mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-03 13:31:05 +00:00
bb636274d4
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26763 91177308-0d34-0410-b5e6-96231b3b80d8
936 lines
26 KiB
C++
936 lines
26 KiB
C++
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements simple dominator construction algorithms for finding
|
|
// forward dominators. Postdominators are available in libanalysis, but are not
|
|
// included in libvmcore, because it's not needed. Forward dominators are
|
|
// needed to support the Verifier pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ImmediateDominators Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Immediate Dominators construction - This pass constructs immediate dominator
|
|
// information for a flow-graph based on the algorithm described in this
|
|
// document:
|
|
//
|
|
// A Fast Algorithm for Finding Dominators in a Flowgraph
|
|
// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
|
|
//
|
|
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
|
|
// LINK, but it turns out that the theoretically slower O(n*log(n))
|
|
// implementation is actually faster than the "efficient" algorithm (even for
|
|
// large CFGs) because the constant overheads are substantially smaller. The
|
|
// lower-complexity version can be enabled with the following #define:
|
|
//
|
|
#define BALANCE_IDOM_TREE 0
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<ImmediateDominators>
|
|
C("idom", "Immediate Dominators Construction", true);
|
|
|
|
unsigned ImmediateDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
|
|
unsigned N) {
|
|
VInfo.Semi = ++N;
|
|
VInfo.Label = V;
|
|
|
|
Vertex.push_back(V); // Vertex[n] = V;
|
|
//Info[V].Ancestor = 0; // Ancestor[n] = 0
|
|
//Child[V] = 0; // Child[v] = 0
|
|
VInfo.Size = 1; // Size[v] = 1
|
|
|
|
for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
|
|
InfoRec &SuccVInfo = Info[*SI];
|
|
if (SuccVInfo.Semi == 0) {
|
|
SuccVInfo.Parent = V;
|
|
N = DFSPass(*SI, SuccVInfo, N);
|
|
}
|
|
}
|
|
return N;
|
|
}
|
|
|
|
void ImmediateDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
|
|
BasicBlock *VAncestor = VInfo.Ancestor;
|
|
InfoRec &VAInfo = Info[VAncestor];
|
|
if (VAInfo.Ancestor == 0)
|
|
return;
|
|
|
|
Compress(VAncestor, VAInfo);
|
|
|
|
BasicBlock *VAncestorLabel = VAInfo.Label;
|
|
BasicBlock *VLabel = VInfo.Label;
|
|
if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
|
|
VInfo.Label = VAncestorLabel;
|
|
|
|
VInfo.Ancestor = VAInfo.Ancestor;
|
|
}
|
|
|
|
BasicBlock *ImmediateDominators::Eval(BasicBlock *V) {
|
|
InfoRec &VInfo = Info[V];
|
|
#if !BALANCE_IDOM_TREE
|
|
// Higher-complexity but faster implementation
|
|
if (VInfo.Ancestor == 0)
|
|
return V;
|
|
Compress(V, VInfo);
|
|
return VInfo.Label;
|
|
#else
|
|
// Lower-complexity but slower implementation
|
|
if (VInfo.Ancestor == 0)
|
|
return VInfo.Label;
|
|
Compress(V, VInfo);
|
|
BasicBlock *VLabel = VInfo.Label;
|
|
|
|
BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
|
|
if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
|
|
return VLabel;
|
|
else
|
|
return VAncestorLabel;
|
|
#endif
|
|
}
|
|
|
|
void ImmediateDominators::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
|
|
#if !BALANCE_IDOM_TREE
|
|
// Higher-complexity but faster implementation
|
|
WInfo.Ancestor = V;
|
|
#else
|
|
// Lower-complexity but slower implementation
|
|
BasicBlock *WLabel = WInfo.Label;
|
|
unsigned WLabelSemi = Info[WLabel].Semi;
|
|
BasicBlock *S = W;
