mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	x86 and ppc for 100% dense switch statements when relocations are non-PIC. This support will be extended and enhanced in the coming days to support PIC, and less dense forms of jump tables. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27947 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1268 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1268 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Chris Lattner and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a pattern matching instruction selector for PowerPC,
 | |
| // converting from a legalized dag to a PPC dag.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPC.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "PPCISelLowering.h"
 | |
| #include "PPCHazardRecognizers.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <iostream>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
 | |
|     
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
 | |
|   /// instructions for SelectionDAG operations.
 | |
|   ///
 | |
|   class PPCDAGToDAGISel : public SelectionDAGISel {
 | |
|     PPCTargetMachine &TM;
 | |
|     PPCTargetLowering PPCLowering;
 | |
|     unsigned GlobalBaseReg;
 | |
|   public:
 | |
|     PPCDAGToDAGISel(PPCTargetMachine &tm)
 | |
|       : SelectionDAGISel(PPCLowering), TM(tm),
 | |
|         PPCLowering(*TM.getTargetLowering()) {}
 | |
|     
 | |
|     virtual bool runOnFunction(Function &Fn) {
 | |
|       // Make sure we re-emit a set of the global base reg if necessary
 | |
|       GlobalBaseReg = 0;
 | |
|       SelectionDAGISel::runOnFunction(Fn);
 | |
|       
 | |
|       InsertVRSaveCode(Fn);
 | |
|       return true;
 | |
|     }
 | |
|    
 | |
|     /// getI32Imm - Return a target constant with the specified value, of type
 | |
|     /// i32.
 | |
|     inline SDOperand getI32Imm(unsigned Imm) {
 | |
|       return CurDAG->getTargetConstant(Imm, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | |
|     /// base register.  Return the virtual register that holds this value.
 | |
|     SDOperand getGlobalBaseReg();
 | |
|     
 | |
|     // Select - Convert the specified operand from a target-independent to a
 | |
|     // target-specific node if it hasn't already been changed.
 | |
|     void Select(SDOperand &Result, SDOperand Op);
 | |
|     
 | |
|     SDNode *SelectBitfieldInsert(SDNode *N);
 | |
| 
 | |
|     /// SelectCC - Select a comparison of the specified values with the
 | |
|     /// specified condition code, returning the CR# of the expression.
 | |
|     SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
 | |
| 
 | |
|     /// SelectAddrImm - Returns true if the address N can be represented by
 | |
|     /// a base register plus a signed 16-bit displacement [r+imm].
 | |
|     bool SelectAddrImm(SDOperand N, SDOperand &Disp, SDOperand &Base);
 | |
|       
 | |
|     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
 | |
|     /// represented as an indexed [r+r] operation.  Returns false if it can
 | |
|     /// be represented by [r+imm], which are preferred.
 | |
|     bool SelectAddrIdx(SDOperand N, SDOperand &Base, SDOperand &Index);
 | |
|     
 | |
|     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
 | |
|     /// represented as an indexed [r+r] operation.
 | |
|     bool SelectAddrIdxOnly(SDOperand N, SDOperand &Base, SDOperand &Index);
 | |
| 
 | |
|     /// SelectAddrImmShift - Returns true if the address N can be represented by
 | |
|     /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
 | |
|     /// for use by STD and friends.
 | |
|     bool SelectAddrImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base);
 | |
|     
 | |
|     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | |
|     /// inline asm expressions.
 | |
|     virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
 | |
|                                               char ConstraintCode,
 | |
|                                               std::vector<SDOperand> &OutOps,
 | |
|                                               SelectionDAG &DAG) {
 | |
|       SDOperand Op0, Op1;
 | |
|       switch (ConstraintCode) {
 | |
|       default: return true;
 | |
|       case 'm':   // memory
 | |
|         if (!SelectAddrIdx(Op, Op0, Op1))
 | |
|           SelectAddrImm(Op, Op0, Op1);
 | |
|         break;
 | |
|       case 'o':   // offsetable
 | |
|         if (!SelectAddrImm(Op, Op0, Op1)) {
 | |
|           Select(Op0, Op);     // r+0.
