mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Apparently, the style needs to be agreed upon first. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@240390 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			525 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			525 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// The LowerSwitch transformation rewrites switch instructions with a sequence
 | 
						|
// of branches, which allows targets to get away with not implementing the
 | 
						|
// switch instruction until it is convenient.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "lower-switch"
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct IntRange {
 | 
						|
    int64_t Low, High;
 | 
						|
  };
 | 
						|
  // Return true iff R is covered by Ranges.
 | 
						|
  static bool IsInRanges(const IntRange &R,
 | 
						|
                         const std::vector<IntRange> &Ranges) {
 | 
						|
    // Note: Ranges must be sorted, non-overlapping and non-adjacent.
 | 
						|
 | 
						|
    // Find the first range whose High field is >= R.High,
 | 
						|
    // then check if the Low field is <= R.Low. If so, we
 | 
						|
    // have a Range that covers R.
 | 
						|
    auto I = std::lower_bound(
 | 
						|
        Ranges.begin(), Ranges.end(), R,
 | 
						|
        [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
 | 
						|
    return I != Ranges.end() && I->Low <= R.Low;
 | 
						|
  }
 | 
						|
 | 
						|
  /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch
 | 
						|
  /// instructions.
 | 
						|
  class LowerSwitch : public FunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    LowerSwitch() : FunctionPass(ID) {
 | 
						|
      initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
 | 
						|
    } 
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      // This is a cluster of orthogonal Transforms
 | 
						|
      AU.addPreserved<UnifyFunctionExitNodes>();
 | 
						|
      AU.addPreservedID(LowerInvokePassID);
 | 
						|
    }
 | 
						|
 | 
						|
    struct CaseRange {
 | 
						|
      ConstantInt* Low;
 | 
						|
      ConstantInt* High;
 | 
						|
      BasicBlock* BB;
 | 
						|
 | 
						|
      CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
 | 
						|
          : Low(low), High(high), BB(bb) {}
 | 
						|
    };
 | 
						|
 | 
						|
    typedef std::vector<CaseRange> CaseVector;
 | 
						|
    typedef std::vector<CaseRange>::iterator CaseItr;
 | 
						|
  private:
 | 
						|
    void processSwitchInst(SwitchInst *SI);
 | 
						|
 | 
						|
    BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
 | 
						|
                              ConstantInt *LowerBound, ConstantInt *UpperBound,
 | 
						|
                              Value *Val, BasicBlock *Predecessor,
 | 
						|
                              BasicBlock *OrigBlock, BasicBlock *Default,
 | 
						|
                              const std::vector<IntRange> &UnreachableRanges);
 | 
						|
    BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
 | 
						|
                             BasicBlock *Default);
 | 
						|
    unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
 | 
						|
  };
 | 
						|
 | 
						|
  /// The comparison function for sorting the switch case values in the vector.
 | 
						|
  /// WARNING: Case ranges should be disjoint!
 | 
						|
  struct CaseCmp {
 | 
						|
    bool operator () (const LowerSwitch::CaseRange& C1,
 | 
						|
                      const LowerSwitch::CaseRange& C2) {
 | 
						|
 | 
						|
      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
 | 
						|
      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
 | 
						|
      return CI1->getValue().slt(CI2->getValue());
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char LowerSwitch::ID = 0;
 | 
						|
INITIALIZE_PASS(LowerSwitch, "lowerswitch",
 | 
						|
                "Lower SwitchInst's to branches", false, false)
 | 
						|
 | 
						|
// Publicly exposed interface to pass...
 | 
						|
char &llvm::LowerSwitchID = LowerSwitch::ID;
 | 
						|
// createLowerSwitchPass - Interface to this file...
 | 
						|
FunctionPass *llvm::createLowerSwitchPass() {
 | 
						|
  return new LowerSwitch();
 | 
						|
}
 | 
						|
 | 
						|
bool LowerSwitch::runOnFunction(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
 | 
						|
    BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks
 | 
						|
 | 
						|
    if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
 | 
						|
      Changed = true;
 | 
						|
      processSwitchInst(SI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// operator<< - Used for debugging purposes.