|
|
InfoRec *SInfo = &Info[S];
|
|
|
|
BasicBlock *SChild = SInfo->Child;
|
|
InfoRec *SChildInfo = &Info[SChild];
|
|
|
|
while (WLabelSemi < Info[SChildInfo->Label].Semi) {
|
|
BasicBlock *SChildChild = SChildInfo->Child;
|
|
if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
|
|
SChildInfo->Ancestor = S;
|
|
SInfo->Child = SChild = SChildChild;
|
|
SChildInfo = &Info[SChild];
|
|
} else {
|
|
SChildInfo->Size = SInfo->Size;
|
|
S = SInfo->Ancestor = SChild;
|
|
SInfo = SChildInfo;
|
|
SChild = SChildChild;
|
|
SChildInfo = &Info[SChild];
|
|
}
|
|
}
|
|
|
|
InfoRec &VInfo = Info[V];
|
|
SInfo->Label = WLabel;
|
|
|
|
assert(V != W && "The optimization here will not work in this case!");
|
|
unsigned WSize = WInfo.Size;
|
|
unsigned VSize = (VInfo.Size += WSize);
|
|
|
|
if (VSize < 2*WSize)
|
|
std::swap(S, VInfo.Child);
|
|
|
|
while (S) {
|
|
SInfo = &Info[S];
|
|
SInfo->Ancestor = V;
|
|
S = SInfo->Child;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
bool ImmediateDominators::runOnFunction(Function &F) {
|
|
IDoms.clear(); // Reset from the last time we were run...
|
|
BasicBlock *Root = &F.getEntryBlock();
|
|
Roots.clear();
|
|
Roots.push_back(Root);
|
|
|
|
Vertex.push_back(0);
|
|
|
|
// Step #1: Number blocks in depth-first order and initialize variables used
|
|
// in later stages of the algorithm.
|
|
unsigned N = 0;
|
|
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
|
N = DFSPass(Roots[i], Info[Roots[i]], 0);
|
|
|
|
for (unsigned i = N; i >= 2; --i) {
|
|
BasicBlock *W = Vertex[i];
|
|
InfoRec &WInfo = Info[W];
|
|
|
|
// Step #2: Calculate the semidominators of all vertices
|
|
for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
|
|
if (Info.count(*PI)) { // Only if this predecessor is reachable!
|
|
unsigned SemiU = Info[Eval(*PI)].Semi;
|
|
if (SemiU < WInfo.Semi)
|
|
WInfo.Semi = SemiU;
|
|
}
|
|
|
|
Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
|
|
|
|
BasicBlock *WParent = WInfo.Parent;
|
|
Link(WParent, W, WInfo);
|
|
|
|
// Step #3: Implicitly define the immediate dominator of vertices
|
|
std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
|
|
while (!WParentBucket.empty()) {
|
|
BasicBlock *V = WParentBucket.back();
|
|
WParentBucket.pop_back();
|
|
BasicBlock *U = Eval(V);
|
|
IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
|
|
}
|
|
}
|
|
|
|
// Step #4: Explicitly define the immediate dominator of each vertex
|
|
for (unsigned i = 2; i <= N; ++i) {
|
|
BasicBlock *W = Vertex[i];
|
|
BasicBlock *&WIDom = IDoms[W];
|
|
if (WIDom != Vertex[Info[W].Semi])
|
|
WIDom = IDoms[WIDom];
|
|
}
|
|
|
|
// Free temporary memory used to construct idom's
|
|
Info.clear();
|
|
std::vector<BasicBlock*>().swap(Vertex);
|
|
|
|
return false;
|
|
}
|
|
|
|
void ImmediateDominatorsBase::print(std::ostream &o, const Module* ) const {
|
|
Function *F = getRoots()[0]->getParent();
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
|
|
o << " Immediate Dominator For Basic Block:";
|
|
WriteAsOperand(o, I, false);
|
|
o << " is:";
|
|
if (BasicBlock *ID = get(I))
|
|
WriteAsOperand(o, ID, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
o << "\n";
|
|
}
|
|
o << "\n";
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorSet Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<DominatorSet>
|
|
B("domset", "Dominator Set Construction", true);
|
|
|
|
// dominates - Return true if A dominates B. This performs the special checks
|
|
// necessary if A and B are in the same basic block.
