | |
| void SelectionDAG::RemoveDeadNodes() {
 | |
|   // Create a dummy node (which is not added to allnodes), that adds a reference
 | |
|   // to the root node, preventing it from being deleted.
 | |
|   HandleSDNode Dummy(getRoot());
 | |
| 
 | |
|   SmallVector<SDNode*, 128> DeadNodes;
 | |
| 
 | |
|   // Add all obviously-dead nodes to the DeadNodes worklist.
 | |
|   for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
 | |
|     if (I->use_empty())
 | |
|       DeadNodes.push_back(I);
 | |
| 
 | |
|   RemoveDeadNodes(DeadNodes);
 | |
| 
 | |
|   // If the root changed (e.g. it was a dead load, update the root).
 | |
|   setRoot(Dummy.getValue());
 | |
| }
 | |
| 
 | |
| /// RemoveDeadNodes - This method deletes the unreachable nodes in the
 | |
| /// given list, and any nodes that become unreachable as a result.
 | |
| void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
 | |
|                                    DAGUpdateListener *UpdateListener) {
 | |
| 
 | |
|   // Process the worklist, deleting the nodes and adding their uses to the
 | |
|   // worklist.
 | |
|   while (!DeadNodes.empty()) {
 | |
|     SDNode *N = DeadNodes.pop_back_val();
 | |
| 
 | |
|     if (UpdateListener)
 | |
|       UpdateListener->NodeDeleted(N, 0);
 | |
| 
 | |
|     // Take the node out of the appropriate CSE map.
 | |
|     RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|     // Next, brutally remove the operand list.  This is safe to do, as there are
 | |
|     // no cycles in the graph.
 | |
|     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
 | |
|       SDUse &Use = *I++;
 | |
|       SDNode *Operand = Use.getNode();
 | |
|       Use.set(SDValue());
 | |
| 
 | |
|       // Now that we removed this operand, see if there are no uses of it left.
 | |
|       if (Operand->use_empty())
 | |
|         DeadNodes.push_back(Operand);
 | |
|     }
 | |
| 
 | |
|     DeallocateNode(N);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
 | |
|   SmallVector<SDNode*, 16> DeadNodes(1, N);
 | |
|   RemoveDeadNodes(DeadNodes, UpdateListener);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::DeleteNode(SDNode *N) {
 | |
|   // First take this out of the appropriate CSE map.
 | |
|   RemoveNodeFromCSEMaps(N);
 | |
| 
 | |
|   // Finally, remove uses due to operands of this node, remove from the
 | |
|   // AllNodes list, and delete the node.
 | |
|   DeleteNodeNotInCSEMaps(N);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
 | |
|   assert(N != AllNodes.begin() && "Cannot delete the entry node!");
 | |
|   assert(N->use_empty() && "Cannot delete a node that is not dead!");
 | |
| 
 | |
|   // Drop all of the operands and decrement used node's use counts.
 | |
|   N->DropOperands();
 | |
| 
 | |
|   DeallocateNode(N);
 | |
| }
 | |
| 
 | |
| void SelectionDAG::DeallocateNode(SDNode *N) {
 | |
|   if (N->OperandsNeedDelete)
 | |
|     delete[] N->OperandList;
 | |
| 
 | |
|   // Set the opcode to DELETED_NODE to help catch bugs when node
 | |
|   // memory is reallocated.
 | |
|   N->NodeType = ISD::DELETED_NODE;
 | |
| 
 | |
|   NodeAllocator.Deallocate(AllNodes.remove(N));
 | |
| 
 | |
|   // Remove the ordering of this node.
 | |
|   Ordering->remove(N);
 | |
| 
 | |
|   // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
 | |
|   SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
 | |
|   for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
 | |
|     DbgVals[i]->setIsInvalidated();
 | |
| }
 | |
| 
 | |
| /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
 | |
| /// correspond to it.  This is useful when we're about to delete or repurpose
 | |
| /// the node.  We don't want future request for structurally identical nodes
 | |
| /// to return N anymore.
 | |
| bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
 | |
|   bool Erased = false;
 | |
|   switch (N->getOpcode()) {
 | |
|   case ISD::EntryToken:
 | |
|     llvm_unreachable("EntryToken should not be in CSEMaps!");
 | |
|     return false;
 | |
|   case ISD::HANDLENODE: return false;  // noop.
 | |
|   case ISD::CONDCODE:
 | |
|     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
 | |
|            "Cond code doesn't exist!");
 | |
|     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
 | |
|     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
 | |
|     break;
 | |
|   case ISD::ExternalSymbol:
 | |
|     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
 | |
|     break;
 | |
|   case ISD::TargetExternalSymbol: {
 | |
|     ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
 | |
|     Erased = TargetExternalSymbols.erase(
 | |
|                std::pair<std::string,unsigned char>(ESN->getSymbol(),
 | |
|                                                     ESN->getTargetFlags()));
 | |
|     break;
 | |
|   }
 | |
|   case ISD::VALUETYPE: {
 | |
|     EVT VT = cast<VTSDNode>(N)->getVT();
 | |
|     if (VT.isExtended()) {
 | |
|       Erased = ExtendedValueTypeNodes.erase(VT);
 | |
|     } else {
 | |
|       Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
 | |
|       ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     // Remove it from the CSE Map.
 | |
|     Erased = CSEMap.RemoveNode(N);
 | |
|     break;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   // Verify that the node was actually in one of the CSE maps, unless it has a
 | |
|   // flag result (which cannot be CSE'd) or is one of the special cases that are
 | |
|   // not subject to CSE.
 | |
|   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
 | |
|       !N->isMachineOpcode() && !doNotCSE(N)) {
 | |
|     N->dump(this);
 | |
|     dbgs() << "\n";
 | |
|     llvm_unreachable("Node is not in map!");
 | |
|   }
 | |
| #endif
 | |
|   return Erased;
 | |
| }
 | |
| 
 | |
| /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
 | |
| /// maps and modified in place. Add it back to the CSE maps, unless an identical
 | |
| /// node already exists, in which case transfer all its users to the existing
 | |
| /// node. This transfer can potentially trigger recursive merging.
 | |
| ///
 | |
| void
 | |
| SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
 | |
|                                        DAGUpdateListener *UpdateListener) {
 | |
|   // For node types that aren't CSE'd, just act as if no identical node
 | |
|   // already exists.
 | |
|   if (!doNotCSE(N)) {
 | |
|     SDNode *Existing = CSEMap.GetOrInsertNode(N);
 | |
|     if (Existing != N) {
 | |
|       // If there was already an existing matching node, use ReplaceAllUsesWith
 | |
|       // to replace the dead one with the existing one.  This can cause
 | |
|       // recursive merging of other unrelated nodes down the line.
 | |
|       ReplaceAllUsesWith(N, Existing, UpdateListener);
 | |
| 
 | |
|       // N is now dead.  Inform the listener if it exists and delete it.
 | |
|       if (UpdateListener)
 | |
|         UpdateListener->NodeDeleted(N, Existing);
 | |
|       DeleteNodeNotInCSEMaps(N);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the node doesn't already exist, we updated it.  Inform a listener if
 | |
|   // it exists.
 | |
|   if (UpdateListener)
 | |
|     UpdateListener->NodeUpdated(N);
 | |
| }
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized,
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
 | |
|                                            void *&InsertPos) {
 | |
|   if (doNotCSE(N))
 | |
|     return 0;
 | |
| 
 | |
|   SDValue Ops[] = { Op };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
 | |
|   AddNodeIDCustom(ID, N);
 | |
|   SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   return Node;
 | |
| }
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized,
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
 | |
|                                            SDValue Op1, SDValue Op2,
 | |
|                                            void *&InsertPos) {
 | |
|   if (doNotCSE(N))
 | |
|     return 0;
 | |
| 
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
 | |
|   AddNodeIDCustom(ID, N);
 | |
|   SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   return Node;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
 | |
| /// were replaced with those specified.  If this node is never memoized,
 | |
| /// return null, otherwise return a pointer to the slot it would take.  If a
 | |
| /// node already exists with these operands, the slot will be non-null.
 | |
| SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
 | |
|                                            const SDValue *Ops,unsigned NumOps,
 | |
|                                            void *&InsertPos) {
 | |
|   if (doNotCSE(N))
 | |
|     return 0;
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
 | |
|   AddNodeIDCustom(ID, N);
 | |
|   SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
 | |
|   return Node;
 | |
| }
 | |
| 
 | |
| /// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
 | |
| void SelectionDAG::VerifyNode(SDNode *N) {
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
|   case ISD::BUILD_PAIR: {
 | |
|     EVT VT = N->getValueType(0);
 | |
|     assert(N->getNumValues() == 1 && "Too many results!");
 | |
|     assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
 | |
|            "Wrong return type!");
 | |
|     assert(N->getNumOperands() == 2 && "Wrong number of operands!");
 | |
|     assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
 | |
|            "Mismatched operand types!");
 | |
|     assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
 | |
|            "Wrong operand type!");
 | |
|     assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
 | |
|            "Wrong return type size");
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BUILD_VECTOR: {
 | |
|     assert(N->getNumValues() == 1 && "Too many results!");
 | |
|     assert(N->getValueType(0).isVector() && "Wrong return type!");
 | |
|     assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
 | |
|            "Wrong number of operands!");
 | |
|     EVT EltVT = N->getValueType(0).getVectorElementType();
 | |
|     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
 | |
|       assert((I->getValueType() == EltVT ||
 | |
|              (EltVT.isInteger() && I->getValueType().isInteger() &&
 | |
|               EltVT.bitsLE(I->getValueType()))) &&
 | |
|             "Wrong operand type!");
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getEVTAlignment - Compute the default alignment value for the
 | |
| /// given type.
 | |
| ///
 | |
| unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
 | |
|   const Type *Ty = VT == MVT::iPTR ?
 | |
|                    PointerType::get(Type::getInt8Ty(*getContext()), 0) :
 | |
|                    VT.getTypeForEVT(*getContext());
 | |
| 
 | |
|   return TLI.getTargetData()->getABITypeAlignment(Ty);
 | |
| }
 | |
| 
 | |
| // EntryNode could meaningfully have debug info if we can find it...
 | |
| SelectionDAG::SelectionDAG(const TargetMachine &tm)
 | |
|   : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
 | |
|     EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
 | |
|     Root(getEntryNode()), Ordering(0) {
 | |
|   AllNodes.push_back(&EntryNode);
 | |
|   Ordering = new SDNodeOrdering();
 | |
|   DbgInfo = new SDDbgInfo();
 | |
| }
 | |
| 
 | |
| void SelectionDAG::init(MachineFunction &mf) {
 | |
|   MF = &mf;
 | |
|   Context = &mf.getFunction()->getContext();
 | |
| }
 | |
| 
 | |
| SelectionDAG::~SelectionDAG() {
 | |
|   allnodes_clear();
 | |
|   delete Ordering;
 | |
|   delete DbgInfo;
 | |
| }
 | |
| 
 | |
| void SelectionDAG::allnodes_clear() {
 | |
|   assert(&*AllNodes.begin() == &EntryNode);
 | |
|   AllNodes.remove(AllNodes.begin());
 | |
|   while (!AllNodes.empty())
 | |
|     DeallocateNode(AllNodes.begin());
 | |
| }
 | |
| 
 | |
| void SelectionDAG::clear() {
 | |
|   allnodes_clear();
 | |
|   OperandAllocator.Reset();
 | |
|   CSEMap.clear();
 | |
| 
 | |
|   ExtendedValueTypeNodes.clear();
 | |
|   ExternalSymbols.clear();
 | |
|   TargetExternalSymbols.clear();
 | |
|   std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
 | |
|             static_cast<CondCodeSDNode*>(0));
 | |
|   std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
 | |
|             static_cast<SDNode*>(0));
 | |
| 
 | |
|   EntryNode.UseList = 0;
 | |
|   AllNodes.push_back(&EntryNode);
 | |
|   Root = getEntryNode();
 | |
|   Ordering->clear();
 | |
|   DbgInfo->clear();
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
 | |
|   return VT.bitsGT(Op.getValueType()) ?
 | |
|     getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
 | |
|     getNode(ISD::TRUNCATE, DL, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
 | |
|   return VT.bitsGT(Op.getValueType()) ?
 | |
|     getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
 | |
|     getNode(ISD::TRUNCATE, DL, VT, Op);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
 | |
|   assert(!VT.isVector() &&
 | |
|          "getZeroExtendInReg should use the vector element type instead of "
 | |
|          "the vector type!");
 | |
|   if (Op.getValueType() == VT) return Op;
 | |
|   unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
 | |
|   APInt Imm = APInt::getLowBitsSet(BitWidth,
 | |
|                                    VT.getSizeInBits());
 | |
|   return getNode(ISD::AND, DL, Op.getValueType(), Op,
 | |
|                  getConstant(Imm, Op.getValueType()));
 | |
| }
 | |
| 
 | |
| /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
 | |
| ///
 | |
| SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
 | |
|   EVT EltVT = VT.getScalarType();
 | |
|   SDValue NegOne =
 | |
|     getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
 | |
|   return getNode(ISD::XOR, DL, VT, Val, NegOne);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
 | |
|   EVT EltVT = VT.getScalarType();
 | |
|   assert((EltVT.getSizeInBits() >= 64 ||
 | |
|          (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
 | |
|          "getConstant with a uint64_t value that doesn't fit in the type!");
 | |
|   return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
 | |
|   return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
 | |
|   assert(VT.isInteger() && "Cannot create FP integer constant!");
 | |
| 
 | |
|   EVT EltVT = VT.getScalarType();
 | |
|   assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
 | |
|          "APInt size does not match type size!");
 | |
| 
 | |
|   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
 | |
|   ID.AddPointer(&Val);
 | |
|   void *IP = 0;
 | |
|   SDNode *N = NULL;
 | |
|   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
 | |
|     if (!VT.isVector())
 | |
|       return SDValue(N, 0);
 | |
| 
 | |
|   if (!N) {
 | |
|     N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|     AllNodes.push_back(N);
 | |
|   }
 | |
| 
 | |
|   SDValue Result(N, 0);
 | |
|   if (VT.isVector()) {
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     Ops.assign(VT.getVectorNumElements(), Result);
 | |
|     Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
 | |
|   return getConstant(Val, TLI.getPointerTy(), isTarget);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
 | |
|   return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
 | |
|   assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
 | |
| 
 | |
|   EVT EltVT = VT.getScalarType();
 | |
| 
 | |
|   // Do the map lookup using the actual bit pattern for the floating point
 | |
|   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
 | |
|   // we don't have issues with SNANs.
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
 | |
|   ID.AddPointer(&V);
 | |
|   void *IP = 0;
 | |
|   SDNode *N = NULL;
 | |
|   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
 | |
|     if (!VT.isVector())
 | |
|       return SDValue(N, 0);
 | |
| 
 | |
|   if (!N) {
 | |
|     N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|     AllNodes.push_back(N);
 | |
|   }
 | |
| 
 | |
|   SDValue Result(N, 0);
 | |
|   if (VT.isVector()) {
 | |
|     SmallVector<SDValue, 8> Ops;
 | |
|     Ops.assign(VT.getVectorNumElements(), Result);
 | |
|     // FIXME DebugLoc info might be appropriate here
 | |
|     Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
 | |
|   EVT EltVT = VT.getScalarType();
 | |
|   if (EltVT==MVT::f32)
 | |
|     return getConstantFP(APFloat((float)Val), VT, isTarget);
 | |
|   else if (EltVT==MVT::f64)
 | |
|     return getConstantFP(APFloat(Val), VT, isTarget);
 | |
|   else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
 | |
|     bool ignored;
 | |
|     APFloat apf = APFloat(Val);
 | |
|     apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
 | |
|                 &ignored);
 | |
|     return getConstantFP(apf, VT, isTarget);
 | |
|   } else {
 | |
|     assert(0 && "Unsupported type in getConstantFP");
 | |
|     return SDValue();
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
 | |
|                                        EVT VT, int64_t Offset,
 | |
|                                        bool isTargetGA,
 | |
|                                        unsigned char TargetFlags) {
 | |
|   assert((TargetFlags == 0 || isTargetGA) &&
 | |
|          "Cannot set target flags on target-independent globals");
 | |
| 
 | |
|   // Truncate (with sign-extension) the offset value to the pointer size.
 | |
|   EVT PTy = TLI.getPointerTy();
 | |
|   unsigned BitWidth = PTy.getSizeInBits();
 | |
|   if (BitWidth < 64)
 | |
|     Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
 | |
| 
 | |
|   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
 | |
|   if (!GVar) {
 | |
|     // If GV is an alias then use the aliasee for determining thread-localness.
 | |
|     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
 | |
|       GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
 | |
|   }
 | |
| 
 | |
|   unsigned Opc;
 | |
|   if (GVar && GVar->isThreadLocal())
 | |
|     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
 | |
|   else
 | |
|     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddPointer(GV);
 | |
|   ID.AddInteger(Offset);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
 | |
|                                                       Offset, TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
 | |
|   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddInteger(FI);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
 | |
|                                    unsigned char TargetFlags) {
 | |
|   assert((TargetFlags == 0 || isTarget) &&
 | |
|          "Cannot set target flags on target-independent jump tables");
 | |
|   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddInteger(JTI);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
 | |
|                                                   TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
 | |
|                                       unsigned Alignment, int Offset,
 | |
|                                       bool isTarget,
 | |
|                                       unsigned char TargetFlags) {
 | |
|   assert((TargetFlags == 0 || isTarget) &&
 | |
|          "Cannot set target flags on target-independent globals");
 | |
|   if (Alignment == 0)
 | |
|     Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(Offset);
 | |
|   ID.AddPointer(C);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
 | |
|                                                      Alignment, TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
 | |
|                                       unsigned Alignment, int Offset,
 | |
|                                       bool isTarget,
 | |
|                                       unsigned char TargetFlags) {
 | |
|   assert((TargetFlags == 0 || isTarget) &&
 | |
|          "Cannot set target flags on target-independent globals");
 | |
|   if (Alignment == 0)
 | |
|     Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
 | |
|   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddInteger(Alignment);
 | |
|   ID.AddInteger(Offset);
 | |
|   C->AddSelectionDAGCSEId(ID);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
 | |
|                                                      Alignment, TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
 | |
|   ID.AddPointer(MBB);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getValueType(EVT VT) {
 | |
|   if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
 | |
|       ValueTypeNodes.size())
 | |
|     ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
 | |
| 
 | |
|   SDNode *&N = VT.isExtended() ?
 | |
|     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
 | |
| 
 | |
|   if (N) return SDValue(N, 0);
 | |
|   N = new (NodeAllocator) VTSDNode(VT);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
 | |
|   SDNode *&N = ExternalSymbols[Sym];
 | |
|   if (N) return SDValue(N, 0);
 | |
|   N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
 | |
|                                               unsigned char TargetFlags) {
 | |
|   SDNode *&N =
 | |
|     TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
 | |
|                                                                TargetFlags)];
 | |
|   if (N) return SDValue(N, 0);
 | |
|   N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
 | |
|   if ((unsigned)Cond >= CondCodeNodes.size())
 | |
|     CondCodeNodes.resize(Cond+1);
 | |
| 
 | |
|   if (CondCodeNodes[Cond] == 0) {
 | |
|     CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
 | |
|     CondCodeNodes[Cond] = N;
 | |
|     AllNodes.push_back(N);
 | |
|   }
 | |
| 
 | |
|   return SDValue(CondCodeNodes[Cond], 0);
 | |
| }
 | |
| 
 | |
| // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
 | |
| // the shuffle mask M that point at N1 to point at N2, and indices that point
 | |
| // N2 to point at N1.
 | |
| static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
 | |
|   std::swap(N1, N2);
 | |
|   int NElts = M.size();
 | |
|   for (int i = 0; i != NElts; ++i) {
 | |
|     if (M[i] >= NElts)
 | |
|       M[i] -= NElts;
 | |
|     else if (M[i] >= 0)
 | |
|       M[i] += NElts;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
 | |
|                                        SDValue N2, const int *Mask) {
 | |
|   assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
 | |
|   assert(VT.isVector() && N1.getValueType().isVector() &&
 | |
|          "Vector Shuffle VTs must be a vectors");
 | |
|   assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
 | |
|          && "Vector Shuffle VTs must have same element type");
 | |
| 
 | |
|   // Canonicalize shuffle undef, undef -> undef
 | |
|   if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
 | |
|     return getUNDEF(VT);
 | |
| 
 | |
|   // Validate that all indices in Mask are within the range of the elements
 | |
|   // input to the shuffle.
 | |
|   unsigned NElts = VT.getVectorNumElements();
 | |
|   SmallVector<int, 8> MaskVec;
 | |
|   for (unsigned i = 0; i != NElts; ++i) {
 | |
|     assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
 | |
|     MaskVec.push_back(Mask[i]);
 | |
|   }
 | |
| 
 | |
|   // Canonicalize shuffle v, v -> v, undef
 | |
|   if (N1 == N2) {
 | |
|     N2 = getUNDEF(VT);
 | |
|     for (unsigned i = 0; i != NElts; ++i)
 | |
|       if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
 | |
|   }
 | |
| 
 | |
|   // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
 | |
|   if (N1.getOpcode() == ISD::UNDEF)
 | |
|     commuteShuffle(N1, N2, MaskVec);
 | |
| 
 | |
|   // Canonicalize all index into lhs, -> shuffle lhs, undef
 | |
|   // Canonicalize all index into rhs, -> shuffle rhs, undef
 | |
|   bool AllLHS = true, AllRHS = true;
 | |
|   bool N2Undef = N2.getOpcode() == ISD::UNDEF;
 | |
|   for (unsigned i = 0; i != NElts; ++i) {
 | |
|     if (MaskVec[i] >= (int)NElts) {
 | |
|       if (N2Undef)
 | |
|         MaskVec[i] = -1;
 | |
|       else
 | |
|         AllLHS = false;
 | |
|     } else if (MaskVec[i] >= 0) {
 | |
|       AllRHS = false;
 | |
|     }
 | |
|   }
 | |
|   if (AllLHS && AllRHS)
 | |
|     return getUNDEF(VT);
 | |
|   if (AllLHS && !N2Undef)
 | |
|     N2 = getUNDEF(VT);
 | |
|   if (AllRHS) {
 | |
|     N1 = getUNDEF(VT);
 | |
|     commuteShuffle(N1, N2, MaskVec);
 | |
|   }
 | |
| 
 | |
|   // If Identity shuffle, or all shuffle in to undef, return that node.
 | |
|   bool AllUndef = true;
 | |
|   bool Identity = true;
 | |
|   for (unsigned i = 0; i != NElts; ++i) {
 | |
|     if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
 | |
|     if (MaskVec[i] >= 0) AllUndef = false;
 | |
|   }
 | |
|   if (Identity && NElts == N1.getValueType().getVectorNumElements())
 | |
|     return N1;
 | |
|   if (AllUndef)
 | |
|     return getUNDEF(VT);
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   SDValue Ops[2] = { N1, N2 };
 | |
|   AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
 | |
|   for (unsigned i = 0; i != NElts; ++i)
 | |
|     ID.AddInteger(MaskVec[i]);
 | |
| 
 | |
|   void* IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   // Allocate the mask array for the node out of the BumpPtrAllocator, since
 | |
|   // SDNode doesn't have access to it.  This memory will be "leaked" when
 | |
|   // the node is deallocated, but recovered when the NodeAllocator is released.
 | |
|   int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
 | |
|   memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
 | |
| 
 | |
|   ShuffleVectorSDNode *N =
 | |
|     new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
 | |
|                                        SDValue Val, SDValue DTy,
 | |
|                                        SDValue STy, SDValue Rnd, SDValue Sat,
 | |
|                                        ISD::CvtCode Code) {
 | |
|   // If the src and dest types are the same and the conversion is between
 | |
|   // integer types of the same sign or two floats, no conversion is necessary.