 | |
|           Op1 = getI32Imm(0);
 | |
|         }
 | |
|         break;
 | |
|       case 'v':   // not offsetable
 | |
|         SelectAddrIdxOnly(Op, Op0, Op1);
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       OutOps.push_back(Op0);
 | |
|       OutOps.push_back(Op1);
 | |
|       return false;
 | |
|     }
 | |
|     
 | |
|     SDOperand BuildSDIVSequence(SDNode *N);
 | |
|     SDOperand BuildUDIVSequence(SDNode *N);
 | |
|     
 | |
|     /// InstructionSelectBasicBlock - This callback is invoked by
 | |
|     /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | |
|     virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
 | |
|     
 | |
|     void InsertVRSaveCode(Function &Fn);
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "PowerPC DAG->DAG Pattern Instruction Selection";
 | |
|     } 
 | |
|     
 | |
|     /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for this
 | |
|     /// target when scheduling the DAG.
 | |
|     virtual HazardRecognizer *CreateTargetHazardRecognizer() {
 | |
|       // Should use subtarget info to pick the right hazard recognizer.  For
 | |
|       // now, always return a PPC970 recognizer.
 | |
|       const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
 | |
|       assert(II && "No InstrInfo?");
 | |
|       return new PPCHazardRecognizer970(*II); 
 | |
|     }
 | |
| 
 | |
| // Include the pieces autogenerated from the target description.
 | |
| #include "PPCGenDAGISel.inc"
 | |
|     
 | |
| private:
 | |
|     SDOperand SelectSETCC(SDOperand Op);
 | |
|     SDOperand SelectCALL(SDOperand Op);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// InstructionSelectBasicBlock - This callback is invoked by
 | |
| /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | |
| void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
 | |
|   DEBUG(BB->dump());
 | |
|   
 | |
|   // The selection process is inherently a bottom-up recursive process (users
 | |
|   // select their uses before themselves).  Given infinite stack space, we
 | |
|   // could just start selecting on the root and traverse the whole graph.  In
 | |
|   // practice however, this causes us to run out of stack space on large basic
 | |
|   // blocks.  To avoid this problem, select the entry node, then all its uses,
 | |
|   // iteratively instead of recursively.
 | |
|   std::vector<SDOperand> Worklist;
 | |
|   Worklist.push_back(DAG.getEntryNode());
 | |
|   
 | |
|   // Note that we can do this in the PPC target (scanning forward across token
 | |
|   // chain edges) because no nodes ever get folded across these edges.  On a
 | |
|   // target like X86 which supports load/modify/store operations, this would
 | |
|   // have to be more careful.
 | |
|   while (!Worklist.empty()) {
 | |
|     SDOperand Node = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
|     
 | |
|     // Chose from the least deep of the top two nodes.
 | |
|     if (!Worklist.empty() &&
 | |
|         Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth())
 | |
|       std::swap(Worklist.back(), Node);
 | |
|     
 | |
|     if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END &&
 | |
|          Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) ||
 | |
|         CodeGenMap.count(Node)) continue;
 | |
|     
 | |
|     for (SDNode::use_iterator UI = Node.Val->use_begin(),
 | |
|          E = Node.Val->use_end(); UI != E; ++UI) {
 | |
|       // Scan the values.  If this use has a value that is a token chain, add it
 | |
|       // to the worklist.
 | |
|       SDNode *User = *UI;
 | |
|       for (unsigned i = 0, e = User->getNumValues(); i != e; ++i)
 | |
|         if (User->getValueType(i) == MVT::Other) {
 | |
|           Worklist.push_back(SDOperand(User, i));
 | |
|           break; 
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Finally, legalize this node.
 | |
|     SDOperand Dummy;
 | |
|     Select(Dummy, Node);
 | |
|   }
 | |
|     
 | |
|   // Select target instructions for the DAG.
 | |
|   DAG.setRoot(SelectRoot(DAG.getRoot()));
 | |
|   CodeGenMap.clear();
 | |
|   DAG.RemoveDeadNodes();
 | |
|   
 | |
|   // Emit machine code to BB.
 | |
|   ScheduleAndEmitDAG(DAG);
 | |
| }
 | |
| 
 | |
| /// InsertVRSaveCode - Once the entire function has been instruction selected,
 | |
| /// all virtual registers are created and all machine instructions are built,
 | |
| /// check to see if we need to save/restore VRSAVE.  If so, do it.
 | |
| void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
 | |
|   // Check to see if this function uses vector registers, which means we have to
 | |
|   // save and restore the VRSAVE register and update it with the regs we use.  