 | 
						|
//
 | 
						|
static raw_ostream& operator<<(raw_ostream &O,
 | 
						|
                               const LowerSwitch::CaseVector &C)
 | 
						|
    LLVM_ATTRIBUTE_USED;
 | 
						|
static raw_ostream& operator<<(raw_ostream &O,
 | 
						|
                               const LowerSwitch::CaseVector &C) {
 | 
						|
  O << "[";
 | 
						|
 | 
						|
  for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
 | 
						|
         E = C.end(); B != E; ) {
 | 
						|
    O << *B->Low << " -" << *B->High;
 | 
						|
    if (++B != E) O << ", ";
 | 
						|
  }
 | 
						|
 | 
						|
  return O << "]";
 | 
						|
}
 | 
						|
 | 
						|
// \brief Update the first occurrence of the "switch statement" BB in the PHI
 | 
						|
// node with the "new" BB. The other occurrences will:
 | 
						|
//
 | 
						|
// 1) Be updated by subsequent calls to this function.  Switch statements may
 | 
						|
// have more than one outcoming edge into the same BB if they all have the same
 | 
						|
// value. When the switch statement is converted these incoming edges are now
 | 
						|
// coming from multiple BBs.
 | 
						|
// 2) Removed if subsequent incoming values now share the same case, i.e.,
 | 
						|
// multiple outcome edges are condensed into one. This is necessary to keep the
 | 
						|
// number of phi values equal to the number of branches to SuccBB.
 | 
						|
static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
 | 
						|
                    unsigned NumMergedCases) {
 | 
						|
  for (BasicBlock::iterator I = SuccBB->begin(), IE = SuccBB->getFirstNonPHI();
 | 
						|
       I != IE; ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
 | 
						|
    // Only update the first occurence.
 | 
						|
    unsigned Idx = 0, E = PN->getNumIncomingValues();
 | 
						|
    unsigned LocalNumMergedCases = NumMergedCases;
 | 
						|
    for (; Idx != E; ++Idx) {
 | 
						|
      if (PN->getIncomingBlock(Idx) == OrigBB) {
 | 
						|
        PN->setIncomingBlock(Idx, NewBB);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove additional occurences coming from condensed cases and keep the
 | 
						|
    // number of incoming values equal to the number of branches to SuccBB.
 | 
						|
    SmallVector<unsigned, 8> Indices;
 | 
						|
    for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
 | 
						|
      if (PN->getIncomingBlock(Idx) == OrigBB) {
 | 
						|
        Indices.push_back(Idx);
 | 
						|
        LocalNumMergedCases--;
 | 
						|
      }
 | 
						|
    // Remove incoming values in the reverse order to prevent invalidating
 | 
						|
    // *successive* index.
 | 
						|
    for (auto III = Indices.rbegin(), IIE = Indices.rend(); III != IIE; ++III)
 | 
						|
      PN->removeIncomingValue(*III);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// switchConvert - Convert the switch statement into a binary lookup of
 | 
						|
// the case values. The function recursively builds this tree.
 | 
						|
// LowerBound and UpperBound are used to keep track of the bounds for Val
 | 
						|
// that have already been checked by a block emitted by one of the previous
 | 
						|
// calls to switchConvert in the call stack.
 | 
						|
BasicBlock *
 | 
						|
LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
 | 
						|
                           ConstantInt *UpperBound, Value *Val,
 | 
						|
                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
 | 
						|
                           BasicBlock *Default,
 | 
						|
                           const std::vector<IntRange> &UnreachableRanges) {
 | 
						|
  unsigned Size = End - Begin;
 | 
						|
 | 
						|
  if (Size == 1) {
 | 
						|
    // Check if the Case Range is perfectly squeezed in between
 | 
						|
    // already checked Upper and Lower bounds. If it is then we can avoid
 | 
						|
    // emitting the code that checks if the value actually falls in the range
 | 
						|
    // because the bounds already tell us so.
 | 
						|
    if (Begin->Low == LowerBound && Begin->High == UpperBound) {
 | 
						|
      unsigned NumMergedCases = 0;
 | 
						|
      if (LowerBound && UpperBound)
 | 
						|
        NumMergedCases =
 | 
						|
            UpperBound->getSExtValue() - LowerBound->getSExtValue();
 | 
						|
      fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
 | 
						|
      return Begin->BB;
 | 
						|
    }
 | 
						|
    return newLeafBlock(*Begin, Val, OrigBlock, Default);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Mid = Size / 2;
 | 
						|
  std::vector<CaseRange> LHS(Begin, Begin + Mid);
 | 
						|
  DEBUG(dbgs() << "LHS: " << LHS << "\n");
 | 
						|
  std::vector<CaseRange> RHS(Begin + Mid, End);
 | 
						|
  DEBUG(dbgs() << "RHS: " << RHS << "\n");
 | 
						|
 | 
						|
  CaseRange &Pivot = *(Begin + Mid);
 | 
						|
  DEBUG(dbgs() << "Pivot ==> "
 | 
						|
               << Pivot.Low->getValue()
 | 
						|
               << " -" << Pivot.High->getValue() << "\n");
 | 
						|
 | 
						|
  // NewLowerBound here should never be the integer minimal value.