 | |
|   if (DTy == STy &&
 | |
|       (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
 | |
|     return Val;
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
 | |
|   AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
 | |
|   void* IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
 | |
|                                                            Code);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
 | |
|   ID.AddInteger(RegNo);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
 | |
|   FoldingSetNodeID ID;
 | |
|   SDValue Ops[] = { Root };
 | |
|   AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
 | |
|   ID.AddPointer(Label);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   
 | |
|   SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
 | |
|                                       bool isTarget,
 | |
|                                       unsigned char TargetFlags) {
 | |
|   unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
 | |
|   ID.AddPointer(BA);
 | |
|   ID.AddInteger(TargetFlags);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getSrcValue(const Value *V) {
 | |
|   assert((!V || V->getType()->isPointerTy()) &&
 | |
|          "SrcValue is not a pointer?");
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
 | |
|   ID.AddPointer(V);
 | |
| 
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| /// getMDNode - Return an MDNodeSDNode which holds an MDNode.
 | |
| SDValue SelectionDAG::getMDNode(const MDNode *MD) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
 | |
|   ID.AddPointer(MD);
 | |
|   
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
|   
 | |
|   SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getShiftAmountOperand - Return the specified value casted to
 | |
| /// the target's desired shift amount type.
 | |
| SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
 | |
|   EVT OpTy = Op.getValueType();
 | |
|   MVT ShTy = TLI.getShiftAmountTy();
 | |
|   if (OpTy == ShTy || OpTy.isVector()) return Op;
 | |
| 
 | |
|   ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
 | |
|   return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
 | |
| }
 | |
| 
 | |
| /// CreateStackTemporary - Create a stack temporary, suitable for holding the
 | |
| /// specified value type.
 | |
| SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
 | |
|   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
 | |
|   unsigned ByteSize = VT.getStoreSize();
 | |
|   const Type *Ty = VT.getTypeForEVT(*getContext());
 | |
|   unsigned StackAlign =
 | |
|   std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
 | |
| 
 | |
|   int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
 | |
|   return getFrameIndex(FrameIdx, TLI.getPointerTy());
 | |
| }
 | |
| 
 | |
| /// CreateStackTemporary - Create a stack temporary suitable for holding
 | |
| /// either of the specified value types.
 | |
| SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
 | |
|   unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
 | |
|                             VT2.getStoreSizeInBits())/8;
 | |
|   const Type *Ty1 = VT1.getTypeForEVT(*getContext());
 | |
|   const Type *Ty2 = VT2.getTypeForEVT(*getContext());
 | |
|   const TargetData *TD = TLI.getTargetData();
 | |
|   unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
 | |
|                             TD->getPrefTypeAlignment(Ty2));
 | |
| 
 | |
|   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
 | |
|   int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
 | |
|   return getFrameIndex(FrameIdx, TLI.getPointerTy());
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
 | |
|                                 SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
 | |
|   // These setcc operations always fold.
 | |
|   switch (Cond) {
 | |
|   default: break;
 | |
|   case ISD::SETFALSE:
 | |
|   case ISD::SETFALSE2: return getConstant(0, VT);
 | |
|   case ISD::SETTRUE:
 | |
|   case ISD::SETTRUE2:  return getConstant(1, VT);
 | |
| 
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETOLT:
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETONE:
 | |
|   case ISD::SETO:
 | |
|   case ISD::SETUO:
 | |
|   case ISD::SETUEQ:
 | |
|   case ISD::SETUNE:
 | |
|     assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
 | |
|     const APInt &C2 = N2C->getAPIntValue();
 | |
|     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
 | |
|       const APInt &C1 = N1C->getAPIntValue();
 | |
| 
 | |
|       switch (Cond) {
 | |
|       default: llvm_unreachable("Unknown integer setcc!");
 | |
|       case ISD::SETEQ:  return getConstant(C1 == C2, VT);
 | |
|       case ISD::SETNE:  return getConstant(C1 != C2, VT);
 | |
|       case ISD::SETULT: return getConstant(C1.ult(C2), VT);
 | |
|       case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
 | |
|       case ISD::SETULE: return getConstant(C1.ule(C2), VT);
 | |
|       case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
 | |
|       case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
 | |
|       case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
 | |
|       case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
 | |
|       case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
 | |
|     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
 | |
|       // No compile time operations on this type yet.
 | |
|       if (N1C->getValueType(0) == MVT::ppcf128)
 | |
|         return SDValue();
 | |
| 
 | |
|       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
 | |
|       switch (Cond) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETNE:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         // fall through
 | |
|       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpLessThan, VT);
 | |
|       case ISD::SETLT:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
 | |
|       case ISD::SETGT:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
 | |
|       case ISD::SETLE:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
 | |
|                                            R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETGE:  if (R==APFloat::cmpUnordered)
 | |
|                           return getUNDEF(VT);
 | |
|                         // fall through
 | |
|       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
 | |
|       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
 | |
|       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
 | |
|                                            R==APFloat::cmpEqual, VT);
 | |
|       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
 | |
|       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
 | |
|                                            R==APFloat::cmpLessThan, VT);
 | |
|       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
 | |
|                                            R==APFloat::cmpUnordered, VT);
 | |
|       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
 | |
|       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
 | |
|       }
 | |
|     } else {
 | |
|       // Ensure that the constant occurs on the RHS.
 | |
|       return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Could not fold it.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
 | |
| /// use this predicate to simplify operations downstream.
 | |
| bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
 | |
|   // This predicate is not safe for vector operations.
 | |
|   if (Op.getValueType().isVector())
 | |
|     return false;
 | |
| 
 | |
|   unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
 | |
|   return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
 | |
| }
 | |
| 
 | |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
 | |
| /// this predicate to simplify operations downstream.  Mask is known to be zero
 | |
| /// for bits that V cannot have.
 | |
| bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
 | |
|                                      unsigned Depth) const {
 | |
|   APInt KnownZero, KnownOne;
 | |
|   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
 | |
|   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|   return (KnownZero & Mask) == Mask;
 | |
| }
 | |
| 
 | |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are
 | |
| /// known to be either zero or one and return them in the KnownZero/KnownOne
 | |
| /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
 | |
| /// processing.
 | |
| void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
 | |
|                                      APInt &KnownZero, APInt &KnownOne,
 | |
|                                      unsigned Depth) const {
 | |
|   unsigned BitWidth = Mask.getBitWidth();
 | |
|   assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
 | |
|          "Mask size mismatches value type size!");
 | |
| 
 | |
|   KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
 | |
|   if (Depth == 6 || Mask == 0)
 | |
|     return;  // Limit search depth.
 | |
| 
 | |
|   APInt KnownZero2, KnownOne2;
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
 | |
|     KnownZero = ~KnownOne & Mask;
 | |
|     return;
 | |
|   case ISD::AND:
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
 | |
|                       KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     return;
 | |
|   case ISD::OR:
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
 | |
|                       KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     return;
 | |
|   case ISD::XOR: {
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     KnownZero = KnownZeroOut;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::MUL: {
 | |
|     APInt Mask2 = APInt::getAllOnesValue(BitWidth);
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If low bits are zero in either operand, output low known-0 bits.
 | |
|     // Also compute a conserative estimate for high known-0 bits.
 | |
|     // More trickiness is possible, but this is sufficient for the
 | |
|     // interesting case of alignment computation.
 | |
|     KnownOne.clear();
 | |
|     unsigned TrailZ = KnownZero.countTrailingOnes() +
 | |
|                       KnownZero2.countTrailingOnes();
 | |
|     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
 | |
|                                KnownZero2.countLeadingOnes(),
 | |
|                                BitWidth) - BitWidth;
 | |
| 
 | |
|     TrailZ = std::min(TrailZ, BitWidth);
 | |
|     LeadZ = std::min(LeadZ, BitWidth);
 | |
|     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
 | |
|                 APInt::getHighBitsSet(BitWidth, LeadZ);
 | |
|     KnownZero &= Mask;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::UDIV: {
 | |
|     // For the purposes of computing leading zeros we can conservatively
 | |
|     // treat a udiv as a logical right shift by the power of 2 known to
 | |
|     // be less than the denominator.
 | |
|     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | |
|     ComputeMaskedBits(Op.getOperand(0),
 | |
|                       AllOnes, KnownZero2, KnownOne2, Depth+1);
 | |
|     unsigned LeadZ = KnownZero2.countLeadingOnes();
 | |
| 
 | |
|     KnownOne2.clear();
 | |
|     KnownZero2.clear();
 | |
|     ComputeMaskedBits(Op.getOperand(1),
 | |
|                       AllOnes, KnownZero2, KnownOne2, Depth+1);
 | |
|     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
 | |
|     if (RHSUnknownLeadingOnes != BitWidth)
 | |
|       LeadZ = std::min(BitWidth,
 | |
|                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
 | |
| 
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case ISD::SELECT_CC:
 | |
|     ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case ISD::SADDO:
 | |
|   case ISD::UADDO:
 | |
|   case ISD::SSUBO:
 | |
|   case ISD::USUBO:
 | |
|   case ISD::SMULO:
 | |
|   case ISD::UMULO:
 | |
|     if (Op.getResNo() != 1)
 | |
|       return;
 | |
|     // The boolean result conforms to getBooleanContents.  Fall through.
 | |
|   case ISD::SETCC:
 | |
|     // If we know the result of a setcc has the top bits zero, use this info.
 | |
|     if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
 | |
|         BitWidth > 1)
 | |
|       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
 | |
|     return;
 | |
|   case ISD::SHL:
 | |
|     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         return;
 | |
| 
 | |
|       ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
 | |
|                         KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|       KnownZero <<= ShAmt;
 | |
|       KnownOne  <<= ShAmt;
 | |
|       // low bits known zero.
 | |
|       KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SRL:
 | |
|     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         return;
 | |
| 
 | |
|       ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
 | |
|                         KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|       KnownZero = KnownZero.lshr(ShAmt);
 | |
|       KnownOne  = KnownOne.lshr(ShAmt);
 | |
| 
 | |
|       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
 | |
|       KnownZero |= HighBits;  // High bits known zero.
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SRA:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         return;
 | |
| 
 | |
|       APInt InDemandedMask = (Mask << ShAmt);
 | |
|       // If any of the demanded bits are produced by the sign extension, we also
 | |
|       // demand the input sign bit.
 | |
|       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
 | |
|       if (HighBits.getBoolValue())
 | |
|         InDemandedMask |= APInt::getSignBit(BitWidth);
 | |
| 
 | |
|       ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
 | |
|                         Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|       KnownZero = KnownZero.lshr(ShAmt);
 | |
|       KnownOne  = KnownOne.lshr(ShAmt);
 | |
| 
 | |
|       // Handle the sign bits.
 | |
|       APInt SignBit = APInt::getSignBit(BitWidth);
 | |
|       SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
 | |
| 
 | |
|       if (KnownZero.intersects(SignBit)) {
 | |
|         KnownZero |= HighBits;  // New bits are known zero.
 | |
|       } else if (KnownOne.intersects(SignBit)) {
 | |
|         KnownOne  |= HighBits;  // New bits are known one.
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     unsigned EBits = EVT.getScalarType().getSizeInBits();
 | |
| 
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not
 | |
|     // present in the input.
 | |
|     APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
 | |
| 
 | |
|     APInt InSignBit = APInt::getSignBit(EBits);
 | |
|     APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
 | |
| 
 | |
|     // If the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     InSignBit.zext(BitWidth);
 | |
|     if (NewBits.getBoolValue())
 | |
|       InputDemandedBits |= InSignBit;
 | |
| 
 | |
|     ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
 | |
|                       KnownZero, KnownOne, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
 | |
|       KnownZero |= NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
 | |
|       KnownOne  |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {                              // Input sign bit unknown
 | |
|       KnownZero &= ~NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::CTTZ:
 | |
|   case ISD::CTLZ:
 | |
|   case ISD::CTPOP: {
 | |
|     unsigned LowBits = Log2_32(BitWidth)+1;
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
 | |
|     KnownOne.clear();
 | |
|     return;
 | |
|   }
 | |
|   case ISD::LOAD: {
 | |
|     if (ISD::isZEXTLoad(Op.getNode())) {
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|       EVT VT = LD->getMemoryVT();
 | |
|       unsigned MemBits = VT.getScalarType().getSizeInBits();
 | |
|       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarType().getSizeInBits();
 | |
|     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
 | |
|     APInt InMask    = Mask;
 | |
|     InMask.trunc(InBits);
 | |
|     KnownZero.trunc(InBits);
 | |
|     KnownOne.trunc(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
|     KnownZero |= NewBits;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarType().getSizeInBits();
 | |
|     APInt InSignBit = APInt::getSignBit(InBits);
 | |
|     APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
 | |
|     APInt InMask = Mask;
 | |
|     InMask.trunc(InBits);
 | |
| 
 | |
|     // If any of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded. Temporarily set this bit in the mask for our callee.
 | |
|     if (NewBits.getBoolValue())
 | |
|       InMask |= InSignBit;
 | |
| 
 | |
|     KnownZero.trunc(InBits);
 | |
|     KnownOne.trunc(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
| 
 | |
|     // Note if the sign bit is known to be zero or one.
 | |
|     bool SignBitKnownZero = KnownZero.isNegative();
 | |
|     bool SignBitKnownOne  = KnownOne.isNegative();
 | |
|     assert(!(SignBitKnownZero && SignBitKnownOne) &&
 | |
|            "Sign bit can't be known to be both zero and one!");
 | |
| 
 | |
|     // If the sign bit wasn't actually demanded by our caller, we don't
 | |
|     // want it set in the KnownZero and KnownOne result values. Reset the
 | |
|     // mask and reapply it to the result values.
 | |
|     InMask = Mask;
 | |
|     InMask.trunc(InBits);
 | |
|     KnownZero &= InMask;
 | |
|     KnownOne  &= InMask;
 | |
| 
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
| 
 | |
|     // If the sign bit is known zero or one, the top bits match.
 | |
|     if (SignBitKnownZero)
 | |
|       KnownZero |= NewBits;
 | |
|     else if (SignBitKnownOne)
 | |
|       KnownOne  |= NewBits;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarType().getSizeInBits();
 | |
|     APInt InMask = Mask;
 | |
|     InMask.trunc(InBits);
 | |
|     KnownZero.trunc(InBits);
 | |
|     KnownOne.trunc(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::TRUNCATE: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarType().getSizeInBits();
 | |
|     APInt InMask = Mask;
 | |
|     InMask.zext(InBits);
 | |
|     KnownZero.zext(InBits);
 | |
|     KnownOne.zext(InBits);
 | |
|     ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     KnownZero.trunc(BitWidth);
 | |
|     KnownOne.trunc(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
 | |
|                       KnownOne, Depth+1);
 | |
|     KnownZero |= (~InMask) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::FGETSIGN:
 | |
|     // All bits are zero except the low bit.
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
 | |
|     return;
 | |
| 
 | |
|   case ISD::SUB: {
 | |
|     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
 | |
|       // We know that the top bits of C-X are clear if X contains less bits
 | |
|       // than C (i.e. no wrap-around can happen).  For example, 20-X is
 | |
|       // positive if we can prove that X is >= 0 and < 16.
 | |
|       if (CLHS->getAPIntValue().isNonNegative()) {
 | |
|         unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
 | |
|         // NLZ can't be BitWidth with no sign bit
 | |
|         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
 | |
|         ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
 | |
|                           Depth+1);
 | |
| 
 | |
|         // If all of the MaskV bits are known to be zero, then we know the
 | |
|         // output top bits are zero, because we now know that the output is
 | |
|         // from [0-C].
 | |
|         if ((KnownZero2 & MaskV) == MaskV) {
 | |
|           unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
 | |
|           // Top bits known zero.
 | |
|           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // fall through
 | |
|   case ISD::ADD: {
 | |
|     // Output known-0 bits are known if clear or set in both the low clear bits
 | |
|     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
 | |
|     // low 3 bits clear.
 | |
|     APInt Mask2 = APInt::getLowBitsSet(BitWidth,
 | |
|                                        BitWidth - Mask.countLeadingZeros());
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
|     unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
 | |
| 
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
|     KnownZeroOut = std::min(KnownZeroOut,
 | |
|                             KnownZero2.countTrailingOnes());
 | |
| 
 | |
|     KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SREM:
 | |
|     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       const APInt &RA = Rem->getAPIntValue().abs();
 | |
|       if (RA.isPowerOf2()) {
 | |
|         APInt LowBits = RA - 1;
 | |
|         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
 | |
|         ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
 | |
| 
 | |
|         // The low bits of the first operand are unchanged by the srem.
 | |
|         KnownZero = KnownZero2 & LowBits;
 | |
|         KnownOne = KnownOne2 & LowBits;
 | |
| 
 | |
|         // If the first operand is non-negative or has all low bits zero, then
 | |
|         // the upper bits are all zero.
 | |
|         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
 | |
|           KnownZero |= ~LowBits;
 | |
| 
 | |
|         // If the first operand is negative and not all low bits are zero, then
 | |
|         // the upper bits are all one.
 | |
|         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
 | |
|           KnownOne |= ~LowBits;
 | |
| 
 | |
|         KnownZero &= Mask;
 | |
|         KnownOne &= Mask;
 | |
| 
 | |
|         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case ISD::UREM: {
 | |
|     if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       const APInt &RA = Rem->getAPIntValue();
 | |
|       if (RA.isPowerOf2()) {
 | |
|         APInt LowBits = (RA - 1);
 | |
|         APInt Mask2 = LowBits & Mask;
 | |
|         KnownZero |= ~LowBits & Mask;
 | |
|         ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
 | |
|         assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Since the result is less than or equal to either operand, any leading
 | |
|     // zero bits in either operand must also exist in the result.
 | |
|     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | |
|     ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
 | |
|                       Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
 | |
|                       Depth+1);
 | |
| 
 | |
|     uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
 | |
|                                 KnownZero2.countLeadingOnes());
 | |
|     KnownOne.clear();
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   default:
 | |
|     // Allow the target to implement this method for its nodes.
 | |
|     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|       TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
 | |
|                                          Depth);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ComputeNumSignBits - Return the number of times the sign bit of the
 | |
| /// register is replicated into the other bits.  We know that at least 1 bit
 | |
| /// is always equal to the sign bit (itself), but other cases can give us
 | |
| /// information.  For example, immediately after an "SRA X, 2", we know that
 | |
| /// the top 3 bits are all equal to each other, so we return 3.
 | |
| unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
 | |
|   EVT VT = Op.getValueType();
 | |
|   assert(VT.isInteger() && "Invalid VT!");
 | |
|   unsigned VTBits = VT.getScalarType().getSizeInBits();
 | |
|   unsigned Tmp, Tmp2;
 | |
|   unsigned FirstAnswer = 1;
 | |
| 
 | |
|   if (Depth == 6)
 | |
|     return 1;  // Limit search depth.
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::AssertSext:
 | |
|     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
 | |
|     return VTBits-Tmp+1;
 | |
|   case ISD::AssertZext:
 | |
|     Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
 | |
|     return VTBits-Tmp;
 | |
| 
 | |
|   case ISD::Constant: {
 | |
|     const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
 | |
|     // If negative, return # leading ones.
 | |
|     if (Val.isNegative())
 | |
|       return Val.countLeadingOnes();
 | |
| 
 | |
|     // Return # leading zeros.
 | |
|     return Val.countLeadingZeros();
 | |
|   }
 | |
| 
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
 | |
|     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
 | |
| 
 | |
|   case ISD::SIGN_EXTEND_INREG:
 | |
|     // Max of the input and what this extends.
 | |
|     Tmp =
 | |
|       cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
 | |
|     Tmp = VTBits-Tmp+1;
 | |
| 
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     return std::max(Tmp, Tmp2);
 | |
| 
 | |
|   case ISD::SRA:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     // SRA X, C   -> adds C sign bits.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       Tmp += C->getZExtValue();
 | |
|       if (Tmp > VTBits) Tmp = VTBits;
 | |
|     }
 | |
|     return Tmp;
 | |
|   case ISD::SHL:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       // shl destroys sign bits.
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|       if (C->getZExtValue() >= VTBits ||      // Bad shift.
 | |
|           C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
 | |
|       return Tmp - C->getZExtValue();
 | |
|     }
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:    // NOT is handled here.
 | |
|     // Logical binary ops preserve the number of sign bits at the worst.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp != 1) {
 | |
|       Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|       FirstAnswer = std::min(Tmp, Tmp2);
 | |
|       // We computed what we know about the sign bits as our first
 | |
|       // answer. Now proceed to the generic code that uses
 | |
|       // ComputeMaskedBits, and pick whichever answer is better.
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ISD::SELECT:
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
 | |
|     return std::min(Tmp, Tmp2);
 | |
| 
 | |
|   case ISD::SADDO:
 | |
|   case ISD::UADDO:
 | |
|   case ISD::SSUBO:
 | |
|   case ISD::USUBO:
 | |
|   case ISD::SMULO:
 | |
|   case ISD::UMULO:
 | |
|     if (Op.getResNo() != 1)
 | |
|       break;
 | |
|     // The boolean result conforms to getBooleanContents.  Fall through.
 | |
|   case ISD::SETCC:
 | |
|     // If setcc returns 0/-1, all bits are sign bits.
 | |
|     if (TLI.getBooleanContents() ==
 | |
|         TargetLowering::ZeroOrNegativeOneBooleanContent)
 | |
|       return VTBits;
 | |
|     break;
 | |
|   case ISD::ROTL:
 | |
|   case ISD::ROTR:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned RotAmt = C->getZExtValue() & (VTBits-1);
 | |
| 
 | |
|       // Handle rotate right by N like a rotate left by 32-N.
 | |
|       if (Op.getOpcode() == ISD::ROTR)
 | |
|         RotAmt = (VTBits-RotAmt) & (VTBits-1);
 | |
| 
 | |
|       // If we aren't rotating out all of the known-in sign bits, return the
 | |
|       // number that are left.  This handles rotl(sext(x), 1) for example.
 | |
|       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|       if (Tmp > RotAmt+1) return Tmp-RotAmt;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::ADD:
 | |
|     // Add can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
| 
 | |
|     // Special case decrementing a value (ADD X, -1):
 | |
|     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
 | |
|       if (CRHS->isAllOnesValue()) {
 | |
|         APInt KnownZero, KnownOne;
 | |
|         APInt Mask = APInt::getAllOnesValue(VTBits);
 | |
|         ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
| 
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((KnownZero | APInt(VTBits, 1)) == Mask)
 | |
|           return VTBits;
 | |
| 
 | |
|         // If we are subtracting one from a positive number, there is no carry
 | |
|         // out of the result.
 | |
|         if (KnownZero.isNegative())
 | |
|           return Tmp;
 | |
|       }
 | |
| 
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
|       return std::min(Tmp, Tmp2)-1;
 | |
|     break;
 | |
| 
 | |
|   case ISD::SUB:
 | |
|     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
| 
 | |
|     // Handle NEG.
 | |
|     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
 | |
|       if (CLHS->isNullValue()) {
 | |
|         APInt KnownZero, KnownOne;
 | |
|         APInt Mask = APInt::getAllOnesValue(VTBits);
 | |
|         ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((KnownZero | APInt(VTBits, 1)) == Mask)
 | |
|           return VTBits;
 | |
| 
 | |
|         // If the input is known to be positive (the sign bit is known clear),
 | |
|         // the output of the NEG has the same number of sign bits as the input.
 | |
|         if (KnownZero.isNegative())
 | |
|           return Tmp2;
 | |
| 
 | |
|         // Otherwise, we treat this like a SUB.
 | |
|       }
 | |
| 
 | |
|     // Sub can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|       return std::min(Tmp, Tmp2)-1;
 | |
|     break;
 | |
|   case ISD::TRUNCATE:
 | |
|     // FIXME: it's tricky to do anything useful for this, but it is an important
 | |
|     // case for targets like X86.