|
|
//
|
|
bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
|
|
BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
|
|
if (BBA != BBB) return dominates(BBA, BBB);
|
|
|
|
// Loop through the basic block until we find A or B.
|
|
BasicBlock::iterator I = BBA->begin();
|
|
for (; &*I != A && &*I != B; ++I) /*empty*/;
|
|
|
|
if(!IsPostDominators) {
|
|
// A dominates B if it is found first in the basic block.
|
|
return &*I == A;
|
|
} else {
|
|
// A post-dominates B if B is found first in the basic block.
|
|
return &*I == B;
|
|
}
|
|
}
|
|
|
|
|
|
// runOnFunction - This method calculates the forward dominator sets for the
|
|
// specified function.
|
|
//
|
|
bool DominatorSet::runOnFunction(Function &F) {
|
|
BasicBlock *Root = &F.getEntryBlock();
|
|
Roots.clear();
|
|
Roots.push_back(Root);
|
|
assert(pred_begin(Root) == pred_end(Root) &&
|
|
"Root node has predecessors in function!");
|
|
|
|
ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
|
|
Doms.clear();
|
|
if (Roots.empty()) return false;
|
|
|
|
// Root nodes only dominate themselves.
|
|
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
|
Doms[Roots[i]].insert(Roots[i]);
|
|
|
|
// Loop over all of the blocks in the function, calculating dominator sets for
|
|
// each function.
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
|
if (BasicBlock *IDom = ID[I]) { // Get idom if block is reachable
|
|
DomSetType &DS = Doms[I];
|
|
assert(DS.empty() && "Domset already filled in for this block?");
|
|
DS.insert(I); // Blocks always dominate themselves
|
|
|
|
// Insert all dominators into the set...
|
|
while (IDom) {
|
|
// If we have already computed the dominator sets for our immediate
|
|
// dominator, just use it instead of walking all the way up to the root.
|
|
DomSetType &IDS = Doms[IDom];
|
|
if (!IDS.empty()) {
|
|
DS.insert(IDS.begin(), IDS.end());
|
|
break;
|
|
} else {
|
|
DS.insert(IDom);
|
|
IDom = ID[IDom];
|
|
}
|
|
}
|
|
} else {
|
|
// Ensure that every basic block has at least an empty set of nodes. This
|
|
// is important for the case when there is unreachable blocks.
|
|
Doms[I];
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void DominatorSet::stub() {}
|
|
|
|
namespace llvm {
|
|
static std::ostream &operator<<(std::ostream &o,
|
|
const std::set<BasicBlock*> &BBs) {
|
|
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
|
|
I != E; ++I)
|
|
if (*I)
|
|
WriteAsOperand(o, *I, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
return o;
|
|
}
|
|
}
|
|
|
|
void DominatorSetBase::print(std::ostream &o, const Module* ) const {
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
o << " DomSet For BB: ";
|
|
if (I->first)
|
|
WriteAsOperand(o, I->first, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
o << " is:\t" << I->second << "\n";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<DominatorTree>
|
|
E("domtree", "Dominator Tree Construction", true);
|
|
|
|
// DominatorTreeBase::reset - Free all of the tree node memory.