 | 
						|
  // This is because it is computed from a case range that is never
 | 
						|
  // the smallest, so there is always a case range that has at least
 | 
						|
  // a smaller value.
 | 
						|
  ConstantInt *NewLowerBound = Pivot.Low;
 | 
						|
 | 
						|
  // Because NewLowerBound is never the smallest representable integer
 | 
						|
  // it is safe here to subtract one.
 | 
						|
  ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
 | 
						|
                                                NewLowerBound->getValue() - 1);
 | 
						|
 | 
						|
  if (!UnreachableRanges.empty()) {
 | 
						|
    // Check if the gap between LHS's highest and NewLowerBound is unreachable.
 | 
						|
    int64_t GapLow = LHS.back().High->getSExtValue() + 1;
 | 
						|
    int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
 | 
						|
    IntRange Gap = { GapLow, GapHigh };
 | 
						|
    if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
 | 
						|
      NewUpperBound = LHS.back().High;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "LHS Bounds ==> ";
 | 
						|
        if (LowerBound) {
 | 
						|
          dbgs() << LowerBound->getSExtValue();
 | 
						|
        } else {
 | 
						|
          dbgs() << "NONE";
 | 
						|
        }
 | 
						|
        dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
 | 
						|
        dbgs() << "RHS Bounds ==> ";
 | 
						|
        dbgs() << NewLowerBound->getSExtValue() << " - ";
 | 
						|
        if (UpperBound) {
 | 
						|
          dbgs() << UpperBound->getSExtValue() << "\n";
 | 
						|
        } else {
 | 
						|
          dbgs() << "NONE\n";
 | 
						|
        });
 | 
						|
 | 
						|
  // Create a new node that checks if the value is < pivot. Go to the
 | 
						|
  // left branch if it is and right branch if not.
 | 
						|
  Function* F = OrigBlock->getParent();
 | 
						|
  BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
 | 
						|
 | 
						|
  ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
 | 
						|
                                Val, Pivot.Low, "Pivot");
 | 
						|
 | 
						|
  BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
 | 
						|
                                      NewUpperBound, Val, NewNode, OrigBlock,
 | 
						|
                                      Default, UnreachableRanges);
 | 
						|
  BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
 | 
						|
                                      UpperBound, Val, NewNode, OrigBlock,
 | 
						|
                                      Default, UnreachableRanges);
 | 
						|
 | 
						|
  Function::iterator FI = OrigBlock;
 | 
						|
  F->getBasicBlockList().insert(++FI, NewNode);
 | 
						|
  NewNode->getInstList().push_back(Comp);
 | 
						|
 | 
						|
  BranchInst::Create(LBranch, RBranch, Comp, NewNode);
 | 
						|
  return NewNode;
 | 
						|
}
 | 
						|
 | 
						|
// newLeafBlock - Create a new leaf block for the binary lookup tree. It
 | 
						|
// checks if the switch's value == the case's value. If not, then it
 | 
						|
// jumps to the default branch. At this point in the tree, the value
 | 
						|
// can't be another valid case value, so the jump to the "default" branch
 | 
						|
// is warranted.
 | 
						|
//
 | 
						|
BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
 | 
						|
                                      BasicBlock* OrigBlock,
 | 
						|
                                      BasicBlock* Default)
 | 
						|
{
 | 
						|
  Function* F = OrigBlock->getParent();
 | 
						|
  BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
 | 
						|
  Function::iterator FI = OrigBlock;
 | 
						|
  F->getBasicBlockList().insert(++FI, NewLeaf);
 | 
						|
 | 
						|
  // Emit comparison
 | 
						|
  ICmpInst* Comp = nullptr;
 | 
						|
  if (Leaf.Low == Leaf.High) {
 | 
						|
    // Make the seteq instruction...
 | 
						|
    Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
 | 
						|
                        Leaf.Low, "SwitchLeaf");
 | 
						|
  } else {
 | 
						|
    // Make range comparison
 | 
						|
    if (Leaf.Low->isMinValue(true /*isSigned*/)) {
 | 
						|
      // Val >= Min && Val <= Hi --> Val <= Hi
 | 
						|
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
 | 
						|
                          "SwitchLeaf");
 | 
						|
    } else if (Leaf.Low->isZero()) {
 | 
						|
      // Val >= 0 && Val <= Hi --> Val <=u Hi
 | 
						|
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
 | 
						|
                          "SwitchLeaf");      
 | 
						|
    } else {
 | 
						|
      // Emit V-Lo <=u Hi-Lo
 | 
						|
      Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
 | 
						|
      Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
 | 
						|
                                                   Val->getName()+".off",
 | 
						|
                                                   NewLeaf);
 | 
						|
      Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
 | 
						|
      Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
 | 
						|
                          "SwitchLeaf");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Make the conditional branch...