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Handle LOADX separately here. EXTLOAD case will fallthrough.
 | |
|   if (Op.getOpcode() == ISD::LOAD) {
 | |
|     LoadSDNode *LD = cast<LoadSDNode>(Op);
 | |
|     unsigned ExtType = LD->getExtensionType();
 | |
|     switch (ExtType) {
 | |
|     default: break;
 | |
|     case ISD::SEXTLOAD:    // '17' bits known
 | |
|       Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
 | |
|       return VTBits-Tmp+1;
 | |
|     case ISD::ZEXTLOAD:    // '16' bits known
 | |
|       Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
 | |
|       return VTBits-Tmp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Allow the target to implement this method for its nodes.
 | |
|   if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|       Op.getOpcode() == ISD::INTRINSIC_VOID) {
 | |
|     unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
 | |
|     if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
 | |
|   }
 | |
| 
 | |
|   // Finally, if we can prove that the top bits of the result are 0's or 1's,
 | |
|   // use this information.
 | |
|   APInt KnownZero, KnownOne;
 | |
|   APInt Mask = APInt::getAllOnesValue(VTBits);
 | |
|   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
 | |
| 
 | |
|   if (KnownZero.isNegative()) {        // sign bit is 0
 | |
|     Mask = KnownZero;
 | |
|   } else if (KnownOne.isNegative()) {  // sign bit is 1;
 | |
|     Mask = KnownOne;
 | |
|   } else {
 | |
|     // Nothing known.
 | |
|     return FirstAnswer;
 | |
|   }
 | |
| 
 | |
|   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
 | |
|   // the number of identical bits in the top of the input value.
 | |
|   Mask = ~Mask;
 | |
|   Mask <<= Mask.getBitWidth()-VTBits;
 | |
|   // Return # leading zeros.  We use 'min' here in case Val was zero before
 | |
|   // shifting.  We don't want to return '64' as for an i32 "0".
 | |
|   return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
 | |
|   // If we're told that NaNs won't happen, assume they won't.
 | |
|   if (NoNaNsFPMath)
 | |
|     return true;
 | |
| 
 | |
|   // If the value is a constant, we can obviously see if it is a NaN or not.
 | |
|   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return !C->getValueAPF().isNaN();
 | |
| 
 | |
|   // TODO: Recognize more cases here.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
 | |
|   // If the value is a constant, we can obviously see if it is a zero or not.
 | |
|   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return !C->isZero();
 | |
| 
 | |
|   // TODO: Recognize more cases here.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
 | |
|   // Check the obvious case.
 | |
|   if (A == B) return true;
 | |
| 
 | |
|   // For for negative and positive zero.
 | |
|   if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
 | |
|     if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
 | |
|       if (CA->isZero() && CB->isZero()) return true;
 | |
| 
 | |
|   // Otherwise they may not be equal.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
 | |
|   GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
 | |
|   if (!GA) return false;
 | |
|   if (GA->getOffset() != 0) return false;
 | |
|   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
 | |
|   if (!GV) return false;
 | |
|   return MF->getMMI().hasDebugInfo();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getNode - Gets or creates the specified node.
 | |
| ///
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
 | |
|   CSEMap.InsertNode(N, IP);
 | |
| 
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
 | |
|                               EVT VT, SDValue Operand) {
 | |
|   // Constant fold unary operations with an integer constant operand.
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
 | |
|     const APInt &Val = C->getAPIntValue();
 | |
|     switch (Opcode) {
 | |
|     default: break;
 | |
|     case ISD::SIGN_EXTEND:
 | |
|       return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
 | |
|     case ISD::ANY_EXTEND:
 | |
|     case ISD::ZERO_EXTEND:
 | |
|     case ISD::TRUNCATE:
 | |
|       return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
 | |
|     case ISD::UINT_TO_FP:
 | |
|     case ISD::SINT_TO_FP: {
 | |
|       const uint64_t zero[] = {0, 0};
 | |
|       // No compile time operations on ppcf128.
 | |
|       if (VT == MVT::ppcf128) break;
 | |
|       APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
 | |
|       (void)apf.convertFromAPInt(Val,
 | |
|                                  Opcode==ISD::SINT_TO_FP,
 | |
|                                  APFloat::rmNearestTiesToEven);
 | |
|       return getConstantFP(apf, VT);
 | |
|     }
 | |
|     case ISD::BIT_CONVERT:
 | |
|       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
 | |
|         return getConstantFP(Val.bitsToFloat(), VT);
 | |
|       else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
 | |
|         return getConstantFP(Val.bitsToDouble(), VT);
 | |
|       break;
 | |
|     case ISD::BSWAP:
 | |
|       return getConstant(Val.byteSwap(), VT);
 | |
|     case ISD::CTPOP:
 | |
|       return getConstant(Val.countPopulation(), VT);
 | |
|     case ISD::CTLZ:
 | |
|       return getConstant(Val.countLeadingZeros(), VT);
 | |
|     case ISD::CTTZ:
 | |
|       return getConstant(Val.countTrailingZeros(), VT);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Constant fold unary operations with a floating point constant operand.
 | |
|   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
 | |
|     APFloat V = C->getValueAPF();    // make copy
 | |
|     if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
 | |
|       switch (Opcode) {
 | |
|       case ISD::FNEG:
 | |
|         V.changeSign();
 | |
|         return getConstantFP(V, VT);
 | |
|       case ISD::FABS:
 | |
|         V.clearSign();
 | |
|         return getConstantFP(V, VT);
 | |
|       case ISD::FP_ROUND:
 | |
|       case ISD::FP_EXTEND: {
 | |
|         bool ignored;
 | |
|         // This can return overflow, underflow, or inexact; we don't care.
 | |
|         // FIXME need to be more flexible about rounding mode.
 | |
|         (void)V.convert(*EVTToAPFloatSemantics(VT),
 | |
|                         APFloat::rmNearestTiesToEven, &ignored);
 | |
|         return getConstantFP(V, VT);
 | |
|       }
 | |
|       case ISD::FP_TO_SINT:
 | |
|       case ISD::FP_TO_UINT: {
 | |
|         integerPart x[2];
 | |
|         bool ignored;
 | |
|         assert(integerPartWidth >= 64);
 | |
|         // FIXME need to be more flexible about rounding mode.
 | |
|         APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
 | |
|                               Opcode==ISD::FP_TO_SINT,
 | |
|                               APFloat::rmTowardZero, &ignored);
 | |
|         if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
 | |
|           break;
 | |
|         APInt api(VT.getSizeInBits(), 2, x);
 | |
|         return getConstant(api, VT);
 | |
|       }
 | |
|       case ISD::BIT_CONVERT:
 | |
|         if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
 | |
|           return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
 | |
|         else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
 | |
|           return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned OpOpcode = Operand.getNode()->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   case ISD::TokenFactor:
 | |
|   case ISD::MERGE_VALUES:
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     return Operand;         // Factor, merge or concat of one node?  No need.
 | |
|   case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
 | |
|   case ISD::FP_EXTEND:
 | |
|     assert(VT.isFloatingPoint() &&
 | |
|            Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
 | |
|     if (Operand.getValueType() == VT) return Operand;  // noop conversion.
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() ==
 | |
|             Operand.getValueType().getVectorNumElements()) &&
 | |
|            "Vector element count mismatch!");
 | |
|     if (Operand.getOpcode() == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid SIGN_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
 | |
|            "Invalid sext node, dst < src!");
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() ==
 | |
|             Operand.getValueType().getVectorNumElements()) &&
 | |
|            "Vector element count mismatch!");
 | |
|     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
 | |
|       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
 | |
|     break;
 | |
|   case ISD::ZERO_EXTEND:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid ZERO_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
 | |
|            "Invalid zext node, dst < src!");
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() ==
 | |
|             Operand.getValueType().getVectorNumElements()) &&
 | |
|            "Vector element count mismatch!");
 | |
|     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
 | |
|       return getNode(ISD::ZERO_EXTEND, DL, VT,
 | |
|                      Operand.getNode()->getOperand(0));
 | |
|     break;
 | |
|   case ISD::ANY_EXTEND:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid ANY_EXTEND!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop extension
 | |
|     assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
 | |
|            "Invalid anyext node, dst < src!");
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() ==
 | |
|             Operand.getValueType().getVectorNumElements()) &&
 | |
|            "Vector element count mismatch!");
 | |
| 
 | |
|     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
 | |
|         OpOpcode == ISD::ANY_EXTEND)
 | |
|       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
 | |
|       return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
 | |
| 
 | |
|     // (ext (trunx x)) -> x
 | |
|     if (OpOpcode == ISD::TRUNCATE) {
 | |
|       SDValue OpOp = Operand.getNode()->getOperand(0);
 | |
|       if (OpOp.getValueType() == VT)
 | |
|         return OpOp;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::TRUNCATE:
 | |
|     assert(VT.isInteger() && Operand.getValueType().isInteger() &&
 | |
|            "Invalid TRUNCATE!");
 | |
|     if (Operand.getValueType() == VT) return Operand;   // noop truncate
 | |
|     assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
 | |
|            "Invalid truncate node, src < dst!");
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() ==
 | |
|             Operand.getValueType().getVectorNumElements()) &&
 | |
|            "Vector element count mismatch!");
 | |
|     if (OpOpcode == ISD::TRUNCATE)
 | |
|       return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
 | |
|     else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
 | |
|              OpOpcode == ISD::ANY_EXTEND) {
 | |
|       // If the source is smaller than the dest, we still need an extend.
 | |
|       if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
 | |
|             .bitsLT(VT.getScalarType()))
 | |
|         return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
 | |
|       else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
 | |
|         return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
 | |
|       else
 | |
|         return Operand.getNode()->getOperand(0);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::BIT_CONVERT:
 | |
|     // Basic sanity checking.
 | |
|     assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
 | |
|            && "Cannot BIT_CONVERT between types of different sizes!");
 | |
|     if (VT == Operand.getValueType()) return Operand;  // noop conversion.
 | |
|     if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
 | |
|       return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
|     break;
 | |
|   case ISD::SCALAR_TO_VECTOR:
 | |
|     assert(VT.isVector() && !Operand.getValueType().isVector() &&
 | |
|            (VT.getVectorElementType() == Operand.getValueType() ||
 | |
|             (VT.getVectorElementType().isInteger() &&
 | |
|              Operand.getValueType().isInteger() &&
 | |
|              VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
 | |
|            "Illegal SCALAR_TO_VECTOR node!");
 | |
|     if (OpOpcode == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
|     // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
 | |
|     if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
 | |
|         isa<ConstantSDNode>(Operand.getOperand(1)) &&
 | |
|         Operand.getConstantOperandVal(1) == 0 &&
 | |
|         Operand.getOperand(0).getValueType() == VT)
 | |
|       return Operand.getOperand(0);
 | |
|     break;
 | |
|   case ISD::FNEG:
 | |
|     // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
 | |
|     if (UnsafeFPMath && OpOpcode == ISD::FSUB)
 | |
|       return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
 | |
|                      Operand.getNode()->getOperand(0));
 | |
|     if (OpOpcode == ISD::FNEG)  // --X -> X
 | |
|       return Operand.getNode()->getOperand(0);
 | |
|     break;
 | |
|   case ISD::FABS:
 | |
|     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
 | |
|       return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) { // Don't CSE flag producing nodes
 | |
|     FoldingSetNodeID ID;
 | |
|     SDValue Ops[1] = { Operand };
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDValue(E, 0);
 | |
| 
 | |
|     N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
 | |
|   }
 | |
| 
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
 | |
|                                              EVT VT,
 | |
|                                              ConstantSDNode *Cst1,
 | |
|                                              ConstantSDNode *Cst2) {
 | |
|   const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   case ISD::ADD:  return getConstant(C1 + C2, VT);
 | |
|   case ISD::SUB:  return getConstant(C1 - C2, VT);
 | |
|   case ISD::MUL:  return getConstant(C1 * C2, VT);
 | |
|   case ISD::UDIV:
 | |
|     if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
 | |
|     break;
 | |
|   case ISD::UREM:
 | |
|     if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
 | |
|     break;
 | |
|   case ISD::SDIV:
 | |
|     if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
 | |
|     break;
 | |
|   case ISD::SREM:
 | |
|     if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
 | |
|     break;
 | |
|   case ISD::AND:  return getConstant(C1 & C2, VT);
 | |
|   case ISD::OR:   return getConstant(C1 | C2, VT);
 | |
|   case ISD::XOR:  return getConstant(C1 ^ C2, VT);
 | |
|   case ISD::SHL:  return getConstant(C1 << C2, VT);
 | |
|   case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
 | |
|   case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
 | |
|   case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
 | |
|   case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
 | |
|                               SDValue N1, SDValue N2) {
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
 | |
|   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case ISD::TokenFactor:
 | |
|     assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
 | |
|            N2.getValueType() == MVT::Other && "Invalid token factor!");
 | |
|     // Fold trivial token factors.
 | |
|     if (N1.getOpcode() == ISD::EntryToken) return N2;
 | |
|     if (N2.getOpcode() == ISD::EntryToken) return N1;
 | |
|     if (N1 == N2) return N1;
 | |
|     break;
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
 | |
|     // one big BUILD_VECTOR.
 | |
|     if (N1.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|         N2.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|       SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
 | |
|                                     N1.getNode()->op_end());
 | |
|       Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
 | |
|       return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|     assert(VT.isInteger() && "This operator does not apply to FP types!");
 | |
|     assert(N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
 | |
|     // worth handling here.
 | |
|     if (N2C && N2C->isNullValue())
 | |
|       return N2;
 | |
|     if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|   case ISD::ADD:
 | |
|   case ISD::SUB:
 | |
|     assert(VT.isInteger() && "This operator does not apply to FP types!");
 | |
|     assert(N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
 | |
|     // it's worth handling here.
 | |
|     if (N2C && N2C->isNullValue())
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::UDIV:
 | |
|   case ISD::UREM:
 | |
|   case ISD::MULHU:
 | |
|   case ISD::MULHS:
 | |
|   case ISD::MUL:
 | |
|   case ISD::SDIV:
 | |
|   case ISD::SREM:
 | |
|     assert(VT.isInteger() && "This operator does not apply to FP types!");
 | |
|     assert(N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     break;
 | |
|   case ISD::FADD:
 | |
|   case ISD::FSUB:
 | |
|   case ISD::FMUL:
 | |
|   case ISD::FDIV:
 | |
|   case ISD::FREM:
 | |
|     if (UnsafeFPMath) {
 | |
|       if (Opcode == ISD::FADD) {
 | |
|         // 0+x --> x
 | |
|         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
 | |
|           if (CFP->getValueAPF().isZero())
 | |
|             return N2;
 | |
|         // x+0 --> x
 | |
|         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
 | |
|           if (CFP->getValueAPF().isZero())
 | |
|             return N1;
 | |
|       } else if (Opcode == ISD::FSUB) {
 | |
|         // x-0 --> x
 | |
|         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
 | |
|           if (CFP->getValueAPF().isZero())
 | |
|             return N1;
 | |
|       }
 | |
|     }
 | |
|     assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
 | |
|     assert(N1.getValueType() == N2.getValueType() &&
 | |
|            N1.getValueType() == VT && "Binary operator types must match!");
 | |
|     break;
 | |
|   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
 | |
|     assert(N1.getValueType() == VT &&
 | |
|            N1.getValueType().isFloatingPoint() &&
 | |
|            N2.getValueType().isFloatingPoint() &&
 | |
|            "Invalid FCOPYSIGN!");
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|   case ISD::ROTL:
 | |
|   case ISD::ROTR:
 | |
|     assert(VT == N1.getValueType() &&
 | |
|            "Shift operators return type must be the same as their first arg");
 | |
|     assert(VT.isInteger() && N2.getValueType().isInteger() &&
 | |
|            "Shifts only work on integers");
 | |
| 
 | |
|     // Always fold shifts of i1 values so the code generator doesn't need to
 | |
|     // handle them.  Since we know the size of the shift has to be less than the
 | |
|     // size of the value, the shift/rotate count is guaranteed to be zero.
 | |
|     if (VT == MVT::i1)
 | |
|       return N1;
 | |
|     if (N2C && N2C->isNullValue())
 | |
|       return N1;
 | |
|     break;
 | |
|   case ISD::FP_ROUND_INREG: {
 | |
|     EVT EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg round!");
 | |
|     assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
 | |
|            "Cannot FP_ROUND_INREG integer types");
 | |
|     assert(EVT.isVector() == VT.isVector() &&
 | |
|            "FP_ROUND_INREG type should be vector iff the operand "
 | |
|            "type is vector!");
 | |
|     assert((!EVT.isVector() ||
 | |
|             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
 | |
|            "Vector element counts must match in FP_ROUND_INREG");
 | |
|     assert(EVT.bitsLE(VT) && "Not rounding down!");
 | |
|     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::FP_ROUND:
 | |
|     assert(VT.isFloatingPoint() &&
 | |
|            N1.getValueType().isFloatingPoint() &&
 | |
|            VT.bitsLE(N1.getValueType()) &&
 | |
|            isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
 | |
|     if (N1.getValueType() == VT) return N1;  // noop conversion.
 | |
|     break;
 | |
|   case ISD::AssertSext:
 | |
|   case ISD::AssertZext: {
 | |
|     EVT EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg extend!");
 | |
|     assert(VT.isInteger() && EVT.isInteger() &&
 | |
|            "Cannot *_EXTEND_INREG FP types");
 | |
|     assert(!EVT.isVector() &&
 | |
|            "AssertSExt/AssertZExt type should be the vector element type "
 | |
|            "rather than the vector type!");
 | |
|     assert(EVT.bitsLE(VT) && "Not extending!");
 | |
|     if (VT == EVT) return N1; // noop assertion.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     EVT EVT = cast<VTSDNode>(N2)->getVT();
 | |
|     assert(VT == N1.getValueType() && "Not an inreg extend!");
 | |
|     assert(VT.isInteger() && EVT.isInteger() &&
 | |
|            "Cannot *_EXTEND_INREG FP types");
 | |
|     assert(EVT.isVector() == VT.isVector() &&
 | |
|            "SIGN_EXTEND_INREG type should be vector iff the operand "
 | |
|            "type is vector!");
 | |
|     assert((!EVT.isVector() ||
 | |
|             EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
 | |
|            "Vector element counts must match in SIGN_EXTEND_INREG");
 | |
|     assert(EVT.bitsLE(VT) && "Not extending!");
 | |
|     if (EVT == VT) return N1;  // Not actually extending
 | |
| 
 | |
|     if (N1C) {
 | |
|       APInt Val = N1C->getAPIntValue();
 | |
|       unsigned FromBits = EVT.getScalarType().getSizeInBits();
 | |
|       Val <<= Val.getBitWidth()-FromBits;
 | |
|       Val = Val.ashr(Val.getBitWidth()-FromBits);
 | |
|       return getConstant(Val, VT);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|     // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
 | |
|     if (N1.getOpcode() == ISD::UNDEF)
 | |
|       return getUNDEF(VT);
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
 | |
|     // expanding copies of large vectors from registers.
 | |
|     if (N2C &&
 | |
|         N1.getOpcode() == ISD::CONCAT_VECTORS &&
 | |
|         N1.getNumOperands() > 0) {
 | |
|       unsigned Factor =
 | |
|         N1.getOperand(0).getValueType().getVectorNumElements();
 | |
|       return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
 | |
|                      N1.getOperand(N2C->getZExtValue() / Factor),
 | |
|                      getConstant(N2C->getZExtValue() % Factor,
 | |
|                                  N2.getValueType()));
 | |
|     }
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
 | |
|     // expanding large vector constants.
 | |
|     if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|       SDValue Elt = N1.getOperand(N2C->getZExtValue());
 | |
|       EVT VEltTy = N1.getValueType().getVectorElementType();
 | |
|       if (Elt.getValueType() != VEltTy) {
 | |
|         // If the vector element type is not legal, the BUILD_VECTOR operands
 | |
|         // are promoted and implicitly truncated.  Make that explicit here.
 | |
|         Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
 | |
|       }
 | |
|       if (VT != VEltTy) {
 | |
|         // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
 | |
|         // result is implicitly extended.
 | |
|         Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
 | |
|       }
 | |
|       return Elt;
 | |
|     }
 | |
| 
 | |
|     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
 | |
|     // operations are lowered to scalars.
 | |
|     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
 | |
|       // If the indices are the same, return the inserted element else
 | |
|       // if the indices are known different, extract the element from
 | |
|       // the original vector.
 | |
|       SDValue N1Op2 = N1.getOperand(2);
 | |
|       ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
 | |
| 
 | |
|       if (N1Op2C && N2C) {
 | |
|         if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
 | |
|           if (VT == N1.getOperand(1).getValueType())
 | |
|             return N1.getOperand(1);
 | |
|           else
 | |
|             return getSExtOrTrunc(N1.getOperand(1), DL, VT);
 | |
|         }
 | |
| 
 | |
|         return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::EXTRACT_ELEMENT:
 | |
|     assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
 | |
|     assert(!N1.getValueType().isVector() && !VT.isVector() &&
 | |
|            (N1.getValueType().isInteger() == VT.isInteger()) &&
 | |
|            "Wrong types for EXTRACT_ELEMENT!");
 | |
| 
 | |
|     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
 | |
|     // 64-bit integers into 32-bit parts.  Instead of building the extract of
 | |
|     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
 | |
|     if (N1.getOpcode() == ISD::BUILD_PAIR)
 | |
|       return N1.getOperand(N2C->getZExtValue());
 | |
| 
 | |
|     // EXTRACT_ELEMENT of a constant int is also very common.