|
|
//
|
|
void DominatorTreeBase::reset() {
|
|
for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
|
|
delete I->second;
|
|
Nodes.clear();
|
|
RootNode = 0;
|
|
}
|
|
|
|
void DominatorTreeBase::Node::setIDom(Node *NewIDom) {
|
|
assert(IDom && "No immediate dominator?");
|
|
if (IDom != NewIDom) {
|
|
std::vector<Node*>::iterator I =
|
|
std::find(IDom->Children.begin(), IDom->Children.end(), this);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
|
|
// Switch to new dominator
|
|
IDom = NewIDom;
|
|
IDom->Children.push_back(this);
|
|
}
|
|
}
|
|
|
|
DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) {
|
|
Node *&BBNode = Nodes[BB];
|
|
if (BBNode) return BBNode;
|
|
|
|
// Haven't calculated this node yet? Get or calculate the node for the
|
|
// immediate dominator.
|
|
BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
|
|
Node *IDomNode = getNodeForBlock(IDom);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
return BBNode = IDomNode->addChild(new Node(BB, IDomNode));
|
|
}
|
|
|
|
void DominatorTree::calculate(const ImmediateDominators &ID) {
|
|
assert(Roots.size() == 1 && "DominatorTree should have 1 root block!");
|
|
BasicBlock *Root = Roots[0];
|
|
Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...
|
|
|
|
Function *F = Root->getParent();
|
|
// Loop over all of the reachable blocks in the function...
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
|
if (BasicBlock *ImmDom = ID.get(I)) { // Reachable block.
|
|
Node *&BBNode = Nodes[I];
|
|
if (!BBNode) { // Haven't calculated this node yet?
|
|
// Get or calculate the node for the immediate dominator
|
|
Node *IDomNode = getNodeForBlock(ImmDom);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
BBNode = IDomNode->addChild(new Node(I, IDomNode));
|
|
}
|
|
}
|
|
}
|
|
|
|
static std::ostream &operator<<(std::ostream &o,
|
|
const DominatorTreeBase::Node *Node) {
|
|
if (Node->getBlock())
|
|
WriteAsOperand(o, Node->getBlock(), false);
|
|
else
|
|
o << " <<exit node>>";
|
|
return o << "\n";
|
|
}
|
|
|
|
static void PrintDomTree(const DominatorTreeBase::Node *N, std::ostream &o,
|
|
unsigned Lev) {
|
|
o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
|
|
for (DominatorTreeBase::Node::const_iterator I = N->begin(), E = N->end();
|
|
I != E; ++I)
|
|
PrintDomTree(*I, o, Lev+1);
|
|
}
|
|
|
|
void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
|
|
o << "=============================--------------------------------\n"
|
|
<< "Inorder Dominator Tree:\n";
|
|
PrintDomTree(getRootNode(), o, 1);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominanceFrontier Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<DominanceFrontier>
|
|
G("domfrontier", "Dominance Frontier Construction", true);
|
|
|
|
const DominanceFrontier::DomSetType &
|
|
DominanceFrontier::calculate(const DominatorTree &DT,
|
|
const DominatorTree::Node *Node) {
|
|
// Loop over CFG successors to calculate DFlocal[Node]
|
|
BasicBlock *BB = Node->getBlock();
|
|
DomSetType &S = Frontiers[BB]; // The new set to fill in...
|
|
|
|
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
|
|
SI != SE; ++SI) {
|
|
// Does Node immediately dominate this successor?
|
|
if (DT[*SI]->getIDom() != Node)
|
|
S.insert(*SI);
|
|
}
|
|
|
|
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
|
// Loop through and visit the nodes that Node immediately dominates (Node's
|
|
// children in the IDomTree)
|
|
//
|
|
for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
|
|
NI != NE; ++NI) {
|
|
DominatorTree::Node *IDominee = *NI;
|
|
const DomSetType &ChildDF = calculate(DT, IDominee);
|
|
|
|
DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
|
|
for (; CDFI != CDFE; ++CDFI) {
|
|
if (!Node->properlyDominates(DT[*CDFI]))
|
|
S.insert(*CDFI);
|
|
}
|
|
}
|
|
|
|
return S;
|
|
}
|
|
|
|
void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
o << " DomFrontier for BB";
|
|
if (I->first)
|
|
WriteAsOperand(o, I->first, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
o << " is:\t" << I->second << "\n";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ETOccurrence Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ETOccurrence::Splay() {
|
|
ETOccurrence *father;
|
|
ETOccurrence *grandfather;
|
|
int occdepth;
|
|
int fatherdepth;
|
|
|
|
while (Parent) {
|
|
occdepth = Depth;
|
|
|
|
father = Parent;
|
|
fatherdepth = Parent->Depth;
|
|
grandfather = father->Parent;
|
|
|
|
// If we have no grandparent, a single zig or zag will do.