 | |
|   //
 | |
|   // In this case, there will be virtual registers of vector type type created
 | |
|   // by the scheduler.  Detect them now.
 | |
|   MachineFunction &Fn = MachineFunction::get(&F);
 | |
|   SSARegMap *RegMap = Fn.getSSARegMap();
 | |
|   bool HasVectorVReg = false;
 | |
|   for (unsigned i = MRegisterInfo::FirstVirtualRegister, 
 | |
|        e = RegMap->getLastVirtReg()+1; i != e; ++i)
 | |
|     if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
 | |
|       HasVectorVReg = true;
 | |
|       break;
 | |
|     }
 | |
|   if (!HasVectorVReg) return;  // nothing to do.
 | |
|       
 | |
|   // If we have a vector register, we want to emit code into the entry and exit
 | |
|   // blocks to save and restore the VRSAVE register.  We do this here (instead
 | |
|   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
 | |
|   //
 | |
|   // 1. This (trivially) reduces the load on the register allocator, by not
 | |
|   //    having to represent the live range of the VRSAVE register.
 | |
|   // 2. This (more significantly) allows us to create a temporary virtual
 | |
|   //    register to hold the saved VRSAVE value, allowing this temporary to be
 | |
|   //    register allocated, instead of forcing it to be spilled to the stack.
 | |
| 
 | |
|   // Create two vregs - one to hold the VRSAVE register that is live-in to the
 | |
|   // function and one for the value after having bits or'd into it.
 | |
|   unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|   unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | |
|   
 | |
|   MachineBasicBlock &EntryBB = *Fn.begin();
 | |
|   // Emit the following code into the entry block:
 | |
|   // InVRSAVE = MFVRSAVE
 | |
|   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
 | |
|   // MTVRSAVE UpdatedVRSAVE
 | |
|   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
 | |
|   BuildMI(EntryBB, IP, PPC::MFVRSAVE, 0, InVRSAVE);
 | |
|   BuildMI(EntryBB, IP, PPC::UPDATE_VRSAVE, 1, UpdatedVRSAVE).addReg(InVRSAVE);
 | |
|   BuildMI(EntryBB, IP, PPC::MTVRSAVE, 1).addReg(UpdatedVRSAVE);
 | |
|   
 | |
|   // Find all return blocks, outputting a restore in each epilog.
 | |
|   const TargetInstrInfo &TII = *TM.getInstrInfo();
 | |
|   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | |
|     if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
 | |
|       IP = BB->end(); --IP;
 | |
|       
 | |
|       // Skip over all terminator instructions, which are part of the return
 | |
|       // sequence.
 | |
|       MachineBasicBlock::iterator I2 = IP;
 | |
|       while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
 | |
|         IP = I2;
 | |
|       
 | |
|       // Emit: MTVRSAVE InVRSave
 | |
|       BuildMI(*BB, IP, PPC::MTVRSAVE, 1).addReg(InVRSAVE);
 | |
|     }        
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getGlobalBaseReg - Output the instructions required to put the
 | |
| /// base address to use for accessing globals into a register.
 | |
| ///
 | |
| SDOperand PPCDAGToDAGISel::getGlobalBaseReg() {
 | |
|   if (!GlobalBaseReg) {
 | |
|     // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|     MachineBasicBlock &FirstMBB = BB->getParent()->front();
 | |
|     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|     SSARegMap *RegMap = BB->getParent()->getSSARegMap();
 | |
|     // FIXME: when we get to LP64, we will need to create the appropriate
 | |
|     // type of register here.
 | |
|     GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
 | |
|     BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
 | |
|     BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
 | |
|   }
 | |
|   return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
 | |
| }
 | |
| 
 | |
| 
 | |
| // isIntImmediate - This method tests to see if a constant operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isIntImmediate(SDNode *N, unsigned& Imm) {
 | |
|   if (N->getOpcode() == ISD::Constant) {
 | |
|     Imm = cast<ConstantSDNode>(N)->getValue();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
 | |
| // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
 | |
| // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | |
| // not, since all 1s are not contiguous.