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
 | |
|       unsigned ElementSize = VT.getSizeInBits();
 | |
|       unsigned Shift = ElementSize * N2C->getZExtValue();
 | |
|       APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
 | |
|       return getConstant(ShiftedVal.trunc(ElementSize), VT);
 | |
|     }
 | |
|     break;
 | |
|   case ISD::EXTRACT_SUBVECTOR:
 | |
|     if (N1.getValueType() == VT) // Trivial extraction.
 | |
|       return N1;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (N1C) {
 | |
|     if (N2C) {
 | |
|       SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
 | |
|       if (SV.getNode()) return SV;
 | |
|     } else {      // Cannonicalize constant to RHS if commutative
 | |
|       if (isCommutativeBinOp(Opcode)) {
 | |
|         std::swap(N1C, N2C);
 | |
|         std::swap(N1, N2);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Constant fold FP operations.
 | |
|   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
 | |
|   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
 | |
|   if (N1CFP) {
 | |
|     if (!N2CFP && isCommutativeBinOp(Opcode)) {
 | |
|       // Cannonicalize constant to RHS if commutative
 | |
|       std::swap(N1CFP, N2CFP);
 | |
|       std::swap(N1, N2);
 | |
|     } else if (N2CFP && VT != MVT::ppcf128) {
 | |
|       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
 | |
|       APFloat::opStatus s;
 | |
|       switch (Opcode) {
 | |
|       case ISD::FADD:
 | |
|         s = V1.add(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s != APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FSUB:
 | |
|         s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FMUL:
 | |
|         s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FDIV:
 | |
|         s = V1.divide(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FREM :
 | |
|         s = V1.mod(V2, APFloat::rmNearestTiesToEven);
 | |
|         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
 | |
|           return getConstantFP(V1, VT);
 | |
|         break;
 | |
|       case ISD::FCOPYSIGN:
 | |
|         V1.copySign(V2);
 | |
|         return getConstantFP(V1, VT);
 | |
|       default: break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Canonicalize an UNDEF to the RHS, even over a constant.
 | |
|   if (N1.getOpcode() == ISD::UNDEF) {
 | |
|     if (isCommutativeBinOp(Opcode)) {
 | |
|       std::swap(N1, N2);
 | |
|     } else {
 | |
|       switch (Opcode) {
 | |
|       case ISD::FP_ROUND_INREG:
 | |
|       case ISD::SIGN_EXTEND_INREG:
 | |
|       case ISD::SUB:
 | |
|       case ISD::FSUB:
 | |
|       case ISD::FDIV:
 | |
|       case ISD::FREM:
 | |
|       case ISD::SRA:
 | |
|         return N1;     // fold op(undef, arg2) -> undef
 | |
|       case ISD::UDIV:
 | |
|       case ISD::SDIV:
 | |
|       case ISD::UREM:
 | |
|       case ISD::SREM:
 | |
|       case ISD::SRL:
 | |
|       case ISD::SHL:
 | |
|         if (!VT.isVector())
 | |
|           return getConstant(0, VT);    // fold op(undef, arg2) -> 0
 | |
|         // For vectors, we can't easily build an all zero vector, just return
 | |
|         // the LHS.
 | |
|         return N2;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fold a bunch of operators when the RHS is undef.
 | |
|   if (N2.getOpcode() == ISD::UNDEF) {
 | |
|     switch (Opcode) {
 | |
|     case ISD::XOR:
 | |
|       if (N1.getOpcode() == ISD::UNDEF)
 | |
|         // Handle undef ^ undef -> 0 special case. This is a common
 | |
|         // idiom (misuse).
 | |
|         return getConstant(0, VT);
 | |
|       // fallthrough
 | |
|     case ISD::ADD:
 | |
|     case ISD::ADDC:
 | |
|     case ISD::ADDE:
 | |
|     case ISD::SUB:
 | |
|     case ISD::UDIV:
 | |
|     case ISD::SDIV:
 | |
|     case ISD::UREM:
 | |
|     case ISD::SREM:
 | |
|       return N2;       // fold op(arg1, undef) -> undef
 | |
|     case ISD::FADD:
 | |
|     case ISD::FSUB:
 | |
|     case ISD::FMUL:
 | |
|     case ISD::FDIV:
 | |
|     case ISD::FREM:
 | |
|       if (UnsafeFPMath)
 | |
|         return N2;
 | |
|       break;
 | |
|     case ISD::MUL:
 | |
|     case ISD::AND:
 | |
|     case ISD::SRL:
 | |
|     case ISD::SHL:
 | |
|       if (!VT.isVector())
 | |
|         return getConstant(0, VT);  // fold op(arg1, undef) -> 0
 | |
|       // For vectors, we can't easily build an all zero vector, just return
 | |
|       // the LHS.
 | |
|       return N1;
 | |
|     case ISD::OR:
 | |
|       if (!VT.isVector())
 | |
|         return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
 | |
|       // For vectors, we can't easily build an all one vector, just return
 | |
|       // the LHS.
 | |
|       return N1;
 | |
|     case ISD::SRA:
 | |
|       return N1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Memoize this node if possible.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) {
 | |
|     SDValue Ops[] = { N1, N2 };
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDValue(E, 0);
 | |
| 
 | |
|     N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
 | |
|   }
 | |
| 
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
 | |
|                               SDValue N1, SDValue N2, SDValue N3) {
 | |
|   // Perform various simplifications.
 | |
|   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
 | |
|   switch (Opcode) {
 | |
|   case ISD::CONCAT_VECTORS:
 | |
|     // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
 | |
|     // one big BUILD_VECTOR.
 | |
|     if (N1.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|         N2.getOpcode() == ISD::BUILD_VECTOR &&
 | |
|         N3.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|       SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
 | |
|                                     N1.getNode()->op_end());
 | |
|       Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
 | |
|       Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
 | |
|       return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SETCC: {
 | |
|     // Use FoldSetCC to simplify SETCC's.
 | |
|     SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
 | |
|     if (Simp.getNode()) return Simp;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     if (N1C) {
 | |
|      if (N1C->getZExtValue())
 | |
|         return N2;             // select true, X, Y -> X
 | |
|       else
 | |
|         return N3;             // select false, X, Y -> Y
 | |
|     }
 | |
| 
 | |
|     if (N2 == N3) return N2;   // select C, X, X -> X
 | |
|     break;
 | |
|   case ISD::VECTOR_SHUFFLE:
 | |
|     llvm_unreachable("should use getVectorShuffle constructor!");
 | |
|     break;
 | |
|   case ISD::BIT_CONVERT:
 | |
|     // Fold bit_convert nodes from a type to themselves.
 | |
|     if (N1.getValueType() == VT)
 | |
|       return N1;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Memoize node if it doesn't produce a flag.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   if (VT != MVT::Flag) {
 | |
|     SDValue Ops[] = { N1, N2, N3 };
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDValue(E, 0);
 | |
| 
 | |
|     N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
 | |
|   }
 | |
| 
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
 | |
|                               SDValue N1, SDValue N2, SDValue N3,
 | |
|                               SDValue N4) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4 };
 | |
|   return getNode(Opcode, DL, VT, Ops, 4);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
 | |
|                               SDValue N1, SDValue N2, SDValue N3,
 | |
|                               SDValue N4, SDValue N5) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4, N5 };
 | |
|   return getNode(Opcode, DL, VT, Ops, 5);
 | |
| }
 | |
| 
 | |
| /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
 | |
| /// the incoming stack arguments to be loaded from the stack.
 | |
| SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
 | |
|   SmallVector<SDValue, 8> ArgChains;
 | |
| 
 | |
|   // Include the original chain at the beginning of the list. When this is
 | |
|   // used by target LowerCall hooks, this helps legalize find the
 | |
|   // CALLSEQ_BEGIN node.
 | |
|   ArgChains.push_back(Chain);
 | |
| 
 | |
|   // Add a chain value for each stack argument.
 | |
|   for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
 | |
|        UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
 | |
|     if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
 | |
|         if (FI->getIndex() < 0)
 | |
|           ArgChains.push_back(SDValue(L, 1));
 | |
| 
 | |
|   // Build a tokenfactor for all the chains.
 | |
|   return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
 | |
|                  &ArgChains[0], ArgChains.size());
 | |
| }
 | |
| 
 | |
| /// getMemsetValue - Vectorized representation of the memset value
 | |
| /// operand.
 | |
| static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
 | |
|                               DebugLoc dl) {
 | |
|   assert(Value.getOpcode() != ISD::UNDEF);
 | |
| 
 | |
|   unsigned NumBits = VT.getScalarType().getSizeInBits();
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
 | |
|     APInt Val = APInt(NumBits, C->getZExtValue() & 255);
 | |
|     unsigned Shift = 8;
 | |
|     for (unsigned i = NumBits; i > 8; i >>= 1) {
 | |
|       Val = (Val << Shift) | Val;
 | |
|       Shift <<= 1;
 | |
|     }
 | |
|     if (VT.isInteger())
 | |
|       return DAG.getConstant(Val, VT);
 | |
|     return DAG.getConstantFP(APFloat(Val), VT);
 | |
|   }
 | |
| 
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
 | |
|   unsigned Shift = 8;
 | |
|   for (unsigned i = NumBits; i > 8; i >>= 1) {
 | |
|     Value = DAG.getNode(ISD::OR, dl, VT,
 | |
|                         DAG.getNode(ISD::SHL, dl, VT, Value,
 | |
|                                     DAG.getConstant(Shift,
 | |
|                                                     TLI.getShiftAmountTy())),
 | |
|                         Value);
 | |
|     Shift <<= 1;
 | |
|   }
 | |
| 
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
 | |
| /// used when a memcpy is turned into a memset when the source is a constant
 | |
| /// string ptr.
 | |
| static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
 | |
|                                   const TargetLowering &TLI,
 | |
|                                   std::string &Str, unsigned Offset) {
 | |
|   // Handle vector with all elements zero.
 | |
|   if (Str.empty()) {
 | |
|     if (VT.isInteger())
 | |
|       return DAG.getConstant(0, VT);
 | |
|     else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
 | |
|              VT.getSimpleVT().SimpleTy == MVT::f64)
 | |
|       return DAG.getConstantFP(0.0, VT);
 | |
|     else if (VT.isVector()) {
 | |
|       unsigned NumElts = VT.getVectorNumElements();
 | |
|       MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
 | |
|                          DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
 | |
|                                                              EltVT, NumElts)));
 | |
|     } else
 | |
|       llvm_unreachable("Expected type!");
 | |
|   }
 | |
| 
 | |
|   assert(!VT.isVector() && "Can't handle vector type here!");
 | |
|   unsigned NumBits = VT.getSizeInBits();
 | |
|   unsigned MSB = NumBits / 8;
 | |
|   uint64_t Val = 0;
 | |
|   if (TLI.isLittleEndian())
 | |
|     Offset = Offset + MSB - 1;
 | |
|   for (unsigned i = 0; i != MSB; ++i) {
 | |
|     Val = (Val << 8) | (unsigned char)Str[Offset];
 | |
|     Offset += TLI.isLittleEndian() ? -1 : 1;
 | |
|   }
 | |
|   return DAG.getConstant(Val, VT);
 | |
| }
 | |
| 
 | |
| /// getMemBasePlusOffset - Returns base and offset node for the
 | |
| ///
 | |
| static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
 | |
|                                       SelectionDAG &DAG) {
 | |
|   EVT VT = Base.getValueType();
 | |
|   return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
 | |
|                      VT, Base, DAG.getConstant(Offset, VT));
 | |
| }
 | |
| 
 | |
| /// isMemSrcFromString - Returns true if memcpy source is a string constant.
 | |
| ///
 | |
| static bool isMemSrcFromString(SDValue Src, std::string &Str) {
 | |
|   unsigned SrcDelta = 0;
 | |
|   GlobalAddressSDNode *G = NULL;
 | |
|   if (Src.getOpcode() == ISD::GlobalAddress)
 | |
|     G = cast<GlobalAddressSDNode>(Src);
 | |
|   else if (Src.getOpcode() == ISD::ADD &&
 | |
|            Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
 | |
|            Src.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     G = cast<GlobalAddressSDNode>(Src.getOperand(0));
 | |
|     SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
 | |
|   }
 | |
|   if (!G)
 | |
|     return false;
 | |
| 
 | |
|   const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
 | |
|   if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FindOptimalMemOpLowering - Determines the optimial series memory ops
 | |
| /// to replace the memset / memcpy. Return true if the number of memory ops
 | |
| /// is below the threshold. It returns the types of the sequence of
 | |
| /// memory ops to perform memset / memcpy by reference.
 | |
| static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
 | |
|                                      unsigned Limit, uint64_t Size,
 | |
|                                      unsigned DstAlign, unsigned SrcAlign,
 | |
|                                      bool NonScalarIntSafe,
 | |
|                                      bool MemcpyStrSrc,
 | |
|                                      SelectionDAG &DAG,
 | |
|                                      const TargetLowering &TLI) {
 | |
|   assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
 | |
|          "Expecting memcpy / memset source to meet alignment requirement!");
 | |
|   // If 'SrcAlign' is zero, that means the memory operation does not need load
 | |
|   // the value, i.e. memset or memcpy from constant string. Otherwise, it's
 | |
|   // the inferred alignment of the source. 'DstAlign', on the other hand, is the
 | |
|   // specified alignment of the memory operation. If it is zero, that means
 | |
|   // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
 | |
|   // indicates whether the memcpy source is constant so it does not need to be
 | |
|   // loaded.
 | |
|   EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
 | |
|                                    NonScalarIntSafe, MemcpyStrSrc,
 | |
|                                    DAG.getMachineFunction());
 | |
| 
 | |
|   if (VT == MVT::Other) {
 | |
|     if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
 | |
|         TLI.allowsUnalignedMemoryAccesses(VT)) {
 | |
|       VT = TLI.getPointerTy();
 | |
|     } else {
 | |
|       switch (DstAlign & 7) {
 | |
|       case 0:  VT = MVT::i64; break;
 | |
|       case 4:  VT = MVT::i32; break;
 | |
|       case 2:  VT = MVT::i16; break;
 | |
|       default: VT = MVT::i8;  break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     MVT LVT = MVT::i64;
 | |
|     while (!TLI.isTypeLegal(LVT))
 | |
|       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
 | |
|     assert(LVT.isInteger());
 | |
| 
 | |
|     if (VT.bitsGT(LVT))
 | |
|       VT = LVT;
 | |
|   }
 | |
|   
 | |
|   // If we're optimizing for size, and there is a limit, bump the maximum number
 | |
|   // of operations inserted down to 4.  This is a wild guess that approximates
 | |
|   // the size of a call to memcpy or memset (3 arguments + call).
 | |
|   if (Limit != ~0U) {
 | |
|     const Function *F = DAG.getMachineFunction().getFunction();
 | |
|     if (F->hasFnAttr(Attribute::OptimizeForSize))
 | |
|       Limit = 4;
 | |
|   }
 | |
| 
 | |
|   unsigned NumMemOps = 0;
 | |
|   while (Size != 0) {
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     while (VTSize > Size) {
 | |
|       // For now, only use non-vector load / store's for the left-over pieces.
 | |
|       if (VT.isVector() || VT.isFloatingPoint()) {
 | |
|         VT = MVT::i64;
 | |
|         while (!TLI.isTypeLegal(VT))
 | |
|           VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
 | |
|         VTSize = VT.getSizeInBits() / 8;
 | |
|       } else {
 | |
|         // This can result in a type that is not legal on the target, e.g.
 | |
|         // 1 or 2 bytes on PPC.
 | |
|         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
 | |
|         VTSize >>= 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (++NumMemOps > Limit)
 | |
|       return false;
 | |
|     MemOps.push_back(VT);
 | |
|     Size -= VTSize;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
 | |
|                                        SDValue Chain, SDValue Dst,
 | |
|                                        SDValue Src, uint64_t Size,
 | |
|                                        unsigned Align, bool isVol,
 | |
|                                        bool AlwaysInline,
 | |
|                                        MachinePointerInfo DstPtrInfo,
 | |
|                                        MachinePointerInfo SrcPtrInfo) {
 | |
|   // Turn a memcpy of undef to nop.
 | |
|   if (Src.getOpcode() == ISD::UNDEF)
 | |
|     return Chain;
 | |
| 
 | |
|   // Expand memcpy to a series of load and store ops if the size operand falls
 | |
|   // below a certain threshold.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   std::vector<EVT> MemOps;
 | |
|   bool DstAlignCanChange = false;
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
 | |
|   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
 | |
|     DstAlignCanChange = true;
 | |
|   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
 | |
|   if (Align > SrcAlign)
 | |
|     SrcAlign = Align;
 | |
|   std::string Str;
 | |
|   bool CopyFromStr = isMemSrcFromString(Src, Str);
 | |
|   bool isZeroStr = CopyFromStr && Str.empty();
 | |
|   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
 | |
|   
 | |
|   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
 | |
|                                 (DstAlignCanChange ? 0 : Align),
 | |
|                                 (isZeroStr ? 0 : SrcAlign),
 | |
|                                 true, CopyFromStr, DAG, TLI))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DstAlignCanChange) {
 | |
|     const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
 | |
|     unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
 | |
|     if (NewAlign > Align) {
 | |
|       // Give the stack frame object a larger alignment if needed.
 | |
|       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
 | |
|         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
 | |
|       Align = NewAlign;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
|   uint64_t SrcOff = 0, DstOff = 0;
 | |
|   for (unsigned i = 0; i != NumMemOps; ++i) {
 | |
|     EVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Value, Store;
 | |
| 
 | |
|     if (CopyFromStr &&
 | |
|         (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
 | |
|       // It's unlikely a store of a vector immediate can be done in a single
 | |
|       // instruction. It would require a load from a constantpool first.
 | |
|       // We only handle zero vectors here.
 | |
|       // FIXME: Handle other cases where store of vector immediate is done in
 | |
|       // a single instruction.
 | |
|       Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
 | |
|       Store = DAG.getStore(Chain, dl, Value,
 | |
|                            getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                            DstPtrInfo.getWithOffset(DstOff), isVol,
 | |
|                            false, Align);
 | |
|     } else {
 | |
|       // The type might not be legal for the target.  This should only happen
 | |
|       // if the type is smaller than a legal type, as on PPC, so the right
 | |
|       // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
 | |
|       // to Load/Store if NVT==VT.
 | |
|       // FIXME does the case above also need this?
 | |
|       EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
 | |
|       assert(NVT.bitsGE(VT));
 | |
|       Value = DAG.getExtLoad(ISD::EXTLOAD, NVT, dl, Chain,
 | |
|                              getMemBasePlusOffset(Src, SrcOff, DAG),
 | |
|                              SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
 | |
|                              MinAlign(SrcAlign, SrcOff));
 | |
|       Store = DAG.getTruncStore(Chain, dl, Value,
 | |
|                                 getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                                 DstPtrInfo.getWithOffset(DstOff), VT, isVol,
 | |
|                                 false, Align);
 | |
|     }
 | |
|     OutChains.push_back(Store);
 | |
|     SrcOff += VTSize;
 | |
|     DstOff += VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                      &OutChains[0], OutChains.size());
 | |
| }
 | |
| 
 | |
| static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
 | |
|                                         SDValue Chain, SDValue Dst,
 | |
|                                         SDValue Src, uint64_t Size,
 | |
|                                         unsigned Align,  bool isVol,
 | |
|                                         bool AlwaysInline,
 | |
|                                         MachinePointerInfo DstPtrInfo,
 | |
|                                         MachinePointerInfo SrcPtrInfo) {
 | |
|   // Turn a memmove of undef to nop.
 | |
|   if (Src.getOpcode() == ISD::UNDEF)
 | |
|     return Chain;
 | |
| 
 | |
|   // Expand memmove to a series of load and store ops if the size operand falls
 | |
|   // below a certain threshold.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   std::vector<EVT> MemOps;
 | |
|   bool DstAlignCanChange = false;
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
 | |
|   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
 | |
|     DstAlignCanChange = true;
 | |
|   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
 | |
|   if (Align > SrcAlign)
 | |
|     SrcAlign = Align;
 | |
|   unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
 | |
| 
 | |
|   if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
 | |
|                                 (DstAlignCanChange ? 0 : Align),
 | |
|                                 SrcAlign, true, false, DAG, TLI))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DstAlignCanChange) {
 | |
|     const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
 | |
|     unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
 | |
|     if (NewAlign > Align) {
 | |
|       // Give the stack frame object a larger alignment if needed.
 | |
|       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
 | |
|         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
 | |
|       Align = NewAlign;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   uint64_t SrcOff = 0, DstOff = 0;
 | |
|   SmallVector<SDValue, 8> LoadValues;
 | |
|   SmallVector<SDValue, 8> LoadChains;
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     EVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Value, Store;
 | |
| 
 | |
|     Value = DAG.getLoad(VT, dl, Chain,
 | |
|                         getMemBasePlusOffset(Src, SrcOff, DAG),
 | |
|                         SrcPtrInfo.getWithOffset(SrcOff), isVol,
 | |
|                         false, SrcAlign);
 | |
|     LoadValues.push_back(Value);
 | |
|     LoadChains.push_back(Value.getValue(1));
 | |
|     SrcOff += VTSize;
 | |
|   }
 | |
|   Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                       &LoadChains[0], LoadChains.size());
 | |
|   OutChains.clear();
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     EVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Value, Store;
 | |
| 
 | |
|     Store = DAG.getStore(Chain, dl, LoadValues[i],
 | |
|                          getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                          DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
 | |
|     OutChains.push_back(Store);
 | |
|     DstOff += VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                      &OutChains[0], OutChains.size());
 | |
| }
 | |
| 
 | |
| static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
 | |
|                                SDValue Chain, SDValue Dst,
 | |
|                                SDValue Src, uint64_t Size,
 | |
|                                unsigned Align, bool isVol,
 | |
|                                MachinePointerInfo DstPtrInfo) {
 | |
|   // Turn a memset of undef to nop.
 | |
|   if (Src.getOpcode() == ISD::UNDEF)
 | |
|     return Chain;
 | |
| 
 | |
|   // Expand memset to a series of load/store ops if the size operand
 | |
|   // falls below a certain threshold.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   std::vector<EVT> MemOps;
 | |
|   bool DstAlignCanChange = false;
 | |
|   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | |
|   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
 | |
|   if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
 | |
|     DstAlignCanChange = true;
 | |
|   bool NonScalarIntSafe =
 | |
|     isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
 | |
|   if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
 | |
|                                 Size, (DstAlignCanChange ? 0 : Align), 0,
 | |
|                                 NonScalarIntSafe, false, DAG, TLI))
 | |
|     return SDValue();
 | |
| 
 | |
|   if (DstAlignCanChange) {
 | |
|     const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
 | |
|     unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
 | |
|     if (NewAlign > Align) {
 | |
|       // Give the stack frame object a larger alignment if needed.
 | |
|       if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
 | |
|         MFI->setObjectAlignment(FI->getIndex(), NewAlign);
 | |
|       Align = NewAlign;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<SDValue, 8> OutChains;
 | |
|   uint64_t DstOff = 0;
 | |
|   unsigned NumMemOps = MemOps.size();
 | |
|   for (unsigned i = 0; i < NumMemOps; i++) {
 | |
|     EVT VT = MemOps[i];
 | |
|     unsigned VTSize = VT.getSizeInBits() / 8;
 | |
|     SDValue Value = getMemsetValue(Src, VT, DAG, dl);
 | |
|     SDValue Store = DAG.getStore(Chain, dl, Value,
 | |
|                                  getMemBasePlusOffset(Dst, DstOff, DAG),
 | |
|                                  DstPtrInfo.getWithOffset(DstOff),
 | |
|                                  isVol, false, 0);
 | |
|     OutChains.push_back(Store);
 | |
|     DstOff += VTSize;
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                      &OutChains[0], OutChains.size());
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
 | |
|                                 SDValue Src, SDValue Size,
 | |
|                                 unsigned Align, bool isVol, bool AlwaysInline,
 | |
|                                 MachinePointerInfo DstPtrInfo,
 | |
|                                 MachinePointerInfo SrcPtrInfo) {
 | |
| 
 | |
|   // Check to see if we should lower the memcpy to loads and stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memcpy with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
 | |
|                                              ConstantSize->getZExtValue(),Align,
 | |
|                                 isVol, false, DstPtrInfo, SrcPtrInfo);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memcpy with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   SDValue Result =
 | |
|     TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
 | |
|                                 isVol, AlwaysInline,
 | |
|                                 DstPtrInfo, SrcPtrInfo);
 | |
|   if (Result.getNode())
 | |
|     return Result;
 | |
| 
 | |
|   // If we really need inline code and the target declined to provide it,
 | |
|   // use a (potentially long) sequence of loads and stores.
 | |
|   if (AlwaysInline) {
 | |
|     assert(ConstantSize && "AlwaysInline requires a constant size!");
 | |
|     return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
 | |
|                                    ConstantSize->getZExtValue(), Align, isVol,
 | |
|                                    true, DstPtrInfo, SrcPtrInfo);
 | |
|   }
 | |
| 
 | |
|   // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
 | |
|   // memcpy is not guaranteed to be safe. libc memcpys aren't required to
 | |
|   // respect volatile, so they may do things like read or write memory
 | |
|   // beyond the given memory regions. But fixing this isn't easy, and most
 | |
|   // people don't care.
 | |
| 
 | |
|   // Emit a library call.
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
 | |
|   Entry.Node = Dst; Args.push_back(Entry);
 | |
|   Entry.Node = Src; Args.push_back(Entry);
 | |
|   Entry.Node = Size; Args.push_back(Entry);
 | |
|   // FIXME: pass in DebugLoc
 | |
|   std::pair<SDValue,SDValue> CallResult =
 | |
|     TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
 | |
|                     false, false, false, false, 0,
 | |
|                     TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
 | |
|                     /*isReturnValueUsed=*/false,
 | |
|                     getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
 | |
|                                       TLI.getPointerTy()),
 | |
|                     Args, *this, dl);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
 | |
|                                  SDValue Src, SDValue Size,
 | |
|                                  unsigned Align, bool isVol,
 | |
|                                  MachinePointerInfo DstPtrInfo,
 | |
|                                  MachinePointerInfo SrcPtrInfo) {
 | |
| 
 | |
|   // Check to see if we should lower the memmove to loads and stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memmove with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDValue Result =
 | |
|       getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
 | |
|                                ConstantSize->getZExtValue(), Align, isVol,
 | |
|                                false, DstPtrInfo, SrcPtrInfo);
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memmove with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   SDValue Result =
 | |
|     TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
 | |
|                                  DstPtrInfo, SrcPtrInfo);
 | |
|   if (Result.getNode())
 | |
|     return Result;
 | |
| 
 | |
|   // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
 | |
|   // not be safe.  See memcpy above for more details.
 | |
| 
 | |
|   // Emit a library call.