 | 
						|
  BasicBlock* Succ = Leaf.BB;
 | 
						|
  BranchInst::Create(Succ, Default, Comp, NewLeaf);
 | 
						|
 | 
						|
  // If there were any PHI nodes in this successor, rewrite one entry
 | 
						|
  // from OrigBlock to come from NewLeaf.
 | 
						|
  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode* PN = cast<PHINode>(I);
 | 
						|
    // Remove all but one incoming entries from the cluster
 | 
						|
    uint64_t Range = Leaf.High->getSExtValue() -
 | 
						|
                     Leaf.Low->getSExtValue();
 | 
						|
    for (uint64_t j = 0; j < Range; ++j) {
 | 
						|
      PN->removeIncomingValue(OrigBlock);
 | 
						|
    }
 | 
						|
    
 | 
						|
    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
 | 
						|
    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
 | 
						|
    PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
 | 
						|
  }
 | 
						|
 | 
						|
  return NewLeaf;
 | 
						|
}
 | 
						|
 | 
						|
// Clusterify - Transform simple list of Cases into list of CaseRange's
 | 
						|
unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
 | 
						|
  unsigned numCmps = 0;
 | 
						|
 | 
						|
  // Start with "simple" cases
 | 
						|
  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
 | 
						|
    Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
 | 
						|
                              i.getCaseSuccessor()));
 | 
						|
  
 | 
						|
  std::sort(Cases.begin(), Cases.end(), CaseCmp());
 | 
						|
 | 
						|
  // Merge case into clusters
 | 
						|
  if (Cases.size() >= 2) {
 | 
						|
    CaseItr I = Cases.begin();
 | 
						|
    for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
 | 
						|
      int64_t nextValue = J->Low->getSExtValue();
 | 
						|
      int64_t currentValue = I->High->getSExtValue();
 | 
						|
      BasicBlock* nextBB = J->BB;
 | 
						|
      BasicBlock* currentBB = I->BB;
 | 
						|
 | 
						|
      // If the two neighboring cases go to the same destination, merge them
 | 
						|
      // into a single case.
 | 
						|
      assert(nextValue > currentValue && "Cases should be strictly ascending");
 | 
						|
      if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
 | 
						|
        I->High = J->High;
 | 
						|
        // FIXME: Combine branch weights.
 | 
						|
      } else if (++I != J) {
 | 
						|
        *I = *J;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Cases.erase(std::next(I), Cases.end());
 | 
						|
  }
 | 
						|
 | 
						|
  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
 | 
						|
    if (I->Low != I->High)
 | 
						|
      // A range counts double, since it requires two compares.
 | 
						|
      ++numCmps;
 | 
						|
  }
 | 
						|
 | 
						|
  return numCmps;
 | 
						|
}
 | 
						|
 | 
						|
// processSwitchInst - Replace the specified switch instruction with a sequence
 | 
						|
// of chained if-then insts in a balanced binary search.
 | 
						|
//
 | 
						|
void LowerSwitch::processSwitchInst(SwitchInst *SI) {
 | 
						|
  BasicBlock *CurBlock = SI->getParent();
 | 
						|
  BasicBlock *OrigBlock = CurBlock;
 | 
						|
  Function *F = CurBlock->getParent();
 | 
						|
  Value *Val = SI->getCondition();  // The value we are switching on...
 | 
						|
  BasicBlock* Default = SI->getDefaultDest();
 | 
						|
 | 
						|
  // If there is only the default destination, just branch.
 | 
						|
  if (!SI->getNumCases()) {
 | 
						|
    BranchInst::Create(Default, CurBlock);
 | 
						|
    SI->eraseFromParent();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Prepare cases vector.
 | 
						|
  CaseVector Cases;
 | 
						|
  unsigned numCmps = Clusterify(Cases, SI);
 | 
						|
  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
 | 
						|
               << ". Total compares: " << numCmps << "\n");
 | 
						|
  DEBUG(dbgs() << "Cases: " << Cases << "\n");
 | 
						|
  (void)numCmps;
 | 
						|
 | 
						|
  ConstantInt *LowerBound = nullptr;
 | 
						|
  ConstantInt *UpperBound = nullptr;
 | 
						|
  std::vector<IntRange> UnreachableRanges;
 | 
						|
 | 
						|
  if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
 | 
						|
    // Make the bounds tightly fitted around the case value range, becase we
 | 
						|
    // know that the value passed to the switch must be exactly one of the case
 | 
						|
    // values.