 | |
| static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
 | |
|   if (isShiftedMask_32(Val)) {
 | |
|     // look for the first non-zero bit
 | |
|     MB = CountLeadingZeros_32(Val);
 | |
|     // look for the first zero bit after the run of ones
 | |
|     ME = CountLeadingZeros_32((Val - 1) ^ Val);
 | |
|     return true;
 | |
|   } else {
 | |
|     Val = ~Val; // invert mask
 | |
|     if (isShiftedMask_32(Val)) {
 | |
|       // effectively look for the first zero bit
 | |
|       ME = CountLeadingZeros_32(Val) - 1;
 | |
|       // effectively look for the first one bit after the run of zeros
 | |
|       MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   // no run present
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate
 | |
| // and mask opcode and mask operation.
 | |
| static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
 | |
|                             unsigned &SH, unsigned &MB, unsigned &ME) {
 | |
|   // Don't even go down this path for i64, since different logic will be
 | |
|   // necessary for rldicl/rldicr/rldimi.
 | |
|   if (N->getValueType(0) != MVT::i32)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Shift  = 32;
 | |
|   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   if (N->getNumOperands() != 2 ||
 | |
|       !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
 | |
|     return false;
 | |
|   
 | |
|   if (Opcode == ISD::SHL) {
 | |
|     // apply shift left to mask if it comes first
 | |
|     if (IsShiftMask) Mask = Mask << Shift;
 | |
|     // determine which bits are made indeterminant by shift
 | |
|     Indeterminant = ~(0xFFFFFFFFu << Shift);
 | |
|   } else if (Opcode == ISD::SRL) { 
 | |
|     // apply shift right to mask if it comes first
 | |
|     if (IsShiftMask) Mask = Mask >> Shift;
 | |
|     // determine which bits are made indeterminant by shift
 | |
|     Indeterminant = ~(0xFFFFFFFFu >> Shift);
 | |
|     // adjust for the left rotate
 | |
|     Shift = 32 - Shift;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // if the mask doesn't intersect any Indeterminant bits
 | |
|   if (Mask && !(Mask & Indeterminant)) {
 | |
|     SH = Shift;
 | |
|     // make sure the mask is still a mask (wrap arounds may not be)
 | |
|     return isRunOfOnes(Mask, MB, ME);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific
 | |
| // opcode and that it has a immediate integer right operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | |
|   return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
 | |
| }
 | |
| 
 | |
| // isIntImmediate - This method tests to see if a constant operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isIntImmediate(SDOperand N, unsigned& Imm) {
 | |
|   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | |
|     Imm = (unsigned)CN->getSignExtended();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectBitfieldInsert - turn an or of two masked values into
 | |
| /// the rotate left word immediate then mask insert (rlwimi) instruction.
 | |
| /// Returns true on success, false if the caller still needs to select OR.
 | |
| ///
 | |
| /// Patterns matched:
 | |
| /// 1. or shl, and   5. or and, and
 | |
| /// 2. or and, shl   6. or shl, shr
 | |
| /// 3. or shr, and   7. or shr, shl
 | |
| /// 4. or and, shr
 | |
| SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
 | |
|   bool IsRotate = false;
 | |
|   unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0;
 | |
|   unsigned Value;
 | |
|   
 | |
|   SDOperand Op0 = N->getOperand(0);
 | |
|   SDOperand Op1 = N->getOperand(1);
 | |
|   
 | |
|   unsigned Op0Opc = Op0.getOpcode();
 | |
|   unsigned Op1Opc = Op1.getOpcode();
 | |
|   
 | |
|   // Verify that we have the correct opcodes
 | |
|   if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
 | |
|     return false;
 | |
|   if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
 | |
|     return false;
 | |
|   
 | |
|   // Generate Mask value for Target
 | |
|   if (isIntImmediate(Op0.getOperand(1), Value)) {
 | |
|     switch(Op0Opc) {
 | |
|     case ISD::SHL: TgtMask <<= Value; break;
 | |
|     case ISD::SRL: TgtMask >>= Value; break;
 | |
|     case ISD::AND: TgtMask &= Value; break;
 | |
|     }
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   // Generate Mask value for Insert
 | |
|   if (!isIntImmediate(Op1.getOperand(1), Value))
 | |
|     return 0;
 | |
|   
 | |
|   switch(Op1Opc) {
 | |
|   case ISD::SHL:
 | |
|     SH = Value;
 | |
|     InsMask <<= SH;
 | |
|     if (Op0Opc == ISD::SRL) IsRotate = true;
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     SH = Value;
 | |
|     InsMask >>= SH;
 | |
|     SH = 32-SH;
 | |
|     if (Op0Opc == ISD::SHL) IsRotate = true;
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|     InsMask &= Value;
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // If both of the inputs are ANDs and one of them has a logical shift by
 | |
|   // constant as its input, make that AND the inserted value so that we can
 | |
|   // combine the shift into the rotate part of the rlwimi instruction
 | |
|   bool IsAndWithShiftOp = false;
 | |
|   if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | |
|     if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
 | |
|         Op1.getOperand(0).getOpcode() == ISD::SRL) {
 | |
|       if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
 | |
|         SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
 | |
|         IsAndWithShiftOp = true;
 | |
|       }
 | |
|     } else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | |
|                Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | |
|       if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
 | |
|         std::swap(Op0, Op1);
 | |
|         std::swap(TgtMask, InsMask);
 | |
|         SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
 | |
|         IsAndWithShiftOp = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Verify that the Target mask and Insert mask together form a full word mask
 | |
|   // and that the Insert mask is a run of set bits (which implies both are runs
 | |
|   // of set bits).  Given that, Select the arguments and generate the rlwimi
 | |
|   // instruction.