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
 | |
|   Entry.Node = Dst; Args.push_back(Entry);
 | |
|   Entry.Node = Src; Args.push_back(Entry);
 | |
|   Entry.Node = Size; Args.push_back(Entry);
 | |
|   // FIXME:  pass in DebugLoc
 | |
|   std::pair<SDValue,SDValue> CallResult =
 | |
|     TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
 | |
|                     false, false, false, false, 0,
 | |
|                     TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
 | |
|                     /*isReturnValueUsed=*/false,
 | |
|                     getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
 | |
|                                       TLI.getPointerTy()),
 | |
|                     Args, *this, dl);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
 | |
|                                 SDValue Src, SDValue Size,
 | |
|                                 unsigned Align, bool isVol,
 | |
|                                 MachinePointerInfo DstPtrInfo) {
 | |
| 
 | |
|   // Check to see if we should lower the memset to stores first.
 | |
|   // For cases within the target-specified limits, this is the best choice.
 | |
|   ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
 | |
|   if (ConstantSize) {
 | |
|     // Memset with size zero? Just return the original chain.
 | |
|     if (ConstantSize->isNullValue())
 | |
|       return Chain;
 | |
| 
 | |
|     SDValue Result =
 | |
|       getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
 | |
|                       Align, isVol, DstPtrInfo);
 | |
| 
 | |
|     if (Result.getNode())
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   // Then check to see if we should lower the memset with target-specific
 | |
|   // code. If the target chooses to do this, this is the next best.
 | |
|   SDValue Result =
 | |
|     TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
 | |
|                                 DstPtrInfo);
 | |
|   if (Result.getNode())
 | |
|     return Result;
 | |
| 
 | |
|   // Emit a library call.  
 | |
|   const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   Entry.Node = Dst; Entry.Ty = IntPtrTy;
 | |
|   Args.push_back(Entry);
 | |
|   // Extend or truncate the argument to be an i32 value for the call.
 | |
|   if (Src.getValueType().bitsGT(MVT::i32))
 | |
|     Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
 | |
|   else
 | |
|     Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
 | |
|   Entry.Node = Src;
 | |
|   Entry.Ty = Type::getInt32Ty(*getContext());
 | |
|   Entry.isSExt = true;
 | |
|   Args.push_back(Entry);
 | |
|   Entry.Node = Size;
 | |
|   Entry.Ty = IntPtrTy;
 | |
|   Entry.isSExt = false;
 | |
|   Args.push_back(Entry);
 | |
|   // FIXME: pass in DebugLoc
 | |
|   std::pair<SDValue,SDValue> CallResult =
 | |
|     TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
 | |
|                     false, false, false, false, 0,
 | |
|                     TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
 | |
|                     /*isReturnValueUsed=*/false,
 | |
|                     getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
 | |
|                                       TLI.getPointerTy()),
 | |
|                     Args, *this, dl);
 | |
|   return CallResult.second;
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
 | |
|                                 SDValue Chain, SDValue Ptr, SDValue Cmp,
 | |
|                                 SDValue Swp, MachinePointerInfo PtrInfo,
 | |
|                                 unsigned Alignment) {
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getEVTAlignment(MemVT);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
 | |
| 
 | |
|   // For now, atomics are considered to be volatile always.
 | |
|   Flags |= MachineMemOperand::MOVolatile;
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
 | |
| 
 | |
|   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
 | |
|                                 SDValue Chain,
 | |
|                                 SDValue Ptr, SDValue Cmp,
 | |
|                                 SDValue Swp, MachineMemOperand *MMO) {
 | |
|   assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
 | |
|   assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
 | |
| 
 | |
|   EVT VT = Cmp.getValueType();
 | |
| 
 | |
|   SDVTList VTs = getVTList(VT, MVT::Other);
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(MemVT.getRawBits());
 | |
|   SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
 | |
|   AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
 | |
|   void* IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
 | |
|     cast<AtomicSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
 | |
|                                                Ptr, Cmp, Swp, MMO);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
 | |
|                                 SDValue Chain,
 | |
|                                 SDValue Ptr, SDValue Val,
 | |
|                                 const Value* PtrVal,
 | |
|                                 unsigned Alignment) {
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getEVTAlignment(MemVT);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
 | |
| 
 | |
|   // For now, atomics are considered to be volatile always.
 | |
|   Flags |= MachineMemOperand::MOVolatile;
 | |
| 
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
 | |
|                             MemVT.getStoreSize(), Alignment);
 | |
| 
 | |
|   return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
 | |
|                                 SDValue Chain,
 | |
|                                 SDValue Ptr, SDValue Val,
 | |
|                                 MachineMemOperand *MMO) {
 | |
|   assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_SUB ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_AND ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_OR ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_XOR ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_NAND ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_MIN ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_MAX ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMIN ||
 | |
|           Opcode == ISD::ATOMIC_LOAD_UMAX ||
 | |
|           Opcode == ISD::ATOMIC_SWAP) &&
 | |
|          "Invalid Atomic Op");
 | |
| 
 | |
|   EVT VT = Val.getValueType();
 | |
| 
 | |
|   SDVTList VTs = getVTList(VT, MVT::Other);
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(MemVT.getRawBits());
 | |
|   SDValue Ops[] = {Chain, Ptr, Val};
 | |
|   AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
 | |
|   void* IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
 | |
|     cast<AtomicSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
 | |
|                                                Ptr, Val, MMO);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| /// getMergeValues - Create a MERGE_VALUES node from the given operands.
 | |
| /// Allowed to return something different (and simpler) if Simplify is true.
 | |
| SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
 | |
|                                      DebugLoc dl) {
 | |
|   if (NumOps == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   SmallVector<EVT, 4> VTs;
 | |
|   VTs.reserve(NumOps);
 | |
|   for (unsigned i = 0; i < NumOps; ++i)
 | |
|     VTs.push_back(Ops[i].getValueType());
 | |
|   return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
 | |
|                  Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
 | |
|                                   const EVT *VTs, unsigned NumVTs,
 | |
|                                   const SDValue *Ops, unsigned NumOps,
 | |
|                                   EVT MemVT, MachinePointerInfo PtrInfo,
 | |
|                                   unsigned Align, bool Vol,
 | |
|                                   bool ReadMem, bool WriteMem) {
 | |
|   return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
 | |
|                              MemVT, PtrInfo, Align, Vol,
 | |
|                              ReadMem, WriteMem);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
 | |
|                                   const SDValue *Ops, unsigned NumOps,
 | |
|                                   EVT MemVT, MachinePointerInfo PtrInfo,
 | |
|                                   unsigned Align, bool Vol,
 | |
|                                   bool ReadMem, bool WriteMem) {
 | |
|   if (Align == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Align = getEVTAlignment(MemVT);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   unsigned Flags = 0;
 | |
|   if (WriteMem)
 | |
|     Flags |= MachineMemOperand::MOStore;
 | |
|   if (ReadMem)
 | |
|     Flags |= MachineMemOperand::MOLoad;
 | |
|   if (Vol)
 | |
|     Flags |= MachineMemOperand::MOVolatile;
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
 | |
| 
 | |
|   return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
 | |
|                                   const SDValue *Ops, unsigned NumOps,
 | |
|                                   EVT MemVT, MachineMemOperand *MMO) {
 | |
|   assert((Opcode == ISD::INTRINSIC_VOID ||
 | |
|           Opcode == ISD::INTRINSIC_W_CHAIN ||
 | |
|           (Opcode <= INT_MAX &&
 | |
|            (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
 | |
|          "Opcode is not a memory-accessing opcode!");
 | |
| 
 | |
|   // Memoize the node unless it returns a flag.
 | |
|   MemIntrinsicSDNode *N;
 | |
|   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
 | |
|       cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
 | |
|       return SDValue(E, 0);
 | |
|     }
 | |
| 
 | |
|     N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
 | |
|                                                MemVT, MMO);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
 | |
|                                                MemVT, MMO);
 | |
|   }
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
 | |
| /// MachinePointerInfo record from it.  This is particularly useful because the
 | |
| /// code generator has many cases where it doesn't bother passing in a
 | |
| /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
 | |
| static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
 | |
|   // If this is FI+Offset, we can model it.
 | |
|   if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
 | |
|     return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
 | |
| 
 | |
|   // If this is (FI+Offset1)+Offset2, we can model it.
 | |
|   if (Ptr.getOpcode() != ISD::ADD ||
 | |
|       !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
 | |
|       !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
 | |
|     return MachinePointerInfo();
 | |
|   
 | |
|   int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
 | |
|   return MachinePointerInfo::getFixedStack(FI, Offset+
 | |
|                        cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
 | |
| }
 | |
| 
 | |
| /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
 | |
| /// MachinePointerInfo record from it.  This is particularly useful because the
 | |
| /// code generator has many cases where it doesn't bother passing in a
 | |
| /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
 | |
| static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
 | |
|   // If the 'Offset' value isn't a constant, we can't handle this.
 | |
|   if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
 | |
|     return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
 | |
|   if (OffsetOp.getOpcode() == ISD::UNDEF)
 | |
|     return InferPointerInfo(Ptr);
 | |
|   return MachinePointerInfo();
 | |
| }
 | |
|   
 | |
| 
 | |
| SDValue
 | |
| SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
 | |
|                       EVT VT, DebugLoc dl, SDValue Chain,
 | |
|                       SDValue Ptr, SDValue Offset,
 | |
|                       MachinePointerInfo PtrInfo, EVT MemVT,
 | |
|                       bool isVolatile, bool isNonTemporal,
 | |
|                       unsigned Alignment) {
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getEVTAlignment(VT);
 | |
| 
 | |
|   unsigned Flags = MachineMemOperand::MOLoad;
 | |
|   if (isVolatile)
 | |
|     Flags |= MachineMemOperand::MOVolatile;
 | |
|   if (isNonTemporal)
 | |
|     Flags |= MachineMemOperand::MONonTemporal;
 | |
|   
 | |
|   // If we don't have a PtrInfo, infer the trivial frame index case to simplify
 | |
|   // clients.
 | |
|   if (PtrInfo.V == 0)
 | |
|     PtrInfo = InferPointerInfo(Ptr, Offset);
 | |
|   
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
 | |
|   return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, 
 | |
|                       EVT VT, DebugLoc dl, SDValue Chain,
 | |
|                       SDValue Ptr, SDValue Offset, EVT MemVT,
 | |
|                       MachineMemOperand *MMO) {
 | |
|   if (VT == MemVT) {
 | |
|     ExtType = ISD::NON_EXTLOAD;
 | |
|   } else if (ExtType == ISD::NON_EXTLOAD) {
 | |
|     assert(VT == MemVT && "Non-extending load from different memory type!");
 | |
|   } else {
 | |
|     // Extending load.
 | |
|     assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
 | |
|            "Should only be an extending load, not truncating!");
 | |
|     assert(VT.isInteger() == MemVT.isInteger() &&
 | |
|            "Cannot convert from FP to Int or Int -> FP!");
 | |
|     assert(VT.isVector() == MemVT.isVector() &&
 | |
|            "Cannot use trunc store to convert to or from a vector!");
 | |
|     assert((!VT.isVector() ||
 | |
|             VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
 | |
|            "Cannot use trunc store to change the number of vector elements!");
 | |
|   }
 | |
| 
 | |
|   bool Indexed = AM != ISD::UNINDEXED;
 | |
|   assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
 | |
|          "Unindexed load with an offset!");
 | |
| 
 | |
|   SDVTList VTs = Indexed ?
 | |
|     getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
 | |
|   SDValue Ops[] = { Chain, Ptr, Offset };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
 | |
|   ID.AddInteger(MemVT.getRawBits());
 | |
|   ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
 | |
|                                      MMO->isNonTemporal()));
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
 | |
|     cast<LoadSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
 | |
|                                              MemVT, MMO);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
 | |
|                               SDValue Chain, SDValue Ptr,
 | |
|                               MachinePointerInfo PtrInfo,
 | |
|                               bool isVolatile, bool isNonTemporal,
 | |
|                               unsigned Alignment) {
 | |
|   SDValue Undef = getUNDEF(Ptr.getValueType());
 | |
|   return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
 | |
|                  PtrInfo, VT, isVolatile, isNonTemporal, Alignment);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, EVT VT, DebugLoc dl,
 | |
|                                  SDValue Chain, SDValue Ptr,
 | |
|                                  MachinePointerInfo PtrInfo, EVT MemVT,
 | |
|                                  bool isVolatile, bool isNonTemporal,
 | |
|                                  unsigned Alignment) {
 | |
|   SDValue Undef = getUNDEF(Ptr.getValueType());
 | |
|   return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
 | |
|                  PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment);
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue
 | |
| SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
 | |
|                              SDValue Offset, ISD::MemIndexedMode AM) {
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
 | |
|   assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
 | |
|          "Load is already a indexed load!");
 | |
|   return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
 | |
|                  LD->getChain(), Base, Offset, LD->getPointerInfo(),
 | |
|                  LD->getMemoryVT(),
 | |
|                  LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
 | |
|                                SDValue Ptr, MachinePointerInfo PtrInfo,
 | |
|                                bool isVolatile, bool isNonTemporal,
 | |
|                                unsigned Alignment) {
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getEVTAlignment(Val.getValueType());
 | |
| 
 | |
|   unsigned Flags = MachineMemOperand::MOStore;
 | |
|   if (isVolatile)
 | |
|     Flags |= MachineMemOperand::MOVolatile;
 | |
|   if (isNonTemporal)
 | |
|     Flags |= MachineMemOperand::MONonTemporal;
 | |
|   
 | |
|   if (PtrInfo.V == 0)
 | |
|     PtrInfo = InferPointerInfo(Ptr);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(PtrInfo, Flags,
 | |
|                             Val.getValueType().getStoreSize(), Alignment);
 | |
| 
 | |
|   return getStore(Chain, dl, Val, Ptr, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
 | |
|                                SDValue Ptr, MachineMemOperand *MMO) {
 | |
|   EVT VT = Val.getValueType();
 | |
|   SDVTList VTs = getVTList(MVT::Other);
 | |
|   SDValue Undef = getUNDEF(Ptr.getValueType());
 | |
|   SDValue Ops[] = { Chain, Val, Ptr, Undef };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
 | |
|   ID.AddInteger(VT.getRawBits());
 | |
|   ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
 | |
|                                      MMO->isNonTemporal()));
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
 | |
|     cast<StoreSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
 | |
|                                               false, VT, MMO);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
 | |
|                                     SDValue Ptr, MachinePointerInfo PtrInfo,
 | |
|                                     EVT SVT,bool isVolatile, bool isNonTemporal,
 | |
|                                     unsigned Alignment) {
 | |
|   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
 | |
|     Alignment = getEVTAlignment(SVT);
 | |
| 
 | |
|   unsigned Flags = MachineMemOperand::MOStore;
 | |
|   if (isVolatile)
 | |
|     Flags |= MachineMemOperand::MOVolatile;
 | |
|   if (isNonTemporal)
 | |
|     Flags |= MachineMemOperand::MONonTemporal;
 | |
|   
 | |
|   if (PtrInfo.V == 0)
 | |
|     PtrInfo = InferPointerInfo(Ptr);
 | |
| 
 | |
|   MachineFunction &MF = getMachineFunction();
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment);
 | |
| 
 | |
|   return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
 | |
|                                     SDValue Ptr, EVT SVT,
 | |
|                                     MachineMemOperand *MMO) {
 | |
|   EVT VT = Val.getValueType();
 | |
| 
 | |
|   if (VT == SVT)
 | |
|     return getStore(Chain, dl, Val, Ptr, MMO);
 | |
| 
 | |
|   assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
 | |
|          "Should only be a truncating store, not extending!");
 | |
|   assert(VT.isInteger() == SVT.isInteger() &&
 | |
|          "Can't do FP-INT conversion!");
 | |
|   assert(VT.isVector() == SVT.isVector() &&
 | |
|          "Cannot use trunc store to convert to or from a vector!");
 | |
|   assert((!VT.isVector() ||
 | |
|           VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
 | |
|          "Cannot use trunc store to change the number of vector elements!");
 | |
| 
 | |
|   SDVTList VTs = getVTList(MVT::Other);
 | |
|   SDValue Undef = getUNDEF(Ptr.getValueType());
 | |
|   SDValue Ops[] = { Chain, Val, Ptr, Undef };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
 | |
|   ID.AddInteger(SVT.getRawBits());
 | |
|   ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
 | |
|                                      MMO->isNonTemporal()));
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
 | |
|     cast<StoreSDNode>(E)->refineAlignment(MMO);
 | |
|     return SDValue(E, 0);
 | |
|   }
 | |
|   SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
 | |
|                                               true, SVT, MMO);
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
 | |
|                               SDValue Offset, ISD::MemIndexedMode AM) {
 | |
|   StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
 | |
|   assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
 | |
|          "Store is already a indexed store!");
 | |
|   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
 | |
|   SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
 | |
|   FoldingSetNodeID ID;
 | |
|   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
 | |
|   ID.AddInteger(ST->getMemoryVT().getRawBits());
 | |
|   ID.AddInteger(ST->getRawSubclassData());
 | |
|   void *IP = 0;
 | |
|   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|     return SDValue(E, 0);
 | |
| 
 | |
|   SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
 | |
|                                               ST->isTruncatingStore(),
 | |
|                                               ST->getMemoryVT(),
 | |
|                                               ST->getMemOperand());
 | |
|   CSEMap.InsertNode(N, IP);
 | |
|   AllNodes.push_back(N);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
 | |
|                                SDValue Chain, SDValue Ptr,
 | |
|                                SDValue SV,
 | |
|                                unsigned Align) {
 | |
|   SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
 | |
|   return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
 | |
|                               const SDUse *Ops, unsigned NumOps) {
 | |
|   switch (NumOps) {
 | |
|   case 0: return getNode(Opcode, DL, VT);
 | |
|   case 1: return getNode(Opcode, DL, VT, Ops[0]);
 | |
|   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
 | |
|   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   // Copy from an SDUse array into an SDValue array for use with
 | |
|   // the regular getNode logic.
 | |
|   SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
 | |
|   return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
 | |
|                               const SDValue *Ops, unsigned NumOps) {
 | |
|   switch (NumOps) {
 | |
|   case 0: return getNode(Opcode, DL, VT);
 | |
|   case 1: return getNode(Opcode, DL, VT, Ops[0]);
 | |
|   case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
 | |
|   case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case ISD::SELECT_CC: {
 | |
|     assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
 | |
|     assert(Ops[0].getValueType() == Ops[1].getValueType() &&
 | |
|            "LHS and RHS of condition must have same type!");
 | |
|     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
 | |
|            "True and False arms of SelectCC must have same type!");
 | |
|     assert(Ops[2].getValueType() == VT &&
 | |
|            "select_cc node must be of same type as true and false value!");
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BR_CC: {
 | |
|     assert(NumOps == 5 && "BR_CC takes 5 operands!");
 | |
|     assert(Ops[2].getValueType() == Ops[3].getValueType() &&
 | |
|            "LHS/RHS of comparison should match types!");
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Memoize nodes.
 | |
|   SDNode *N;
 | |
|   SDVTList VTs = getVTList(VT);
 | |
| 
 | |
|   if (VT != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
 | |
|     void *IP = 0;
 | |
| 
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDValue(E, 0);
 | |
| 
 | |
|     N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
 | |
|   }
 | |
| 
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
 | |
|                               const std::vector<EVT> &ResultTys,
 | |
|                               const SDValue *Ops, unsigned NumOps) {
 | |
|   return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
 | |
|                  Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
 | |
|                               const EVT *VTs, unsigned NumVTs,
 | |
|                               const SDValue *Ops, unsigned NumOps) {
 | |
|   if (NumVTs == 1)
 | |
|     return getNode(Opcode, DL, VTs[0], Ops, NumOps);
 | |
|   return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
 | |
|                               const SDValue *Ops, unsigned NumOps) {
 | |
|   if (VTList.NumVTs == 1)
 | |
|     return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
 | |
| 
 | |
| #if 0
 | |
|   switch (Opcode) {
 | |
|   // FIXME: figure out how to safely handle things like
 | |
|   // int foo(int x) { return 1 << (x & 255); }
 | |
|   // int bar() { return foo(256); }
 | |
|   case ISD::SRA_PARTS:
 | |
|   case ISD::SRL_PARTS:
 | |
|   case ISD::SHL_PARTS:
 | |
|     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | |
|         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
 | |
|       return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
 | |
|     else if (N3.getOpcode() == ISD::AND)
 | |
|       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
 | |
|         // If the and is only masking out bits that cannot effect the shift,
 | |
|         // eliminate the and.
 | |
|         unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
 | |
|         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
 | |
|           return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
 | |
|       }
 | |
|     break;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Memoize the node unless it returns a flag.
 | |
|   SDNode *N;
 | |
|   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return SDValue(E, 0);
 | |
| 
 | |
|     if (NumOps == 1) {
 | |
|       N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
 | |
|     } else if (NumOps == 2) {
 | |
|       N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
 | |
|     } else if (NumOps == 3) {
 | |
|       N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
 | |
|                                             Ops[2]);
 | |
|     } else {
 | |
|       N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
 | |
|     }
 | |
|     CSEMap.InsertNode(N, IP);
 | |
|   } else {
 | |
|     if (NumOps == 1) {
 | |
|       N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
 | |
|     } else if (NumOps == 2) {
 | |
|       N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
 | |
|     } else if (NumOps == 3) {
 | |
|       N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
 | |
|                                             Ops[2]);
 | |
|     } else {
 | |
|       N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
 | |
|     }
 | |
|   }
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
 | |
|   return getNode(Opcode, DL, VTList, 0, 0);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
 | |
|                               SDValue N1) {
 | |
|   SDValue Ops[] = { N1 };
 | |
|   return getNode(Opcode, DL, VTList, Ops, 1);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2) {
 | |
|   SDValue Ops[] = { N1, N2 };
 | |
|   return getNode(Opcode, DL, VTList, Ops, 2);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2, SDValue N3) {
 | |
|   SDValue Ops[] = { N1, N2, N3 };
 | |
|   return getNode(Opcode, DL, VTList, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2, SDValue N3,
 | |
|                               SDValue N4) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4 };
 | |
|   return getNode(Opcode, DL, VTList, Ops, 4);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
 | |
|                               SDValue N1, SDValue N2, SDValue N3,
 | |
|                               SDValue N4, SDValue N5) {
 | |
|   SDValue Ops[] = { N1, N2, N3, N4, N5 };
 | |
|   return getNode(Opcode, DL, VTList, Ops, 5);
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(EVT VT) {
 | |
|   return makeVTList(SDNode::getValueTypeList(VT), 1);
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
 | |
|   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
 | |
|        E = VTList.rend(); I != E; ++I)
 | |
|     if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
 | |
|       return *I;
 | |
| 
 | |
|   EVT *Array = Allocator.Allocate<EVT>(2);
 | |
|   Array[0] = VT1;
 | |
|   Array[1] = VT2;
 | |
|   SDVTList Result = makeVTList(Array, 2);
 | |
|   VTList.push_back(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
 | |
|   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
 | |
|        E = VTList.rend(); I != E; ++I)
 | |
|     if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
 | |
|                           I->VTs[2] == VT3)
 | |
|       return *I;
 | |
| 
 | |
|   EVT *Array = Allocator.Allocate<EVT>(3);
 | |
|   Array[0] = VT1;
 | |
|   Array[1] = VT2;
 | |
|   Array[2] = VT3;
 | |
|   SDVTList Result = makeVTList(Array, 3);
 | |
|   VTList.push_back(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
 | |
|   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
 | |
|        E = VTList.rend(); I != E; ++I)
 | |
|     if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
 | |
|                           I->VTs[2] == VT3 && I->VTs[3] == VT4)
 | |
|       return *I;
 | |
| 
 | |
|   EVT *Array = Allocator.Allocate<EVT>(4);
 | |
|   Array[0] = VT1;
 | |
|   Array[1] = VT2;
 | |
|   Array[2] = VT3;
 | |
|   Array[3] = VT4;
 | |
|   SDVTList Result = makeVTList(Array, 4);
 | |
|   VTList.push_back(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
 | |
|   switch (NumVTs) {
 | |
|     case 0: llvm_unreachable("Cannot have nodes without results!");
 | |
|     case 1: return getVTList(VTs[0]);
 | |
|     case 2: return getVTList(VTs[0], VTs[1]);
 | |
|     case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
 | |
|     case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
 | |
|     default: break;
 | |
|   }
 | |
| 
 | |
|   for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
 | |
|        E = VTList.rend(); I != E; ++I) {
 | |
|     if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
 | |
|       continue;
 | |
| 
 | |
|     bool NoMatch = false;
 | |
|     for (unsigned i = 2; i != NumVTs; ++i)
 | |
|       if (VTs[i] != I->VTs[i]) {
 | |
|         NoMatch = true;
 | |
|         break;
 | |
|       }
 | |
|     if (!NoMatch)
 | |
|       return *I;
 | |
|   }
 | |
| 
 | |
|   EVT *Array = Allocator.Allocate<EVT>(NumVTs);
 | |
|   std::copy(VTs, VTs+NumVTs, Array);
 | |
|   SDVTList Result = makeVTList(Array, NumVTs);
 | |
|   VTList.push_back(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
 | |
| /// specified operands.  If the resultant node already exists in the DAG,
 | |
| /// this does not modify the specified node, instead it returns the node that
 | |
| /// already exists.  If the resultant node does not exist in the DAG, the
 | |
| /// input node is returned.  As a degenerate case, if you specify the same
 | |
| /// input operands as the node already has, the input node is returned.