|
|
if (!grandfather) {
|
|
setDepthAdd(fatherdepth);
|
|
MinOccurrence = father->MinOccurrence;
|
|
Min = father->Min;
|
|
|
|
// See what we have to rotate
|
|
if (father->Left == this) {
|
|
// Zig
|
|
father->setLeft(Right);
|
|
setRight(father);
|
|
if (father->Left)
|
|
father->Left->setDepthAdd(occdepth);
|
|
} else {
|
|
// Zag
|
|
father->setRight(Left);
|
|
setLeft(father);
|
|
if (father->Right)
|
|
father->Right->setDepthAdd(occdepth);
|
|
}
|
|
father->setDepth(-occdepth);
|
|
Parent = NULL;
|
|
|
|
father->recomputeMin();
|
|
return;
|
|
}
|
|
|
|
// If we have a grandfather, we need to do some
|
|
// combination of zig and zag.
|
|
int grandfatherdepth = grandfather->Depth;
|
|
|
|
setDepthAdd(fatherdepth + grandfatherdepth);
|
|
MinOccurrence = grandfather->MinOccurrence;
|
|
Min = grandfather->Min;
|
|
|
|
ETOccurrence *greatgrandfather = grandfather->Parent;
|
|
|
|
if (grandfather->Left == father) {
|
|
if (father->Left == this) {
|
|
// Zig zig
|
|
grandfather->setLeft(father->Right);
|
|
father->setLeft(Right);
|
|
setRight(father);
|
|
father->setRight(grandfather);
|
|
|
|
father->setDepth(-occdepth);
|
|
|
|
if (father->Left)
|
|
father->Left->setDepthAdd(occdepth);
|
|
|
|
grandfather->setDepth(-fatherdepth);
|
|
if (grandfather->Left)
|
|
grandfather->Left->setDepthAdd(fatherdepth);
|
|
} else {
|
|
// Zag zig
|
|
grandfather->setLeft(Right);
|
|
father->setRight(Left);
|
|
setLeft(father);
|
|
setRight(grandfather);
|
|
|
|
father->setDepth(-occdepth);
|
|
if (father->Right)
|
|
father->Right->setDepthAdd(occdepth);
|
|
grandfather->setDepth(-occdepth - fatherdepth);
|
|
if (grandfather->Left)
|
|
grandfather->Left->setDepthAdd(occdepth + fatherdepth);
|
|
}
|
|
} else {
|
|
if (father->Left == this) {
|
|
// Zig zag
|
|
grandfather->setRight(Left);
|
|
father->setLeft(Right);
|
|
setLeft(grandfather);
|
|
setRight(father);
|
|
|
|
father->setDepth(-occdepth);
|
|
if (father->Left)
|
|
father->Left->setDepthAdd(occdepth);
|
|
grandfather->setDepth(-occdepth - fatherdepth);
|
|
if (grandfather->Right)
|
|
grandfather->Right->setDepthAdd(occdepth + fatherdepth);
|
|
} else { // Zag Zag
|
|
grandfather->setRight(father->Left);
|
|
father->setRight(Left);
|
|
setLeft(father);
|
|
father->setLeft(grandfather);
|
|
|
|
father->setDepth(-occdepth);
|
|
if (father->Right)
|
|
father->Right->setDepthAdd(occdepth);
|
|
grandfather->setDepth(-fatherdepth);
|
|
if (grandfather->Right)
|
|
grandfather->Right->setDepthAdd(fatherdepth);
|
|
}
|
|
}
|
|
|
|
// Might need one more rotate depending on greatgrandfather.