 | |
|   unsigned MB, ME;
 | |
|   if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
 | |
|     bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
 | |
|     bool Op0IsAND = Op0Opc == ISD::AND;
 | |
|     // Check for rotlwi / rotrwi here, a special case of bitfield insert
 | |
|     // where both bitfield halves are sourced from the same value.
 | |
|     if (IsRotate && fullMask &&
 | |
|         N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) {
 | |
|       SDOperand Tmp;
 | |
|       Select(Tmp, N->getOperand(0).getOperand(0));
 | |
|       return CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Tmp,
 | |
|                                    getI32Imm(SH), getI32Imm(0), getI32Imm(31));
 | |
|     }
 | |
|     SDOperand Tmp1, Tmp2;
 | |
|     Select(Tmp1, ((Op0IsAND && fullMask) ? Op0.getOperand(0) : Op0));
 | |
|     Select(Tmp2, (IsAndWithShiftOp ? Op1.getOperand(0).getOperand(0)
 | |
|                                    : Op1.getOperand(0)));
 | |
|     return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
 | |
|                                  getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SelectAddrImm - Returns true if the address N can be represented by
 | |
| /// a base register plus a signed 16-bit displacement [r+imm].
 | |
| bool PPCDAGToDAGISel::SelectAddrImm(SDOperand N, SDOperand &Disp, 
 | |
|                                     SDOperand &Base) {
 | |
|   // If this can be more profitably realized as r+r, fail.
 | |
|   if (SelectAddrIdx(N, Disp, Base))
 | |
|     return false;
 | |
| 
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     unsigned imm = 0;
 | |
|     if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
 | |
|       Disp = getI32Imm(imm & 0xFFFF);
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | |
|         Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | |
|       } else {
 | |
|         Base = N.getOperand(0);
 | |
|       }
 | |
|       return true; // [r+i]
 | |
|     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | |
|       // Match LOAD (ADD (X, Lo(G))).
 | |
|       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
 | |
|              && "Cannot handle constant offsets yet!");
 | |
|       Disp = N.getOperand(1).getOperand(0);  // The global address.
 | |
|       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | |
|              Disp.getOpcode() == ISD::TargetConstantPool ||
 | |
|              Disp.getOpcode() == ISD::TargetJumpTable);
 | |
|       Base = N.getOperand(0);
 | |
|       return true;  // [&g+r]
 | |
|     }
 | |
|   } else if (N.getOpcode() == ISD::OR) {
 | |
|     unsigned imm = 0;
 | |
|     if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
 | |
|       // If this is an or of disjoint bitfields, we can codegen this as an add
 | |
|       // (for better address arithmetic) if the LHS and RHS of the OR are
 | |
|       // provably disjoint.
 | |
|       uint64_t LHSKnownZero, LHSKnownOne;
 | |
|       PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
 | |
|                                     LHSKnownZero, LHSKnownOne);
 | |
|       if ((LHSKnownZero|~imm) == ~0U) {
 | |
|         // If all of the bits are known zero on the LHS or RHS, the add won't
 | |
|         // carry.
 | |
|         Base = N.getOperand(0);
 | |
|         Disp = getI32Imm(imm & 0xFFFF);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | |
|     // Loading from a constant address.