 | |
| SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
 | |
|   assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
 | |
| 
 | |
|   // Check to see if there is no change.
 | |
|   if (Op == N->getOperand(0)) return N;
 | |
| 
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = 0;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
 | |
|     return Existing;
 | |
| 
 | |
|   // Nope it doesn't.  Remove the node from its current place in the maps.
 | |
|   if (InsertPos)
 | |
|     if (!RemoveNodeFromCSEMaps(N))
 | |
|       InsertPos = 0;
 | |
| 
 | |
|   // Now we update the operands.
 | |
|   N->OperandList[0].set(Op);
 | |
| 
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
 | |
|   assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
 | |
| 
 | |
|   // Check to see if there is no change.
 | |
|   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
 | |
|     return N;   // No operands changed, just return the input node.
 | |
| 
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = 0;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
 | |
|     return Existing;
 | |
| 
 | |
|   // Nope it doesn't.  Remove the node from its current place in the maps.
 | |
|   if (InsertPos)
 | |
|     if (!RemoveNodeFromCSEMaps(N))
 | |
|       InsertPos = 0;
 | |
| 
 | |
|   // Now we update the operands.
 | |
|   if (N->OperandList[0] != Op1)
 | |
|     N->OperandList[0].set(Op1);
 | |
|   if (N->OperandList[1] != Op2)
 | |
|     N->OperandList[1].set(Op2);
 | |
| 
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::
 | |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return UpdateNodeOperands(N, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::
 | |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
 | |
|                    SDValue Op3, SDValue Op4) {
 | |
|   SDValue Ops[] = { Op1, Op2, Op3, Op4 };
 | |
|   return UpdateNodeOperands(N, Ops, 4);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::
 | |
| UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
 | |
|                    SDValue Op3, SDValue Op4, SDValue Op5) {
 | |
|   SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
 | |
|   return UpdateNodeOperands(N, Ops, 5);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::
 | |
| UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
 | |
|   assert(N->getNumOperands() == NumOps &&
 | |
|          "Update with wrong number of operands");
 | |
| 
 | |
|   // Check to see if there is no change.
 | |
|   bool AnyChange = false;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     if (Ops[i] != N->getOperand(i)) {
 | |
|       AnyChange = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // No operands changed, just return the input node.
 | |
|   if (!AnyChange) return N;
 | |
| 
 | |
|   // See if the modified node already exists.
 | |
|   void *InsertPos = 0;
 | |
|   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
 | |
|     return Existing;
 | |
| 
 | |
|   // Nope it doesn't.  Remove the node from its current place in the maps.
 | |
|   if (InsertPos)
 | |
|     if (!RemoveNodeFromCSEMaps(N))
 | |
|       InsertPos = 0;
 | |
| 
 | |
|   // Now we update the operands.
 | |
|   for (unsigned i = 0; i != NumOps; ++i)
 | |
|     if (N->OperandList[i] != Ops[i])
 | |
|       N->OperandList[i].set(Ops[i]);
 | |
| 
 | |
|   // If this gets put into a CSE map, add it.
 | |
|   if (InsertPos) CSEMap.InsertNode(N, InsertPos);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// DropOperands - Release the operands and set this node to have
 | |
| /// zero operands.
 | |
| void SDNode::DropOperands() {
 | |
|   // Unlike the code in MorphNodeTo that does this, we don't need to
 | |
|   // watch for dead nodes here.
 | |
|   for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
 | |
|     SDUse &Use = *I++;
 | |
|     Use.set(SDValue());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
 | |
| /// machine opcode.
 | |
| ///
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT, SDValue Op1) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT, SDValue Op1,
 | |
|                                    SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT, SDValue Op1,
 | |
|                                    SDValue Op2, SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT, const SDValue *Ops,
 | |
|                                    unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2, const SDValue *Ops,
 | |
|                                    unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2, EVT VT3,
 | |
|                                    const SDValue *Ops, unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2, EVT VT3, EVT VT4,
 | |
|                                    const SDValue *Ops, unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2,
 | |
|                                    SDValue Op1) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2,
 | |
|                                    SDValue Op1, SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2,
 | |
|                                    SDValue Op1, SDValue Op2,
 | |
|                                    SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    EVT VT1, EVT VT2, EVT VT3,
 | |
|                                    SDValue Op1, SDValue Op2,
 | |
|                                    SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
 | |
| }
 | |
| 
 | |
| SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
 | |
|                                    SDVTList VTs, const SDValue *Ops,
 | |
|                                    unsigned NumOps) {
 | |
|   N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
 | |
|   // Reset the NodeID to -1.
 | |
|   N->setNodeId(-1);
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// MorphNodeTo - This *mutates* the specified node to have the specified
 | |
| /// return type, opcode, and operands.
 | |
| ///
 | |
| /// Note that MorphNodeTo returns the resultant node.  If there is already a
 | |
| /// node of the specified opcode and operands, it returns that node instead of
 | |
| /// the current one.  Note that the DebugLoc need not be the same.
 | |
| ///
 | |
| /// Using MorphNodeTo is faster than creating a new node and swapping it in
 | |
| /// with ReplaceAllUsesWith both because it often avoids allocating a new
 | |
| /// node, and because it doesn't require CSE recalculation for any of
 | |
| /// the node's users.
 | |
| ///
 | |
| SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
 | |
|                                   SDVTList VTs, const SDValue *Ops,
 | |
|                                   unsigned NumOps) {
 | |
|   // If an identical node already exists, use it.
 | |
|   void *IP = 0;
 | |
|   if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
 | |
|     if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return ON;
 | |
|   }
 | |
| 
 | |
|   if (!RemoveNodeFromCSEMaps(N))
 | |
|     IP = 0;
 | |
| 
 | |
|   // Start the morphing.
 | |
|   N->NodeType = Opc;
 | |
|   N->ValueList = VTs.VTs;
 | |
|   N->NumValues = VTs.NumVTs;
 | |
| 
 | |
|   // Clear the operands list, updating used nodes to remove this from their
 | |
|   // use list.  Keep track of any operands that become dead as a result.
 | |
|   SmallPtrSet<SDNode*, 16> DeadNodeSet;
 | |
|   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
 | |
|     SDUse &Use = *I++;
 | |
|     SDNode *Used = Use.getNode();
 | |
|     Use.set(SDValue());
 | |
|     if (Used->use_empty())
 | |
|       DeadNodeSet.insert(Used);
 | |
|   }
 | |
| 
 | |
|   if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
 | |
|     // Initialize the memory references information.
 | |
|     MN->setMemRefs(0, 0);
 | |
|     // If NumOps is larger than the # of operands we can have in a
 | |
|     // MachineSDNode, reallocate the operand list.
 | |
|     if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
 | |
|       if (MN->OperandsNeedDelete)
 | |
|         delete[] MN->OperandList;
 | |
|       if (NumOps > array_lengthof(MN->LocalOperands))
 | |
|         // We're creating a final node that will live unmorphed for the
 | |
|         // remainder of the current SelectionDAG iteration, so we can allocate
 | |
|         // the operands directly out of a pool with no recycling metadata.
 | |
|         MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
 | |
|                          Ops, NumOps);
 | |
|       else
 | |
|         MN->InitOperands(MN->LocalOperands, Ops, NumOps);
 | |
|       MN->OperandsNeedDelete = false;
 | |
|     } else
 | |
|       MN->InitOperands(MN->OperandList, Ops, NumOps);
 | |
|   } else {
 | |
|     // If NumOps is larger than the # of operands we currently have, reallocate
 | |
|     // the operand list.
 | |
|     if (NumOps > N->NumOperands) {
 | |
|       if (N->OperandsNeedDelete)
 | |
|         delete[] N->OperandList;
 | |
|       N->InitOperands(new SDUse[NumOps], Ops, NumOps);
 | |
|       N->OperandsNeedDelete = true;
 | |
|     } else
 | |
|       N->InitOperands(N->OperandList, Ops, NumOps);
 | |
|   }
 | |
| 
 | |
|   // Delete any nodes that are still dead after adding the uses for the
 | |
|   // new operands.
 | |
|   if (!DeadNodeSet.empty()) {
 | |
|     SmallVector<SDNode *, 16> DeadNodes;
 | |
|     for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
 | |
|          E = DeadNodeSet.end(); I != E; ++I)
 | |
|       if ((*I)->use_empty())
 | |
|         DeadNodes.push_back(*I);
 | |
|     RemoveDeadNodes(DeadNodes);
 | |
|   }
 | |
| 
 | |
|   if (IP)
 | |
|     CSEMap.InsertNode(N, IP);   // Memoize the new node.
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getMachineNode - These are used for target selectors to create a new node
 | |
| /// with specified return type(s), MachineInstr opcode, and operands.
 | |
| ///
 | |
| /// Note that getMachineNode returns the resultant node.  If there is already a
 | |
| /// node of the specified opcode and operands, it returns that node instead of
 | |
| /// the current one.
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return getMachineNode(Opcode, dl, VTs, 0, 0);
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
 | |
|                              SDValue Op1, SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
 | |
|                              SDValue Op1, SDValue Op2, SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
 | |
|                              const SDValue *Ops, unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT);
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return getMachineNode(Opcode, dl, VTs, 0, 0);
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
 | |
|                              EVT VT1, EVT VT2, SDValue Op1) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
 | |
|                              EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
 | |
|                              EVT VT1, EVT VT2, SDValue Op1,
 | |
|                              SDValue Op2, SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
 | |
|                              EVT VT1, EVT VT2,
 | |
|                              const SDValue *Ops, unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2);
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
 | |
|                              EVT VT1, EVT VT2, EVT VT3,
 | |
|                              SDValue Op1, SDValue Op2) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   SDValue Ops[] = { Op1, Op2 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
 | |
|                              EVT VT1, EVT VT2, EVT VT3,
 | |
|                              SDValue Op1, SDValue Op2, SDValue Op3) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   SDValue Ops[] = { Op1, Op2, Op3 };
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
 | |
|                              EVT VT1, EVT VT2, EVT VT3,
 | |
|                              const SDValue *Ops, unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3);
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
 | |
|                              EVT VT2, EVT VT3, EVT VT4,
 | |
|                              const SDValue *Ops, unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
 | |
|                              const std::vector<EVT> &ResultTys,
 | |
|                              const SDValue *Ops, unsigned NumOps) {
 | |
|   SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
 | |
|   return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
 | |
| }
 | |
| 
 | |
| MachineSDNode *
 | |
| SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
 | |
|                              const SDValue *Ops, unsigned NumOps) {
 | |
|   bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
 | |
|   MachineSDNode *N;
 | |
|   void *IP;
 | |
| 
 | |
|   if (DoCSE) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
 | |
|     IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return cast<MachineSDNode>(E);
 | |
|   }
 | |
| 
 | |
|   // Allocate a new MachineSDNode.
 | |
|   N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
 | |
| 
 | |
|   // Initialize the operands list.
 | |
|   if (NumOps > array_lengthof(N->LocalOperands))
 | |
|     // We're creating a final node that will live unmorphed for the
 | |
|     // remainder of the current SelectionDAG iteration, so we can allocate
 | |
|     // the operands directly out of a pool with no recycling metadata.
 | |
|     N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
 | |
|                     Ops, NumOps);
 | |
|   else
 | |
|     N->InitOperands(N->LocalOperands, Ops, NumOps);
 | |
|   N->OperandsNeedDelete = false;
 | |
| 
 | |
|   if (DoCSE)
 | |
|     CSEMap.InsertNode(N, IP);
 | |
| 
 | |
|   AllNodes.push_back(N);
 | |
| #ifndef NDEBUG
 | |
|   VerifyNode(N);
 | |
| #endif
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// getTargetExtractSubreg - A convenience function for creating
 | |
| /// TargetOpcode::EXTRACT_SUBREG nodes.
 | |
| SDValue
 | |
| SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
 | |
|                                      SDValue Operand) {
 | |
|   SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
 | |
|   SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
 | |
|                                   VT, Operand, SRIdxVal);
 | |
|   return SDValue(Subreg, 0);
 | |
| }
 | |
| 
 | |
| /// getTargetInsertSubreg - A convenience function for creating
 | |
| /// TargetOpcode::INSERT_SUBREG nodes.
 | |
| SDValue
 | |
| SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
 | |
|                                     SDValue Operand, SDValue Subreg) {
 | |
|   SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
 | |
|   SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
 | |
|                                   VT, Operand, Subreg, SRIdxVal);
 | |
|   return SDValue(Result, 0);
 | |
| }
 | |
| 
 | |
| /// getNodeIfExists - Get the specified node if it's already available, or
 | |
| /// else return NULL.
 | |
| SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
 | |
|                                       const SDValue *Ops, unsigned NumOps) {
 | |
|   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
 | |
|     FoldingSetNodeID ID;
 | |
|     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
 | |
|     void *IP = 0;
 | |
|     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
 | |
|       return E;
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// getDbgValue - Creates a SDDbgValue node.
 | |
| ///
 | |
| SDDbgValue *
 | |
| SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
 | |
|                           DebugLoc DL, unsigned O) {
 | |
|   return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
 | |
| }
 | |
| 
 | |
| SDDbgValue *
 | |
| SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
 | |
|                           DebugLoc DL, unsigned O) {
 | |
|   return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
 | |
| }
 | |
| 
 | |
| SDDbgValue *
 | |
| SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
 | |
|                           DebugLoc DL, unsigned O) {
 | |
|   return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
 | |
| /// pointed to by a use iterator is deleted, increment the use iterator
 | |
| /// so that it doesn't dangle.
 | |
| ///
 | |
| /// This class also manages a "downlink" DAGUpdateListener, to forward
 | |
| /// messages to ReplaceAllUsesWith's callers.
 | |
| ///
 | |
| class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
 | |
|   SelectionDAG::DAGUpdateListener *DownLink;
 | |
|   SDNode::use_iterator &UI;
 | |
|   SDNode::use_iterator &UE;
 | |
| 
 | |
|   virtual void NodeDeleted(SDNode *N, SDNode *E) {
 | |
|     // Increment the iterator as needed.
 | |
|     while (UI != UE && N == *UI)
 | |
|       ++UI;
 | |
| 
 | |
|     // Then forward the message.
 | |
|     if (DownLink) DownLink->NodeDeleted(N, E);
 | |
|   }
 | |
| 
 | |
|   virtual void NodeUpdated(SDNode *N) {
 | |
|     // Just forward the message.
 | |
|     if (DownLink) DownLink->NodeUpdated(N);
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
 | |
|                      SDNode::use_iterator &ui,
 | |
|                      SDNode::use_iterator &ue)
 | |
|     : DownLink(dl), UI(ui), UE(ue) {}
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version assumes From has a single result value.
 | |
| ///
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
 | |
|                                       DAGUpdateListener *UpdateListener) {
 | |
|   SDNode *From = FromN.getNode();
 | |
|   assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
 | |
|          "Cannot replace with this method!");
 | |
|   assert(From != To.getNode() && "Cannot replace uses of with self");
 | |
| 
 | |
|   // Iterate over all the existing uses of From. New uses will be added
 | |
|   // to the beginning of the use list, which we avoid visiting.
 | |
|   // This specifically avoids visiting uses of From that arise while the
 | |
|   // replacement is happening, because any such uses would be the result
 | |
|   // of CSE: If an existing node looks like From after one of its operands
 | |
|   // is replaced by To, we don't want to replace of all its users with To
 | |
|   // too. See PR3018 for more info.
 | |
|   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
 | |
|   RAUWUpdateListener Listener(UpdateListener, UI, UE);
 | |
|   while (UI != UE) {
 | |
|     SDNode *User = *UI;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
| 
 | |
|     // A user can appear in a use list multiple times, and when this
 | |
|     // happens the uses are usually next to each other in the list.
 | |
|     // To help reduce the number of CSE recomputations, process all
 | |
|     // the uses of this user that we can find this way.
 | |
|     do {
 | |
|       SDUse &Use = UI.getUse();
 | |
|       ++UI;
 | |
|       Use.set(To);
 | |
|     } while (UI != UE && *UI == User);
 | |
| 
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     AddModifiedNodeToCSEMaps(User, &Listener);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version assumes that for each value of From, there is a
 | |
| /// corresponding value in To in the same position with the same type.
 | |
| ///
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
 | |
|                                       DAGUpdateListener *UpdateListener) {
 | |
| #ifndef NDEBUG
 | |
|   for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
 | |
|     assert((!From->hasAnyUseOfValue(i) ||
 | |
|             From->getValueType(i) == To->getValueType(i)) &&
 | |
|            "Cannot use this version of ReplaceAllUsesWith!");
 | |
| #endif
 | |
| 
 | |
|   // Handle the trivial case.
 | |
|   if (From == To)
 | |
|     return;
 | |
| 
 | |
|   // Iterate over just the existing users of From. See the comments in
 | |
|   // the ReplaceAllUsesWith above.
 | |
|   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
 | |
|   RAUWUpdateListener Listener(UpdateListener, UI, UE);
 | |
|   while (UI != UE) {
 | |
|     SDNode *User = *UI;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
| 
 | |
|     // A user can appear in a use list multiple times, and when this
 | |
|     // happens the uses are usually next to each other in the list.
 | |
|     // To help reduce the number of CSE recomputations, process all
 | |
|     // the uses of this user that we can find this way.
 | |
|     do {
 | |
|       SDUse &Use = UI.getUse();
 | |
|       ++UI;
 | |
|       Use.setNode(To);
 | |
|     } while (UI != UE && *UI == User);
 | |
| 
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     AddModifiedNodeToCSEMaps(User, &Listener);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
 | |
| /// This can cause recursive merging of nodes in the DAG.
 | |
| ///
 | |
| /// This version can replace From with any result values.  To must match the
 | |
| /// number and types of values returned by From.
 | |
| void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
 | |
|                                       const SDValue *To,
 | |
|                                       DAGUpdateListener *UpdateListener) {
 | |
|   if (From->getNumValues() == 1)  // Handle the simple case efficiently.
 | |
|     return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
 | |
| 
 | |
|   // Iterate over just the existing users of From. See the comments in
 | |
|   // the ReplaceAllUsesWith above.
 | |
|   SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
 | |
|   RAUWUpdateListener Listener(UpdateListener, UI, UE);
 | |
|   while (UI != UE) {
 | |
|     SDNode *User = *UI;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
| 
 | |
|     // A user can appear in a use list multiple times, and when this
 | |
|     // happens the uses are usually next to each other in the list.
 | |
|     // To help reduce the number of CSE recomputations, process all
 | |
|     // the uses of this user that we can find this way.
 | |
|     do {
 | |
|       SDUse &Use = UI.getUse();
 | |
|       const SDValue &ToOp = To[Use.getResNo()];
 | |
|       ++UI;
 | |
|       Use.set(ToOp);
 | |
|     } while (UI != UE && *UI == User);
 | |
| 
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     AddModifiedNodeToCSEMaps(User, &Listener);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
 | |
| /// uses of other values produced by From.getNode() alone.  The Deleted
 | |
| /// vector is handled the same way as for ReplaceAllUsesWith.
 | |
| void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
 | |
|                                              DAGUpdateListener *UpdateListener){
 | |
|   // Handle the really simple, really trivial case efficiently.
 | |
|   if (From == To) return;
 | |
| 
 | |
|   // Handle the simple, trivial, case efficiently.
 | |
|   if (From.getNode()->getNumValues() == 1) {
 | |
|     ReplaceAllUsesWith(From, To, UpdateListener);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Iterate over just the existing users of From. See the comments in
 | |
|   // the ReplaceAllUsesWith above.
 | |
|   SDNode::use_iterator UI = From.getNode()->use_begin(),
 | |
|                        UE = From.getNode()->use_end();
 | |
|   RAUWUpdateListener Listener(UpdateListener, UI, UE);
 | |
|   while (UI != UE) {
 | |
|     SDNode *User = *UI;
 | |
|     bool UserRemovedFromCSEMaps = false;
 | |
| 
 | |
|     // A user can appear in a use list multiple times, and when this
 | |
|     // happens the uses are usually next to each other in the list.
 | |
|     // To help reduce the number of CSE recomputations, process all
 | |
|     // the uses of this user that we can find this way.
 | |
|     do {
 | |
|       SDUse &Use = UI.getUse();
 | |
| 
 | |
|       // Skip uses of different values from the same node.
 | |
|       if (Use.getResNo() != From.getResNo()) {
 | |
|         ++UI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If this node hasn't been modified yet, it's still in the CSE maps,
 | |
|       // so remove its old self from the CSE maps.
 | |
|       if (!UserRemovedFromCSEMaps) {
 | |
|         RemoveNodeFromCSEMaps(User);
 | |
|         UserRemovedFromCSEMaps = true;
 | |
|       }
 | |
| 
 | |
|       ++UI;
 | |
|       Use.set(To);
 | |
|     } while (UI != UE && *UI == User);
 | |
| 
 | |
|     // We are iterating over all uses of the From node, so if a use
 | |
|     // doesn't use the specific value, no changes are made.
 | |
|     if (!UserRemovedFromCSEMaps)
 | |
|       continue;
 | |
| 
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     AddModifiedNodeToCSEMaps(User, &Listener);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
 | |
|   /// to record information about a use.
 | |
|   struct UseMemo {
 | |
|     SDNode *User;
 | |
|     unsigned Index;
 | |
|     SDUse *Use;
 | |
|   };
 | |
| 
 | |
|   /// operator< - Sort Memos by User.
 | |
|   bool operator<(const UseMemo &L, const UseMemo &R) {
 | |
|     return (intptr_t)L.User < (intptr_t)R.User;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
 | |
| /// uses of other values produced by From.getNode() alone.  The same value
 | |
| /// may appear in both the From and To list.  The Deleted vector is
 | |
| /// handled the same way as for ReplaceAllUsesWith.
 | |
| void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
 | |
|                                               const SDValue *To,
 | |
|                                               unsigned Num,
 | |
|                                               DAGUpdateListener *UpdateListener){
 | |
|   // Handle the simple, trivial case efficiently.
 | |
|   if (Num == 1)
 | |
|     return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
 | |
| 
 | |
|   // Read up all the uses and make records of them. This helps
 | |
|   // processing new uses that are introduced during the
 | |
|   // replacement process.
 | |
|   SmallVector<UseMemo, 4> Uses;
 | |
|   for (unsigned i = 0; i != Num; ++i) {
 | |
|     unsigned FromResNo = From[i].getResNo();
 | |
|     SDNode *FromNode = From[i].getNode();
 | |
|     for (SDNode::use_iterator UI = FromNode->use_begin(),
 | |
|          E = FromNode->use_end(); UI != E; ++UI) {
 | |
|       SDUse &Use = UI.getUse();
 | |
|       if (Use.getResNo() == FromResNo) {
 | |
|         UseMemo Memo = { *UI, i, &Use };
 | |
|         Uses.push_back(Memo);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Sort the uses, so that all the uses from a given User are together.
 | |
|   std::sort(Uses.begin(), Uses.end());
 | |
| 
 | |
|   for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
 | |
|        UseIndex != UseIndexEnd; ) {
 | |
|     // We know that this user uses some value of From.  If it is the right
 | |
|     // value, update it.
 | |
|     SDNode *User = Uses[UseIndex].User;
 | |
| 
 | |
|     // This node is about to morph, remove its old self from the CSE maps.
 | |
|     RemoveNodeFromCSEMaps(User);
 | |
| 
 | |
|     // The Uses array is sorted, so all the uses for a given User
 | |
|     // are next to each other in the list.