|
|
setParent(greatgrandfather);
|
|
if (greatgrandfather) {
|
|
if (greatgrandfather->Left == grandfather)
|
|
greatgrandfather->Left = this;
|
|
else
|
|
greatgrandfather->Right = this;
|
|
|
|
}
|
|
grandfather->recomputeMin();
|
|
father->recomputeMin();
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ETNode implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ETNode::Split() {
|
|
ETOccurrence *right, *left;
|
|
ETOccurrence *rightmost = RightmostOcc;
|
|
ETOccurrence *parent;
|
|
|
|
// Update the occurrence tree first.
|
|
RightmostOcc->Splay();
|
|
|
|
// Find the leftmost occurrence in the rightmost subtree, then splay
|
|
// around it.
|
|
for (right = rightmost->Right; right->Left; right = right->Left);
|
|
|
|
right->Splay();
|
|
|
|
// Start splitting
|
|
right->Left->Parent = NULL;
|
|
parent = ParentOcc;
|
|
parent->Splay();
|
|
ParentOcc = NULL;
|
|
|
|
left = parent->Left;
|
|
parent->Right->Parent = NULL;
|
|
|
|
right->setLeft(left);
|
|
|
|
right->recomputeMin();
|
|
|
|
rightmost->Splay();
|
|
rightmost->Depth = 0;
|
|
rightmost->Min = 0;
|
|
|
|
delete parent;
|
|
|
|
// Now update *our* tree
|
|
|
|
if (Father->Son == this)
|
|
Father->Son = Right;
|
|
|
|
if (Father->Son == this)
|
|
Father->Son = NULL;
|
|
else {
|
|
Left->Right = Right;
|
|
Right->Left = Left;
|
|
}
|
|
Left = Right = NULL;
|
|
Father = NULL;
|
|
}
|
|
|
|
void ETNode::setFather(ETNode *NewFather) {
|
|
ETOccurrence *rightmost;
|
|
ETOccurrence *leftpart;
|
|
ETOccurrence *NewFatherOcc;
|
|
ETOccurrence *temp;
|
|
|
|
// First update the path in the splay tree
|
|
NewFatherOcc = new ETOccurrence(NewFather);
|
|
|
|
rightmost = NewFather->RightmostOcc;
|
|
rightmost->Splay();
|
|
|
|
leftpart = rightmost->Left;
|
|
|
|
temp = RightmostOcc;
|
|
temp->Splay();
|
|
|
|
NewFatherOcc->setLeft(leftpart);
|
|
NewFatherOcc->setRight(temp);
|
|
|
|
temp->Depth++;
|
|
temp->Min++;
|
|
NewFatherOcc->recomputeMin();
|
|
|
|
rightmost->setLeft(NewFatherOcc);
|
|
|
|
if (NewFatherOcc->Min + rightmost->Depth < rightmost->Min) {
|
|
rightmost->Min = NewFatherOcc->Min + rightmost->Depth;
|
|
rightmost->MinOccurrence = NewFatherOcc->MinOccurrence;
|
|
}
|
|
|
|
delete ParentOcc;
|
|
ParentOcc = NewFatherOcc;
|
|
|
|
// Update *our* tree
|
|
ETNode *left;
|
|
ETNode *right;
|
|
|
|
Father = NewFather;
|
|
right = Father->Son;
|
|
|
|
if (right)
|
|
left = right->Left;
|
|
else
|
|
left = right = this;
|
|
|
|
left->Right = this;
|
|
right->Left = this;
|
|
Left = left;
|
|
Right = right;
|
|
|
|
Father->Son = this;
|
|
}
|
|
|
|
bool ETNode::Below(ETNode *other) {
|
|
ETOccurrence *up = other->RightmostOcc;
|
|
ETOccurrence *down = RightmostOcc;
|
|
|
|
if (this == other)
|
|
return true;
|
|
|
|
up->Splay();
|
|
|
|
ETOccurrence *left, *right;
|
|
left = up->Left;
|
|
right = up->Right;
|
|
|
|
if (!left)
|
|
return false;
|
|
|
|
left->Parent = NULL;
|
|
|
|
if (right)
|
|
right->Parent = NULL;
|
|
|
|
down->Splay();
|
|
|
|
if (left == down || left->Parent != NULL) {
|
|
if (right)
|
|
right->Parent = up;
|
|
up->setLeft(down);
|
|
} else {
|
|
left->Parent = up;
|
|
|
|
// If the two occurrences are in different trees, put things
|
|
// back the way they were.