 | 
						|
    assert(!Cases.empty());
 | 
						|
    LowerBound = Cases.front().Low;
 | 
						|
    UpperBound = Cases.back().High;
 | 
						|
 | 
						|
    DenseMap<BasicBlock *, unsigned> Popularity;
 | 
						|
    unsigned MaxPop = 0;
 | 
						|
    BasicBlock *PopSucc = nullptr;
 | 
						|
 | 
						|
    IntRange R = { INT64_MIN, INT64_MAX };
 | 
						|
    UnreachableRanges.push_back(R);
 | 
						|
    for (const auto &I : Cases) {
 | 
						|
      int64_t Low = I.Low->getSExtValue();
 | 
						|
      int64_t High = I.High->getSExtValue();
 | 
						|
 | 
						|
      IntRange &LastRange = UnreachableRanges.back();
 | 
						|
      if (LastRange.Low == Low) {
 | 
						|
        // There is nothing left of the previous range.
 | 
						|
        UnreachableRanges.pop_back();
 | 
						|
      } else {
 | 
						|
        // Terminate the previous range.
 | 
						|
        assert(Low > LastRange.Low);
 | 
						|
        LastRange.High = Low - 1;
 | 
						|
      }
 | 
						|
      if (High != INT64_MAX) {
 | 
						|
        IntRange R = { High + 1, INT64_MAX };
 | 
						|
        UnreachableRanges.push_back(R);
 | 
						|
      }
 | 
						|
 | 
						|
      // Count popularity.
 | 
						|
      int64_t N = High - Low + 1;
 | 
						|
      unsigned &Pop = Popularity[I.BB];
 | 
						|
      if ((Pop += N) > MaxPop) {
 | 
						|
        MaxPop = Pop;
 | 
						|
        PopSucc = I.BB;
 | 
						|
      }
 | 
						|
    }
 | 
						|
#ifndef NDEBUG
 | 
						|
    /* UnreachableRanges should be sorted and the ranges non-adjacent. */
 | 
						|
    for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      assert(I->Low <= I->High);
 | 
						|
      auto Next = I + 1;
 | 
						|
      if (Next != E) {
 | 
						|
        assert(Next->Low > I->High);
 | 
						|
      }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    // Use the most popular block as the new default, reducing the number of
 | 
						|
    // cases.
 | 
						|
    assert(MaxPop > 0 && PopSucc);
 | 
						|
    Default = PopSucc;
 | 
						|
    Cases.erase(std::remove_if(
 | 
						|
                    Cases.begin(), Cases.end(),
 | 
						|
                    [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
 | 
						|
                Cases.end());
 | 
						|
 | 
						|
    // If there are no cases left, just branch.
 | 
						|
    if (Cases.empty()) {
 | 
						|
      BranchInst::Create(Default, CurBlock);
 | 
						|
      SI->eraseFromParent();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a new, empty default block so that the new hierarchy of
 | 
						|
  // if-then statements go to this and the PHI nodes are happy.
 | 
						|
  BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
 | 
						|
  F->getBasicBlockList().insert(Default, NewDefault);
 | 
						|
  BranchInst::Create(Default, NewDefault);
 | 
						|
 | 
						|
  // If there is an entry in any PHI nodes for the default edge, make sure
 | 
						|
  // to update them as well.
 | 
						|
  for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
 | 
						|
    assert(BlockIdx != -1 && "Switch didn't go to this successor??");
 | 
						|
    PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *SwitchBlock =
 | 
						|
      switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
 | 
						|
                    OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
 | 
						|
 | 
						|
  // Branch to our shiny new if-then stuff...
 | 
						|
  BranchInst::Create(SwitchBlock, OrigBlock);
 | 
						|
 | 
						|
  // We are now done with the switch instruction, delete it.
 | 
						|
  BasicBlock *OldDefault = SI->getDefaultDest();
 | 
						|
  CurBlock->getInstList().erase(SI);
 | 
						|
 | 
						|
  // If the Default block has no more predecessors just remove it.
 | 
						|
  if (pred_begin(OldDefault) == pred_end(OldDefault))
 | 
						|
    DeleteDeadBlock(OldDefault);
 | 
						|
}
 |