 | |
|     // To help reduce the number of CSE recomputations, process all
 | |
|     // the uses of this user that we can find this way.
 | |
|     do {
 | |
|       unsigned i = Uses[UseIndex].Index;
 | |
|       SDUse &Use = *Uses[UseIndex].Use;
 | |
|       ++UseIndex;
 | |
| 
 | |
|       Use.set(To[i]);
 | |
|     } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
 | |
| 
 | |
|     // Now that we have modified User, add it back to the CSE maps.  If it
 | |
|     // already exists there, recursively merge the results together.
 | |
|     AddModifiedNodeToCSEMaps(User, UpdateListener);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
 | |
| /// based on their topological order. It returns the maximum id and a vector
 | |
| /// of the SDNodes* in assigned order by reference.
 | |
| unsigned SelectionDAG::AssignTopologicalOrder() {
 | |
| 
 | |
|   unsigned DAGSize = 0;
 | |
| 
 | |
|   // SortedPos tracks the progress of the algorithm. Nodes before it are
 | |
|   // sorted, nodes after it are unsorted. When the algorithm completes
 | |
|   // it is at the end of the list.
 | |
|   allnodes_iterator SortedPos = allnodes_begin();
 | |
| 
 | |
|   // Visit all the nodes. Move nodes with no operands to the front of
 | |
|   // the list immediately. Annotate nodes that do have operands with their
 | |
|   // operand count. Before we do this, the Node Id fields of the nodes
 | |
|   // may contain arbitrary values. After, the Node Id fields for nodes
 | |
|   // before SortedPos will contain the topological sort index, and the
 | |
|   // Node Id fields for nodes At SortedPos and after will contain the
 | |
|   // count of outstanding operands.
 | |
|   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
 | |
|     SDNode *N = I++;
 | |
|     checkForCycles(N);
 | |
|     unsigned Degree = N->getNumOperands();
 | |
|     if (Degree == 0) {
 | |
|       // A node with no uses, add it to the result array immediately.
 | |
|       N->setNodeId(DAGSize++);
 | |
|       allnodes_iterator Q = N;
 | |
|       if (Q != SortedPos)
 | |
|         SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
 | |
|       assert(SortedPos != AllNodes.end() && "Overran node list");
 | |
|       ++SortedPos;
 | |
|     } else {
 | |
|       // Temporarily use the Node Id as scratch space for the degree count.
 | |
|       N->setNodeId(Degree);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Visit all the nodes. As we iterate, moves nodes into sorted order,
 | |
|   // such that by the time the end is reached all nodes will be sorted.
 | |
|   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
 | |
|     SDNode *N = I;
 | |
|     checkForCycles(N);
 | |
|     // N is in sorted position, so all its uses have one less operand
 | |
|     // that needs to be sorted.
 | |
|     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       SDNode *P = *UI;
 | |
|       unsigned Degree = P->getNodeId();
 | |
|       assert(Degree != 0 && "Invalid node degree");
 | |
|       --Degree;
 | |
|       if (Degree == 0) {
 | |
|         // All of P's operands are sorted, so P may sorted now.
 | |
|         P->setNodeId(DAGSize++);
 | |
|         if (P != SortedPos)
 | |
|           SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
 | |
|         assert(SortedPos != AllNodes.end() && "Overran node list");
 | |
|         ++SortedPos;
 | |
|       } else {
 | |
|         // Update P's outstanding operand count.
 | |
|         P->setNodeId(Degree);
 | |
|       }
 | |
|     }
 | |
|     if (I == SortedPos) {
 | |
| #ifndef NDEBUG
 | |
|       SDNode *S = ++I;
 | |
|       dbgs() << "Overran sorted position:\n";
 | |
|       S->dumprFull();
 | |
| #endif
 | |
|       llvm_unreachable(0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(SortedPos == AllNodes.end() &&
 | |
|          "Topological sort incomplete!");
 | |
|   assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
 | |
|          "First node in topological sort is not the entry token!");
 | |
|   assert(AllNodes.front().getNodeId() == 0 &&
 | |
|          "First node in topological sort has non-zero id!");
 | |
|   assert(AllNodes.front().getNumOperands() == 0 &&
 | |
|          "First node in topological sort has operands!");
 | |
|   assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
 | |
|          "Last node in topologic sort has unexpected id!");
 | |
|   assert(AllNodes.back().use_empty() &&
 | |
|          "Last node in topologic sort has users!");
 | |
|   assert(DAGSize == allnodes_size() && "Node count mismatch!");
 | |
|   return DAGSize;
 | |
| }
 | |
| 
 | |
| /// AssignOrdering - Assign an order to the SDNode.
 | |
| void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
 | |
|   assert(SD && "Trying to assign an order to a null node!");
 | |
|   Ordering->add(SD, Order);
 | |
| }
 | |
| 
 | |
| /// GetOrdering - Get the order for the SDNode.
 | |
| unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
 | |
|   assert(SD && "Trying to get the order of a null node!");
 | |
|   return Ordering->getOrder(SD);
 | |
| }
 | |
| 
 | |
| /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
 | |
| /// value is produced by SD.
 | |
| void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
 | |
|   DbgInfo->add(DB, SD, isParameter);
 | |
|   if (SD)
 | |
|     SD->setHasDebugValue(true);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              SDNode Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| HandleSDNode::~HandleSDNode() {
 | |
|   DropOperands();
 | |
| }
 | |
| 
 | |
| GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
 | |
|                                          const GlobalValue *GA,
 | |
|                                          EVT VT, int64_t o, unsigned char TF)
 | |
|   : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
 | |
|   TheGlobal = GA;
 | |
| }
 | |
| 
 | |
| MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
 | |
|                      MachineMemOperand *mmo)
 | |
|  : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
 | |
|   SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
 | |
|                                       MMO->isNonTemporal());
 | |
|   assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
 | |
|   assert(isNonTemporal() == MMO->isNonTemporal() &&
 | |
|          "Non-temporal encoding error!");
 | |
|   assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
 | |
| }
 | |
| 
 | |
| MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
 | |
|                      const SDValue *Ops, unsigned NumOps, EVT memvt, 
 | |
|                      MachineMemOperand *mmo)
 | |
|    : SDNode(Opc, dl, VTs, Ops, NumOps),
 | |
|      MemoryVT(memvt), MMO(mmo) {
 | |
|   SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
 | |
|                                       MMO->isNonTemporal());
 | |
|   assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
 | |
|   assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
 | |
| }
 | |
| 
 | |
| /// Profile - Gather unique data for the node.
 | |
| ///
 | |
| void SDNode::Profile(FoldingSetNodeID &ID) const {
 | |
|   AddNodeIDNode(ID, this);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct EVTArray {
 | |
|     std::vector<EVT> VTs;
 | |
|     
 | |
|     EVTArray() {
 | |
|       VTs.reserve(MVT::LAST_VALUETYPE);
 | |
|       for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
 | |
|         VTs.push_back(MVT((MVT::SimpleValueType)i));
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
 | |
| static ManagedStatic<EVTArray> SimpleVTArray;
 | |
| static ManagedStatic<sys::SmartMutex<true> > VTMutex;
 | |
| 
 | |
| /// getValueTypeList - Return a pointer to the specified value type.
 | |
| ///
 | |
| const EVT *SDNode::getValueTypeList(EVT VT) {
 | |
|   if (VT.isExtended()) {
 | |
|     sys::SmartScopedLock<true> Lock(*VTMutex);
 | |
|     return &(*EVTs->insert(VT).first);
 | |
|   } else {
 | |
|     assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
 | |
|            "Value type out of range!");
 | |
|     return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
 | |
| /// indicated value.  This method ignores uses of other values defined by this
 | |
| /// operation.
 | |
| bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
 | |
|   assert(Value < getNumValues() && "Bad value!");
 | |
| 
 | |
|   // TODO: Only iterate over uses of a given value of the node
 | |
|   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
 | |
|     if (UI.getUse().getResNo() == Value) {
 | |
|       if (NUses == 0)
 | |
|         return false;
 | |
|       --NUses;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Found exactly the right number of uses?
 | |
|   return NUses == 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// hasAnyUseOfValue - Return true if there are any use of the indicated
 | |
| /// value. This method ignores uses of other values defined by this operation.
 | |
| bool SDNode::hasAnyUseOfValue(unsigned Value) const {
 | |
|   assert(Value < getNumValues() && "Bad value!");
 | |
| 
 | |
|   for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
 | |
|     if (UI.getUse().getResNo() == Value)
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isOnlyUserOf - Return true if this node is the only use of N.
 | |
| ///
 | |
| bool SDNode::isOnlyUserOf(SDNode *N) const {
 | |
|   bool Seen = false;
 | |
|   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | |
|     SDNode *User = *I;
 | |
|     if (User == this)
 | |
|       Seen = true;
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return Seen;
 | |
| }
 | |
| 
 | |
| /// isOperand - Return true if this node is an operand of N.
 | |
| ///
 | |
| bool SDValue::isOperandOf(SDNode *N) const {
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (*this == N->getOperand(i))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SDNode::isOperandOf(SDNode *N) const {
 | |
|   for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
 | |
|     if (this == N->OperandList[i].getNode())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// reachesChainWithoutSideEffects - Return true if this operand (which must
 | |
| /// be a chain) reaches the specified operand without crossing any
 | |
| /// side-effecting instructions on any chain path.  In practice, this looks 
 | |
| /// through token factors and non-volatile loads.  In order to remain efficient, 
 | |
| /// this only looks a couple of nodes in, it does not do an exhaustive search.
 | |
| bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
 | |
|                                                unsigned Depth) const {
 | |
|   if (*this == Dest) return true;
 | |
| 
 | |
|   // Don't search too deeply, we just want to be able to see through
 | |
|   // TokenFactor's etc.
 | |
|   if (Depth == 0) return false;
 | |
| 
 | |
|   // If this is a token factor, all inputs to the TF happen in parallel.  If any
 | |
|   // of the operands of the TF does not reach dest, then we cannot do the xform.
 | |
|   if (getOpcode() == ISD::TokenFactor) {
 | |
|     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|       if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Loads don't have side effects, look through them.
 | |
|   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
 | |
|     if (!Ld->isVolatile())
 | |
|       return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isPredecessorOf - Return true if this node is a predecessor of N. This node
 | |
| /// is either an operand of N or it can be reached by traversing up the operands.
 | |
| /// NOTE: this is an expensive method. Use it carefully.
 | |
| bool SDNode::isPredecessorOf(SDNode *N) const {
 | |
|   SmallPtrSet<SDNode *, 32> Visited;
 | |
|   SmallVector<SDNode *, 16> Worklist;
 | |
|   Worklist.push_back(N);
 | |
| 
 | |
|   do {
 | |
|     N = Worklist.pop_back_val();
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|       SDNode *Op = N->getOperand(i).getNode();
 | |
|       if (Op == this)
 | |
|         return true;
 | |
|       if (Visited.insert(Op))
 | |
|         Worklist.push_back(Op);
 | |
|     }
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
 | |
|   assert(Num < NumOperands && "Invalid child # of SDNode!");
 | |
|   return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
 | |
| }
 | |
| 
 | |
| std::string SDNode::getOperationName(const SelectionDAG *G) const {
 | |
|   switch (getOpcode()) {
 | |
|   default:
 | |
|     if (getOpcode() < ISD::BUILTIN_OP_END)
 | |
|       return "<<Unknown DAG Node>>";
 | |
|     if (isMachineOpcode()) {
 | |
|       if (G)
 | |
|         if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
 | |
|           if (getMachineOpcode() < TII->getNumOpcodes())
 | |
|             return TII->get(getMachineOpcode()).getName();
 | |
|       return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
 | |
|     }
 | |
|     if (G) {
 | |
|       const TargetLowering &TLI = G->getTargetLoweringInfo();
 | |
|       const char *Name = TLI.getTargetNodeName(getOpcode());
 | |
|       if (Name) return Name;
 | |
|       return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
 | |
|     }
 | |
|     return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   case ISD::DELETED_NODE:
 | |
|     return "<<Deleted Node!>>";
 | |
| #endif
 | |
|   case ISD::PREFETCH:      return "Prefetch";
 | |
|   case ISD::MEMBARRIER:    return "MemBarrier";
 | |
|   case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
 | |
|   case ISD::ATOMIC_SWAP:        return "AtomicSwap";
 | |
|   case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
 | |
|   case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
 | |
|   case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
 | |
|   case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
 | |
|   case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
 | |
|   case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
 | |
|   case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
 | |
|   case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
 | |
|   case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
 | |
|   case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
 | |
|   case ISD::PCMARKER:      return "PCMarker";
 | |
|   case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
 | |
|   case ISD::SRCVALUE:      return "SrcValue";
 | |
|   case ISD::MDNODE_SDNODE: return "MDNode";
 | |
|   case ISD::EntryToken:    return "EntryToken";
 | |
|   case ISD::TokenFactor:   return "TokenFactor";
 | |
|   case ISD::AssertSext:    return "AssertSext";
 | |
|   case ISD::AssertZext:    return "AssertZext";
 | |
| 
 | |
|   case ISD::BasicBlock:    return "BasicBlock";
 | |
|   case ISD::VALUETYPE:     return "ValueType";
 | |
|   case ISD::Register:      return "Register";
 | |
| 
 | |
|   case ISD::Constant:      return "Constant";
 | |
|   case ISD::ConstantFP:    return "ConstantFP";
 | |
|   case ISD::GlobalAddress: return "GlobalAddress";
 | |
|   case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
 | |
|   case ISD::FrameIndex:    return "FrameIndex";
 | |
|   case ISD::JumpTable:     return "JumpTable";
 | |
|   case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
 | |
|   case ISD::RETURNADDR: return "RETURNADDR";
 | |
|   case ISD::FRAMEADDR: return "FRAMEADDR";
 | |
|   case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
 | |
|   case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
 | |
|   case ISD::LSDAADDR: return "LSDAADDR";
 | |
|   case ISD::EHSELECTION: return "EHSELECTION";
 | |
|   case ISD::EH_RETURN: return "EH_RETURN";
 | |
|   case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
 | |
|   case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
 | |
|   case ISD::ConstantPool:  return "ConstantPool";
 | |
|   case ISD::ExternalSymbol: return "ExternalSymbol";
 | |
|   case ISD::BlockAddress:  return "BlockAddress";
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|   case ISD::INTRINSIC_VOID:
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
 | |
|     unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
 | |
|     if (IID < Intrinsic::num_intrinsics)
 | |
|       return Intrinsic::getName((Intrinsic::ID)IID);
 | |
|     else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
 | |
|       return TII->getName(IID);
 | |
|     llvm_unreachable("Invalid intrinsic ID");
 | |
|   }
 | |
| 
 | |
|   case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
 | |
|   case ISD::TargetConstant: return "TargetConstant";
 | |
|   case ISD::TargetConstantFP:return "TargetConstantFP";
 | |
|   case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
 | |
|   case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
 | |
|   case ISD::TargetFrameIndex: return "TargetFrameIndex";
 | |
|   case ISD::TargetJumpTable:  return "TargetJumpTable";
 | |
|   case ISD::TargetConstantPool:  return "TargetConstantPool";
 | |
|   case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
 | |
|   case ISD::TargetBlockAddress: return "TargetBlockAddress";
 | |
| 
 | |
|   case ISD::CopyToReg:     return "CopyToReg";
 | |
|   case ISD::CopyFromReg:   return "CopyFromReg";
 | |
|   case ISD::UNDEF:         return "undef";
 | |
|   case ISD::MERGE_VALUES:  return "merge_values";
 | |
|   case ISD::INLINEASM:     return "inlineasm";
 | |
|   case ISD::EH_LABEL:      return "eh_label";
 | |
|   case ISD::HANDLENODE:    return "handlenode";
 | |
| 
 | |
|   // Unary operators
 | |
|   case ISD::FABS:   return "fabs";
 | |
|   case ISD::FNEG:   return "fneg";
 | |
|   case ISD::FSQRT:  return "fsqrt";
 | |
|   case ISD::FSIN:   return "fsin";
 | |
|   case ISD::FCOS:   return "fcos";
 | |
|   case ISD::FTRUNC: return "ftrunc";
 | |
|   case ISD::FFLOOR: return "ffloor";
 | |
|   case ISD::FCEIL:  return "fceil";
 | |
|   case ISD::FRINT:  return "frint";
 | |
|   case ISD::FNEARBYINT: return "fnearbyint";
 | |
|   case ISD::FEXP:   return "fexp";
 | |
|   case ISD::FEXP2:  return "fexp2";
 | |
|   case ISD::FLOG:   return "flog";
 | |
|   case ISD::FLOG2:  return "flog2";
 | |
|   case ISD::FLOG10: return "flog10";
 | |
| 
 | |
|   // Binary operators
 | |
|   case ISD::ADD:    return "add";
 | |
|   case ISD::SUB:    return "sub";
 | |
|   case ISD::MUL:    return "mul";
 | |
|   case ISD::MULHU:  return "mulhu";
 | |
|   case ISD::MULHS:  return "mulhs";
 | |
|   case ISD::SDIV:   return "sdiv";
 | |
|   case ISD::UDIV:   return "udiv";
 | |
|   case ISD::SREM:   return "srem";
 | |
|   case ISD::UREM:   return "urem";
 | |
|   case ISD::SMUL_LOHI:  return "smul_lohi";
 | |
|   case ISD::UMUL_LOHI:  return "umul_lohi";
 | |
|   case ISD::SDIVREM:    return "sdivrem";
 | |
|   case ISD::UDIVREM:    return "udivrem";
 | |
|   case ISD::AND:    return "and";
 | |
|   case ISD::OR:     return "or";
 | |
|   case ISD::XOR:    return "xor";
 | |
|   case ISD::SHL:    return "shl";
 | |
|   case ISD::SRA:    return "sra";
 | |
|   case ISD::SRL:    return "srl";
 | |
|   case ISD::ROTL:   return "rotl";
 | |
|   case ISD::ROTR:   return "rotr";
 | |
|   case ISD::FADD:   return "fadd";
 | |
|   case ISD::FSUB:   return "fsub";
 | |
|   case ISD::FMUL:   return "fmul";
 | |
|   case ISD::FDIV:   return "fdiv";
 | |
|   case ISD::FREM:   return "frem";
 | |
|   case ISD::FCOPYSIGN: return "fcopysign";
 | |
|   case ISD::FGETSIGN:  return "fgetsign";
 | |
|   case ISD::FPOW:   return "fpow";
 | |
| 
 | |
|   case ISD::FPOWI:  return "fpowi";
 | |
|   case ISD::SETCC:       return "setcc";
 | |
|   case ISD::VSETCC:      return "vsetcc";
 | |
|   case ISD::SELECT:      return "select";
 | |
|   case ISD::SELECT_CC:   return "select_cc";
 | |
|   case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
 | |
|   case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
 | |
|   case ISD::CONCAT_VECTORS:      return "concat_vectors";
 | |
|   case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
 | |
|   case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
 | |
|   case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
 | |
|   case ISD::CARRY_FALSE:         return "carry_false";
 | |
|   case ISD::ADDC:        return "addc";
 | |
|   case ISD::ADDE:        return "adde";
 | |
|   case ISD::SADDO:       return "saddo";
 | |
|   case ISD::UADDO:       return "uaddo";
 | |
|   case ISD::SSUBO:       return "ssubo";
 | |
|   case ISD::USUBO:       return "usubo";
 | |
|   case ISD::SMULO:       return "smulo";
 | |
|   case ISD::UMULO:       return "umulo";
 | |
|   case ISD::SUBC:        return "subc";
 | |
|   case ISD::SUBE:        return "sube";
 | |
|   case ISD::SHL_PARTS:   return "shl_parts";
 | |
|   case ISD::SRA_PARTS:   return "sra_parts";
 | |
|   case ISD::SRL_PARTS:   return "srl_parts";
 | |
| 
 | |
|   // Conversion operators.