|
|
if (right && right->Parent != NULL)
|
|
up->setRight(down);
|
|
else
|
|
up->setRight(right);
|
|
return false;
|
|
}
|
|
|
|
if (down->Depth <= 0)
|
|
return false;
|
|
|
|
return !down->Right || down->Right->Min + down->Depth >= 0;
|
|
}
|
|
|
|
ETNode *ETNode::NCA(ETNode *other) {
|
|
ETOccurrence *occ1 = RightmostOcc;
|
|
ETOccurrence *occ2 = other->RightmostOcc;
|
|
|
|
ETOccurrence *left, *right, *ret;
|
|
ETOccurrence *occmin;
|
|
int mindepth;
|
|
|
|
if (this == other)
|
|
return this;
|
|
|
|
occ1->Splay();
|
|
left = occ1->Left;
|
|
right = occ1->Right;
|
|
|
|
if (left)
|
|
left->Parent = NULL;
|
|
|
|
if (right)
|
|
right->Parent = NULL;
|
|
occ2->Splay();
|
|
|
|
if (left == occ2 || (left && left->Parent != NULL)) {
|
|
ret = occ2->Right;
|
|
|
|
occ1->setLeft(occ2);
|
|
if (right)
|
|
right->Parent = occ1;
|
|
} else {
|
|
ret = occ2->Left;
|
|
|
|
occ1->setRight(occ2);
|
|
if (left)
|
|
left->Parent = occ1;
|
|
}
|
|
|
|
if (occ2->Depth > 0) {
|
|
occmin = occ1;
|
|
mindepth = occ1->Depth;
|
|
} else {
|
|
occmin = occ2;
|
|
mindepth = occ2->Depth + occ1->Depth;
|
|
}
|
|
|
|
if (ret && ret->Min + occ1->Depth + occ2->Depth < mindepth)
|
|
return ret->MinOccurrence->OccFor;
|
|
else
|
|
return occmin->OccFor;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ETForest implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static RegisterAnalysis<ETForest>
|
|
D("etforest", "ET Forest Construction", true);
|
|
|
|
void ETForestBase::reset() {
|
|
for (ETMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
|
|
delete I->second;
|
|
Nodes.clear();
|
|
}
|
|
|
|
void ETForestBase::updateDFSNumbers()
|
|
{
|
|
int dfsnum = 0;
|
|
// Iterate over all nodes in depth first order.
|
|
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
|
for (df_iterator<BasicBlock*> I = df_begin(Roots[i]),
|
|
E = df_end(Roots[i]); I != E; ++I) {
|
|
BasicBlock *BB = *I;
|
|
if (!getNode(BB)->hasFather())
|
|
getNode(BB)->assignDFSNumber(dfsnum);
|
|
}
|
|
SlowQueries = 0;
|
|
DFSInfoValid = true;
|
|
}
|
|
|
|
ETNode *ETForest::getNodeForBlock(BasicBlock *BB) {
|
|
ETNode *&BBNode = Nodes[BB];
|
|
if (BBNode) return BBNode;
|
|
|
|
// Haven't calculated this node yet? Get or calculate the node for the
|
|
// immediate dominator.