 | |
|   case ISD::SIGN_EXTEND: return "sign_extend";
 | |
|   case ISD::ZERO_EXTEND: return "zero_extend";
 | |
|   case ISD::ANY_EXTEND:  return "any_extend";
 | |
|   case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
 | |
|   case ISD::TRUNCATE:    return "truncate";
 | |
|   case ISD::FP_ROUND:    return "fp_round";
 | |
|   case ISD::FLT_ROUNDS_: return "flt_rounds";
 | |
|   case ISD::FP_ROUND_INREG: return "fp_round_inreg";
 | |
|   case ISD::FP_EXTEND:   return "fp_extend";
 | |
| 
 | |
|   case ISD::SINT_TO_FP:  return "sint_to_fp";
 | |
|   case ISD::UINT_TO_FP:  return "uint_to_fp";
 | |
|   case ISD::FP_TO_SINT:  return "fp_to_sint";
 | |
|   case ISD::FP_TO_UINT:  return "fp_to_uint";
 | |
|   case ISD::BIT_CONVERT: return "bit_convert";
 | |
|   case ISD::FP16_TO_FP32: return "fp16_to_fp32";
 | |
|   case ISD::FP32_TO_FP16: return "fp32_to_fp16";
 | |
| 
 | |
|   case ISD::CONVERT_RNDSAT: {
 | |
|     switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
 | |
|     default: llvm_unreachable("Unknown cvt code!");
 | |
|     case ISD::CVT_FF:  return "cvt_ff";
 | |
|     case ISD::CVT_FS:  return "cvt_fs";
 | |
|     case ISD::CVT_FU:  return "cvt_fu";
 | |
|     case ISD::CVT_SF:  return "cvt_sf";
 | |
|     case ISD::CVT_UF:  return "cvt_uf";
 | |
|     case ISD::CVT_SS:  return "cvt_ss";
 | |
|     case ISD::CVT_SU:  return "cvt_su";
 | |
|     case ISD::CVT_US:  return "cvt_us";
 | |
|     case ISD::CVT_UU:  return "cvt_uu";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|     // Control flow instructions
 | |
|   case ISD::BR:      return "br";
 | |
|   case ISD::BRIND:   return "brind";
 | |
|   case ISD::BR_JT:   return "br_jt";
 | |
|   case ISD::BRCOND:  return "brcond";
 | |
|   case ISD::BR_CC:   return "br_cc";
 | |
|   case ISD::CALLSEQ_START:  return "callseq_start";
 | |
|   case ISD::CALLSEQ_END:    return "callseq_end";
 | |
| 
 | |
|     // Other operators
 | |
|   case ISD::LOAD:               return "load";
 | |
|   case ISD::STORE:              return "store";
 | |
|   case ISD::VAARG:              return "vaarg";
 | |
|   case ISD::VACOPY:             return "vacopy";
 | |
|   case ISD::VAEND:              return "vaend";
 | |
|   case ISD::VASTART:            return "vastart";
 | |
|   case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
 | |
|   case ISD::EXTRACT_ELEMENT:    return "extract_element";
 | |
|   case ISD::BUILD_PAIR:         return "build_pair";
 | |
|   case ISD::STACKSAVE:          return "stacksave";
 | |
|   case ISD::STACKRESTORE:       return "stackrestore";
 | |
|   case ISD::TRAP:               return "trap";
 | |
| 
 | |
|   // Bit manipulation
 | |
|   case ISD::BSWAP:   return "bswap";
 | |
|   case ISD::CTPOP:   return "ctpop";
 | |
|   case ISD::CTTZ:    return "cttz";
 | |
|   case ISD::CTLZ:    return "ctlz";
 | |
| 
 | |
|   // Trampolines
 | |
|   case ISD::TRAMPOLINE: return "trampoline";
 | |
| 
 | |
|   case ISD::CONDCODE:
 | |
|     switch (cast<CondCodeSDNode>(this)->get()) {
 | |
|     default: llvm_unreachable("Unknown setcc condition!");
 | |
|     case ISD::SETOEQ:  return "setoeq";
 | |
|     case ISD::SETOGT:  return "setogt";
 | |
|     case ISD::SETOGE:  return "setoge";
 | |
|     case ISD::SETOLT:  return "setolt";
 | |
|     case ISD::SETOLE:  return "setole";
 | |
|     case ISD::SETONE:  return "setone";
 | |
| 
 | |
|     case ISD::SETO:    return "seto";
 | |
|     case ISD::SETUO:   return "setuo";
 | |
|     case ISD::SETUEQ:  return "setue";
 | |
|     case ISD::SETUGT:  return "setugt";
 | |
|     case ISD::SETUGE:  return "setuge";
 | |
|     case ISD::SETULT:  return "setult";
 | |
|     case ISD::SETULE:  return "setule";
 | |
|     case ISD::SETUNE:  return "setune";
 | |
| 
 | |
|     case ISD::SETEQ:   return "seteq";
 | |
|     case ISD::SETGT:   return "setgt";
 | |
|     case ISD::SETGE:   return "setge";
 | |
|     case ISD::SETLT:   return "setlt";
 | |
|     case ISD::SETLE:   return "setle";
 | |
|     case ISD::SETNE:   return "setne";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
 | |
|   switch (AM) {
 | |
|   default:
 | |
|     return "";
 | |
|   case ISD::PRE_INC:
 | |
|     return "<pre-inc>";
 | |
|   case ISD::PRE_DEC:
 | |
|     return "<pre-dec>";
 | |
|   case ISD::POST_INC:
 | |
|     return "<post-inc>";
 | |
|   case ISD::POST_DEC:
 | |
|     return "<post-dec>";
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::string ISD::ArgFlagsTy::getArgFlagsString() {
 | |
|   std::string S = "< ";
 | |
| 
 | |
|   if (isZExt())
 | |
|     S += "zext ";
 | |
|   if (isSExt())
 | |
|     S += "sext ";
 | |
|   if (isInReg())
 | |
|     S += "inreg ";
 | |
|   if (isSRet())
 | |
|     S += "sret ";
 | |
|   if (isByVal())
 | |
|     S += "byval ";
 | |
|   if (isNest())
 | |
|     S += "nest ";
 | |
|   if (getByValAlign())
 | |
|     S += "byval-align:" + utostr(getByValAlign()) + " ";
 | |
|   if (getOrigAlign())
 | |
|     S += "orig-align:" + utostr(getOrigAlign()) + " ";
 | |
|   if (getByValSize())
 | |
|     S += "byval-size:" + utostr(getByValSize()) + " ";
 | |
|   return S + ">";
 | |
| }
 | |
| 
 | |
| void SDNode::dump() const { dump(0); }
 | |
| void SDNode::dump(const SelectionDAG *G) const {
 | |
|   print(dbgs(), G);
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| 
 | |
| void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
 | |
|   OS << (void*)this << ": ";
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
 | |
|     if (i) OS << ",";
 | |
|     if (getValueType(i) == MVT::Other)
 | |
|       OS << "ch";
 | |
|     else
 | |
|       OS << getValueType(i).getEVTString();
 | |
|   }
 | |
|   OS << " = " << getOperationName(G);
 | |
| }
 | |
| 
 | |
| void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
 | |
|   if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
 | |
|     if (!MN->memoperands_empty()) {
 | |
|       OS << "<";
 | |
|       OS << "Mem:";
 | |
|       for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
 | |
|            e = MN->memoperands_end(); i != e; ++i) {
 | |
|         OS << **i;
 | |
|         if (llvm::next(i) != e)
 | |
|           OS << " ";
 | |
|       }
 | |
|       OS << ">";
 | |
|     }
 | |
|   } else if (const ShuffleVectorSDNode *SVN =
 | |
|                dyn_cast<ShuffleVectorSDNode>(this)) {
 | |
|     OS << "<";
 | |
|     for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
 | |
|       int Idx = SVN->getMaskElt(i);
 | |
|       if (i) OS << ",";
 | |
|       if (Idx < 0)
 | |
|         OS << "u";
 | |
|       else
 | |
|         OS << Idx;
 | |
|     }
 | |
|     OS << ">";
 | |
|   } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
 | |
|     OS << '<' << CSDN->getAPIntValue() << '>';
 | |
|   } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
 | |
|     if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
 | |
|       OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
 | |
|     else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
 | |
|       OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
 | |
|     else {
 | |
|       OS << "<APFloat(";
 | |
|       CSDN->getValueAPF().bitcastToAPInt().dump();
 | |
|       OS << ")>";
 | |
|     }
 | |
|   } else if (const GlobalAddressSDNode *GADN =
 | |
|              dyn_cast<GlobalAddressSDNode>(this)) {
 | |
|     int64_t offset = GADN->getOffset();
 | |
|     OS << '<';
 | |
|     WriteAsOperand(OS, GADN->getGlobal());
 | |
|     OS << '>';
 | |
|     if (offset > 0)
 | |
|       OS << " + " << offset;
 | |
|     else
 | |
|       OS << " " << offset;
 | |
|     if (unsigned int TF = GADN->getTargetFlags())
 | |
|       OS << " [TF=" << TF << ']';
 | |
|   } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
 | |
|     OS << "<" << FIDN->getIndex() << ">";
 | |
|   } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
 | |
|     OS << "<" << JTDN->getIndex() << ">";
 | |
|     if (unsigned int TF = JTDN->getTargetFlags())
 | |
|       OS << " [TF=" << TF << ']';
 | |
|   } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
 | |
|     int offset = CP->getOffset();
 | |
|     if (CP->isMachineConstantPoolEntry())
 | |
|       OS << "<" << *CP->getMachineCPVal() << ">";
 | |
|     else
 | |
|       OS << "<" << *CP->getConstVal() << ">";
 | |
|     if (offset > 0)
 | |
|       OS << " + " << offset;
 | |
|     else
 | |
|       OS << " " << offset;
 | |
|     if (unsigned int TF = CP->getTargetFlags())
 | |
|       OS << " [TF=" << TF << ']';
 | |
|   } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
 | |
|     OS << "<";
 | |
|     const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
 | |
|     if (LBB)
 | |
|       OS << LBB->getName() << " ";
 | |
|     OS << (const void*)BBDN->getBasicBlock() << ">";
 | |
|   } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
 | |
|     if (G && R->getReg() &&
 | |
|         TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
 | |
|       OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
 | |
|     } else {
 | |
|       OS << " %reg" << R->getReg();
 | |
|     }
 | |
|   } else if (const ExternalSymbolSDNode *ES =
 | |
|              dyn_cast<ExternalSymbolSDNode>(this)) {
 | |
|     OS << "'" << ES->getSymbol() << "'";
 | |
|     if (unsigned int TF = ES->getTargetFlags())
 | |
|       OS << " [TF=" << TF << ']';
 | |
|   } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
 | |
|     if (M->getValue())
 | |
|       OS << "<" << M->getValue() << ">";
 | |
|     else
 | |
|       OS << "<null>";
 | |
|   } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
 | |
|     if (MD->getMD())
 | |
|       OS << "<" << MD->getMD() << ">";
 | |
|     else
 | |
|       OS << "<null>";
 | |
|   } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
 | |
|     OS << ":" << N->getVT().getEVTString();
 | |
|   }
 | |
|   else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
 | |
|     OS << "<" << *LD->getMemOperand();
 | |
| 
 | |
|     bool doExt = true;
 | |
|     switch (LD->getExtensionType()) {
 | |
|     default: doExt = false; break;
 | |
|     case ISD::EXTLOAD: OS << ", anyext"; break;
 | |
|     case ISD::SEXTLOAD: OS << ", sext"; break;
 | |
|     case ISD::ZEXTLOAD: OS << ", zext"; break;
 | |
|     }
 | |
|     if (doExt)
 | |
|       OS << " from " << LD->getMemoryVT().getEVTString();
 | |
| 
 | |
|     const char *AM = getIndexedModeName(LD->getAddressingMode());
 | |
|     if (*AM)
 | |
|       OS << ", " << AM;
 | |
| 
 | |
|     OS << ">";
 | |
|   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
 | |
|     OS << "<" << *ST->getMemOperand();
 | |
| 
 | |
|     if (ST->isTruncatingStore())
 | |
|       OS << ", trunc to " << ST->getMemoryVT().getEVTString();
 | |
| 
 | |
|     const char *AM = getIndexedModeName(ST->getAddressingMode());
 | |
|     if (*AM)
 | |
|       OS << ", " << AM;
 | |
|     
 | |
|     OS << ">";
 | |
|   } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
 | |
|     OS << "<" << *M->getMemOperand() << ">";
 | |
|   } else if (const BlockAddressSDNode *BA =
 | |
|                dyn_cast<BlockAddressSDNode>(this)) {
 | |
|     OS << "<";
 | |
|     WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
 | |
|     OS << ", ";
 | |
|     WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
 | |
|     OS << ">";
 | |
|     if (unsigned int TF = BA->getTargetFlags())
 | |
|       OS << " [TF=" << TF << ']';
 | |
|   }
 | |
| 
 | |
|   if (G)
 | |
|     if (unsigned Order = G->GetOrdering(this))
 | |
|       OS << " [ORD=" << Order << ']';
 | |
| 
 | |
|   if (getNodeId() != -1)
 | |
|     OS << " [ID=" << getNodeId() << ']';
 | |
| 
 | |
|   DebugLoc dl = getDebugLoc();
 | |
|   if (G && !dl.isUnknown()) {
 | |
|     DIScope
 | |
|       Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
 | |
|     OS << " dbg:";
 | |
|     // Omit the directory, since it's usually long and uninteresting.
 | |
|     if (Scope.Verify())
 | |
|       OS << Scope.getFilename();
 | |
|     else
 | |
|       OS << "<unknown>";
 | |
|     OS << ':' << dl.getLine();
 | |
|     if (dl.getCol() != 0)
 | |
|       OS << ':' << dl.getCol();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
 | |
|   print_types(OS, G);
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     if (i) OS << ", "; else OS << " ";
 | |
|     OS << (void*)getOperand(i).getNode();
 | |
|     if (unsigned RN = getOperand(i).getResNo())
 | |
|       OS << ":" << RN;
 | |
|   }
 | |
|   print_details(OS, G);
 | |
| }
 | |
| 
 | |
| static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
 | |
|                                   const SelectionDAG *G, unsigned depth,
 | |
|                                   unsigned indent) 
 | |
| {
 | |
|   if (depth == 0)
 | |
|     return;
 | |
| 
 | |
|   OS.indent(indent);
 | |
| 
 | |
|   N->print(OS, G);
 | |
| 
 | |
|   if (depth < 1)
 | |
|     return;
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     OS << '\n';
 | |
|     printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
 | |
|                             unsigned depth) const {
 | |
|   printrWithDepthHelper(OS, this, G, depth, 0);
 | |
| } 
 | |
| 
 | |
| void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
 | |
|   // Don't print impossibly deep things.
 | |
|   printrWithDepth(OS, G, 100);
 | |
| }
 | |
| 
 | |
| void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
 | |
|   printrWithDepth(dbgs(), G, depth);
 | |
| }
 | |
| 
 | |
| void SDNode::dumprFull(const SelectionDAG *G) const {
 | |
|   // Don't print impossibly deep things.
 | |
|   dumprWithDepth(G, 100);
 | |
| } 
 | |
| 
 | |
| static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     if (N->getOperand(i).getNode()->hasOneUse())
 | |
|       DumpNodes(N->getOperand(i).getNode(), indent+2, G);
 | |
|     else
 | |
|       dbgs() << "\n" << std::string(indent+2, ' ')
 | |
|            << (void*)N->getOperand(i).getNode() << ": <multiple use>";
 | |
| 
 | |
| 
 | |
|   dbgs() << "\n";
 | |
|   dbgs().indent(indent);
 | |
|   N->dump(G);
 | |
| }
 | |
| 
 | |
| SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
 | |
|   assert(N->getNumValues() == 1 &&
 | |
|          "Can't unroll a vector with multiple results!");
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   unsigned NE = VT.getVectorNumElements();
 | |
|   EVT EltVT = VT.getVectorElementType();
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
| 
 | |
|   SmallVector<SDValue, 8> Scalars;
 | |
|   SmallVector<SDValue, 4> Operands(N->getNumOperands());
 | |
| 
 | |
|   // If ResNE is 0, fully unroll the vector op.
 | |
|   if (ResNE == 0)
 | |
|     ResNE = NE;
 | |
|   else if (NE > ResNE)
 | |
|     NE = ResNE;
 | |
| 
 | |
|   unsigned i;
 | |
|   for (i= 0; i != NE; ++i) {
 | |
|     for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
 | |
|       SDValue Operand = N->getOperand(j);
 | |
|       EVT OperandVT = Operand.getValueType();
 | |
|       if (OperandVT.isVector()) {
 | |
|         // A vector operand; extract a single element.
 | |
|         EVT OperandEltVT = OperandVT.getVectorElementType();
 | |
|         Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
 | |
|                               OperandEltVT,
 | |
|                               Operand,
 | |
|                               getConstant(i, MVT::i32));
 | |
|       } else {
 | |
|         // A scalar operand; just use it as is.
 | |
|         Operands[j] = Operand;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     switch (N->getOpcode()) {
 | |
|     default:
 | |
|       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
 | |
|                                 &Operands[0], Operands.size()));
 | |
|       break;
 | |
|     case ISD::SHL:
 | |
|     case ISD::SRA:
 | |
|     case ISD::SRL:
 | |
|     case ISD::ROTL:
 | |
|     case ISD::ROTR:
 | |
|       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
 | |
|                                 getShiftAmountOperand(Operands[1])));
 | |
|       break;
 | |
|     case ISD::SIGN_EXTEND_INREG:
 | |
|     case ISD::FP_ROUND_INREG: {
 | |
|       EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
 | |
|       Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
 | |
|                                 Operands[0],
 | |
|                                 getValueType(ExtVT)));
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (; i < ResNE; ++i)
 | |
|     Scalars.push_back(getUNDEF(EltVT));
 | |
| 
 | |
|   return getNode(ISD::BUILD_VECTOR, dl,
 | |
|                  EVT::getVectorVT(*getContext(), EltVT, ResNE),
 | |
|                  &Scalars[0], Scalars.size());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a 
 | |
| /// location that is 'Dist' units away from the location that the 'Base' load 
 | |
| /// is loading from.
 | |
| bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base, 
 | |
|                                      unsigned Bytes, int Dist) const {
 | |
|   if (LD->getChain() != Base->getChain())
 | |
|     return false;
 | |
|   EVT VT = LD->getValueType(0);
 | |
|   if (VT.getSizeInBits() / 8 != Bytes)
 | |
|     return false;
 | |
| 
 | |
|   SDValue Loc = LD->getOperand(1);
 | |
|   SDValue BaseLoc = Base->getOperand(1);
 | |
|   if (Loc.getOpcode() == ISD::FrameIndex) {
 | |
|     if (BaseLoc.getOpcode() != ISD::FrameIndex)
 | |
|       return false;
 | |
|     const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
 | |
|     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
 | |
|     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
 | |
|     int FS  = MFI->getObjectSize(FI);
 | |
|     int BFS = MFI->getObjectSize(BFI);
 | |
|     if (FS != BFS || FS != (int)Bytes) return false;
 | |
|     return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
 | |
|   }
 | |
|   if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
 | |
|     ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
 | |
|     if (V && (V->getSExtValue() == Dist*Bytes))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   const GlobalValue *GV1 = NULL;
 | |
|   const GlobalValue *GV2 = NULL;
 | |
|   int64_t Offset1 = 0;
 | |
|   int64_t Offset2 = 0;
 | |
|   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
 | |
|   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
 | |
|   if (isGA1 && isGA2 && GV1 == GV2)
 | |
|     return Offset1 == (Offset2 + Dist*Bytes);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
 | |
| /// it cannot be inferred.
 | |
| unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
 | |
|   // If this is a GlobalAddress + cst, return the alignment.
 | |
|   const GlobalValue *GV;
 | |
|   int64_t GVOffset = 0;
 | |
|   if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
 | |
|     // If GV has specified alignment, then use it. Otherwise, use the preferred
 | |
|     // alignment.
 | |
|     unsigned Align = GV->getAlignment();
 | |
|     if (!Align) {
 | |
|       if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
 | |
|         if (GVar->hasInitializer()) {
 | |
|           const TargetData *TD = TLI.getTargetData();
 | |
|           Align = TD->getPreferredAlignment(GVar);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return MinAlign(Align, GVOffset);
 | |
|   }
 | |
| 
 | |
|   // If this is a direct reference to a stack slot, use information about the
 | |
|   // stack slot's alignment.
 | |
|   int FrameIdx = 1 << 31;
 | |
|   int64_t FrameOffset = 0;
 | |
|   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
 | |
|     FrameIdx = FI->getIndex();
 | |
|   } else if (Ptr.getOpcode() == ISD::ADD &&
 | |
|              isa<ConstantSDNode>(Ptr.getOperand(1)) &&
 | |
|              isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
 | |
|     FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
 | |
|     FrameOffset = Ptr.getConstantOperandVal(1);
 | |
|   }
 | |
| 
 | |
|   if (FrameIdx != (1 << 31)) {
 | |
|     // FIXME: Handle FI+CST.
 | |
|     const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
 | |
|     unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
 | |
|                                     FrameOffset);
 | |
|     return FIInfoAlign;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void SelectionDAG::dump() const {
 | |
|   dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
 | |
| 
 | |
|   for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
 | |
|        I != E; ++I) {
 | |
|     const SDNode *N = I;
 | |
|     if (!N->hasOneUse() && N != getRoot().getNode())
 | |
|       DumpNodes(N, 2, this);
 | |
|   }
 | |
| 
 | |
|   if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
 | |
| 
 | |
|   dbgs() << "\n\n";
 | |
| }
 | |
| 
 | |
| void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
 | |
|   print_types(OS, G);
 | |
|   print_details(OS, G);
 | |
| }
 | |
| 
 | |
| typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
 | |
| static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
 | |
|                        const SelectionDAG *G, VisitedSDNodeSet &once) {
 | |
|   if (!once.insert(N))          // If we've been here before, return now.
 | |
|     return;
 | |
| 
 | |
|   // Dump the current SDNode, but don't end the line yet.
 | |
|   OS << std::string(indent, ' ');
 | |
|   N->printr(OS, G);
 | |
| 
 | |
|   // Having printed this SDNode, walk the children:
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     const SDNode *child = N->getOperand(i).getNode();
 | |
| 
 | |
|     if (i) OS << ",";
 | |
|     OS << " ";
 | |
| 
 | |
|     if (child->getNumOperands() == 0) {
 | |
|       // This child has no grandchildren; print it inline right here.
 | |
|       child->printr(OS, G);
 | |
|       once.insert(child);
 | |
|     } else {         // Just the address. FIXME: also print the child's opcode.
 | |
|       OS << (void*)child;
 | |
|       if (unsigned RN = N->getOperand(i).getResNo())
 | |
|         OS << ":" << RN;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   OS << "\n";
 | |
| 
 | |
|   // Dump children that have grandchildren on their own line(s).
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     const SDNode *child = N->getOperand(i).getNode();
 | |
|     DumpNodesr(OS, child, indent+2, G, once);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SDNode::dumpr() const {
 | |
|   VisitedSDNodeSet once;
 | |
|   DumpNodesr(dbgs(), this, 0, 0, once);
 | |
| }
 | |
| 
 | |
| void SDNode::dumpr(const SelectionDAG *G) const {
 | |
|   VisitedSDNodeSet once;
 | |
|   DumpNodesr(dbgs(), this, 0, G, once);
 | |
| }
 | |
| 
 | |
| 
 | |
| // getAddressSpace - Return the address space this GlobalAddress belongs to.
 | |
| unsigned GlobalAddressSDNode::getAddressSpace() const {
 | |
|   return getGlobal()->getType()->getAddressSpace();
 | |
| }
 | |
| 
 | |
| 
 | |
| const Type *ConstantPoolSDNode::getType() const {
 | |
|   if (isMachineConstantPoolEntry())
 | |
|     return Val.MachineCPVal->getType();
 | |
|   return Val.ConstVal->getType();
 | |
| }
 | |
| 
 | |
| bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
 | |
|                                         APInt &SplatUndef,
 | |
|                                         unsigned &SplatBitSize,
 | |
|                                         bool &HasAnyUndefs,
 | |
|                                         unsigned MinSplatBits,
 | |
|                                         bool isBigEndian) {
 | |
|   EVT VT = getValueType(0);
 | |
|   assert(VT.isVector() && "Expected a vector type");
 | |
|   unsigned sz = VT.getSizeInBits();
 | |
|   if (MinSplatBits > sz)
 | |
|     return false;
 | |
| 
 | |
|   SplatValue = APInt(sz, 0);
 | |
|   SplatUndef = APInt(sz, 0);
 | |
| 
 | |
|   // Get the bits.  Bits with undefined values (when the corresponding element
 | |
|   // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
 | |
|   // in SplatValue.  If any of the values are not constant, give up and return
 | |
|   // false.
 | |
|   unsigned int nOps = getNumOperands();
 | |
|   assert(nOps > 0 && "isConstantSplat has 0-size build vector");
 | |
|   unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
 | |
| 
 | |
|   for (unsigned j = 0; j < nOps; ++j) {
 | |
|     unsigned i = isBigEndian ? nOps-1-j : j;
 | |
|     SDValue OpVal = getOperand(i);
 | |
|     unsigned BitPos = j * EltBitSize;
 | |
| 
 | |
|     if (OpVal.getOpcode() == ISD::UNDEF)
 | |
|       SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
 | |
|     else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
 | |
|       SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
 | |
|                     zextOrTrunc(sz) << BitPos;
 | |
|     else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
 | |
|       SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
 | |
|      else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // The build_vector is all constants or undefs.  Find the smallest element
 | |
|   // size that splats the vector.
 | |
| 
 | |
|   HasAnyUndefs = (SplatUndef != 0);
 | |
|   while (sz > 8) {
 | |
| 
 | |
|     unsigned HalfSize = sz / 2;
 | |
|     APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
 | |
|     APInt LowValue = APInt(SplatValue).trunc(HalfSize);
 | |
|     APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
 | |
|     APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
 | |
| 
 | |
|     // If the two halves do not match (ignoring undef bits), stop here.
 | |
|     if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
 | |
|         MinSplatBits > HalfSize)
 | |
|       break;
 | |
| 
 | |
|     SplatValue = HighValue | LowValue;
 | |
|     SplatUndef = HighUndef & LowUndef;
 | |
| 
 | |
|     sz = HalfSize;
 | |
|   }
 | |
| 
 | |
|   SplatBitSize = sz;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
 | |
|   // Find the first non-undef value in the shuffle mask.
 | |
|   unsigned i, e;
 | |
|   for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
 | |
|     /* search */;
 | |
| 
 | |
|   assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
 | |
| 
 | |
|   // Make sure all remaining elements are either undef or the same as the first
 | |
|   // non-undef value.
 | |
|   for (int Idx = Mask[i]; i != e; ++i)
 | |
|     if (Mask[i] >= 0 && Mask[i] != Idx)
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| #ifdef XDEBUG
 | |
| static void checkForCyclesHelper(const SDNode *N,
 | |
|                                  SmallPtrSet<const SDNode*, 32> &Visited,
 | |
|                                  SmallPtrSet<const SDNode*, 32> &Checked) {
 | |
|   // If this node has already been checked, don't check it again.
 | |
|   if (Checked.count(N))
 | |
|     return;
 | |
|   
 | |
|   // If a node has already been visited on this depth-first walk, reject it as
 | |
|   // a cycle.
 | |
|   if (!Visited.insert(N)) {
 | |
|     dbgs() << "Offending node:\n";
 | |
|     N->dumprFull();
 | |
|     errs() << "Detected cycle in SelectionDAG\n";
 | |
|     abort();
 | |
|   }
 | |
|   
 | |
|   for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
 | |
|     checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
 | |
|   
 | |
|   Checked.insert(N);
 | |
|   Visited.erase(N);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void llvm::checkForCycles(const llvm::SDNode *N) {
 | |
| #ifdef XDEBUG
 | |
|   assert(N && "Checking nonexistant SDNode");
 | |
|   SmallPtrSet<const SDNode*, 32> visited;
 | |
|   SmallPtrSet<const SDNode*, 32> checked;
 | |
|   checkForCyclesHelper(N, visited, checked);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
 | |
|   checkForCycles(DAG->getRoot().getNode());
 | |
| }
 |