|
|
BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
|
|
|
|
// If we are unreachable, we may not have an immediate dominator.
|
|
if (!IDom)
|
|
return BBNode = new ETNode(BB);
|
|
else {
|
|
ETNode *IDomNode = getNodeForBlock(IDom);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
BBNode = new ETNode(BB);
|
|
BBNode->setFather(IDomNode);
|
|
return BBNode;
|
|
}
|
|
}
|
|
|
|
void ETForest::calculate(const ImmediateDominators &ID) {
|
|
assert(Roots.size() == 1 && "ETForest should have 1 root block!");
|
|
BasicBlock *Root = Roots[0];
|
|
Nodes[Root] = new ETNode(Root); // Add a node for the root
|
|
|
|
Function *F = Root->getParent();
|
|
// Loop over all of the reachable blocks in the function...
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
|
if (BasicBlock *ImmDom = ID.get(I)) { // Reachable block.
|
|
ETNode *&BBNode = Nodes[I];
|
|
if (!BBNode) { // Haven't calculated this node yet?
|
|
// Get or calculate the node for the immediate dominator
|
|
ETNode *IDomNode = getNodeForBlock(ImmDom);
|
|
|
|
// Add a new ETNode for this BasicBlock, and set it's parent
|
|
// to it's immediate dominator.
|
|
BBNode = new ETNode(I);
|
|
BBNode->setFather(IDomNode);
|
|
}
|
|
}
|
|
|
|
// Make sure we've got nodes around for every block
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
|
|
ETNode *&BBNode = Nodes[I];
|
|
if (!BBNode)
|
|
BBNode = new ETNode(I);
|
|
}
|
|
|
|
updateDFSNumbers ();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ETForestBase Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ETForestBase::addNewBlock(BasicBlock *BB, BasicBlock *IDom) {
|
|
ETNode *&BBNode = Nodes[BB];
|
|
assert(!BBNode && "BasicBlock already in ET-Forest");
|
|
|
|
BBNode = new ETNode(BB);
|
|
BBNode->setFather(getNode(IDom));
|
|
DFSInfoValid = false;
|
|
}
|
|
|
|
void ETForestBase::setImmediateDominator(BasicBlock *BB, BasicBlock *newIDom) {
|
|
assert(getNode(BB) && "BasicBlock not in ET-Forest");
|
|
assert(getNode(newIDom) && "IDom not in ET-Forest");
|
|
|
|
ETNode *Node = getNode(BB);
|
|
if (Node->hasFather()) {
|
|
if (Node->getFather()->getData<BasicBlock>() == newIDom)
|
|
return;
|
|
Node->Split();
|
|
}
|
|
Node->setFather(getNode(newIDom));
|
|
DFSInfoValid= false;
|
|
}
|
|
|
|
void ETForestBase::print(std::ostream &o, const Module *) const {
|
|
o << "=============================--------------------------------\n";
|
|
o << "ET Forest:\n";
|
|
o << "DFS Info ";
|
|
if (DFSInfoValid)
|
|
o << "is";
|
|
else
|
|
o << "is not";
|
|
o << " up to date\n";
|
|
|
|
Function *F = getRoots()[0]->getParent();
|
|
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
|
|
o << " DFS Numbers For Basic Block:";
|
|
WriteAsOperand(o, I, false);
|
|
o << " are:";
|
|
if (ETNode *EN = getNode(I)) {
|
|
o << "In: " << EN->getDFSNumIn();
|
|
o << " Out: " << EN->getDFSNumOut() << "\n";
|
|
} else {
|
|
o << "No associated ETNode";
|
|
}
|
|
o << "\n";
|
|
}
|
|
o << "\n";
|
|
}
|