 | |
|     int Addr = (int)CN->getValue();
 | |
|     
 | |
|     // If this address fits entirely in a 16-bit sext immediate field, codegen
 | |
|     // this as "d, 0"
 | |
|     if (Addr == (short)Addr) {
 | |
|       Disp = getI32Imm(Addr);
 | |
|       Base = CurDAG->getRegister(PPC::R0, MVT::i32);
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, break this down into an LIS + disp.
 | |
|     Disp = getI32Imm((short)Addr);
 | |
|     Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   Disp = getI32Imm(0);
 | |
|   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
 | |
|     Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | |
|   else
 | |
|     Base = N;
 | |
|   return true;      // [r+0]
 | |
| }
 | |
| 
 | |
| /// SelectAddrIdx - Given the specified addressed, check to see if it can be
 | |
| /// represented as an indexed [r+r] operation.  Returns false if it can
 | |
| /// be represented by [r+imm], which are preferred.
 | |
| bool PPCDAGToDAGISel::SelectAddrIdx(SDOperand N, SDOperand &Base, 
 | |
|                                     SDOperand &Index) {
 | |
|   unsigned imm = 0;
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm))
 | |
|       return false;    // r+i
 | |
|     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
 | |
|       return false;    // r+i
 | |
|     
 | |
|     Base = N.getOperand(0);
 | |
|     Index = N.getOperand(1);
 | |
|     return true;
 | |
|   } else if (N.getOpcode() == ISD::OR) {
 | |
|     if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm))
 | |
|       return false;    // r+i can fold it if we can.
 | |
|     
 | |
|     // If this is an or of disjoint bitfields, we can codegen this as an add
 | |
|     // (for better address arithmetic) if the LHS and RHS of the OR are provably
 | |
|     // disjoint.
 | |
|     uint64_t LHSKnownZero, LHSKnownOne;
 | |
|     uint64_t RHSKnownZero, RHSKnownOne;
 | |
|     PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
 | |
|                                   LHSKnownZero, LHSKnownOne);
 | |
|     
 | |
|     if (LHSKnownZero) {
 | |
|       PPCLowering.ComputeMaskedBits(N.getOperand(1), ~0U,
 | |
|                                     RHSKnownZero, RHSKnownOne);
 | |
|       // If all of the bits are known zero on the LHS or RHS, the add won't
 | |
|       // carry.
 | |
|       if ((LHSKnownZero | RHSKnownZero) == ~0U) {
 | |
|         Base = N.getOperand(0);
 | |
|         Index = N.getOperand(1);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectAddrIdxOnly - Given the specified addressed, force it to be
 | |
| /// represented as an indexed [r+r] operation.
 | |
| bool PPCDAGToDAGISel::SelectAddrIdxOnly(SDOperand N, SDOperand &Base, 
 | |
|                                         SDOperand &Index) {
 | |
|   // Check to see if we can easily represent this as an [r+r] address.  This
 | |
|   // will fail if it thinks that the address is more profitably represented as
 | |
|   // reg+imm, e.g. where imm = 0.
 | |
|   if (SelectAddrIdx(N, Base, Index))
 | |
|     return true;
 | |
|   
 | |
|   // If the operand is an addition, always emit this as [r+r], since this is
 | |
|   // better (for code size, and execution, as the memop does the add for free)
 | |
|   // than emitting an explicit add.
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     Base = N.getOperand(0);
 | |
|     Index = N.getOperand(1);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, do it the hard way, using R0 as the base register.
 | |
|   Base = CurDAG->getRegister(PPC::R0, MVT::i32);
 | |
|   Index = N;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectAddrImmShift - Returns true if the address N can be represented by
 | |
| /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
 | |
| /// for use by STD and friends.
 | |
| bool PPCDAGToDAGISel::SelectAddrImmShift(SDOperand N, SDOperand &Disp, 
 | |
|                                          SDOperand &Base) {
 | |
|   // If this can be more profitably realized as r+r, fail.
 | |
|   if (SelectAddrIdx(N, Disp, Base))
 | |
|     return false;
 | |
|   
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     unsigned imm = 0;
 | |
|     if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) &&
 | |
|         (imm & 3) == 0) {
 | |
|       Disp = getI32Imm((imm & 0xFFFF) >> 2);
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | |
|         Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | |
|       } else {
 | |
|         Base = N.getOperand(0);
 | |
|       }
 | |
|       return true; // [r+i]
 | |
|     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | |
|       // Match LOAD (ADD (X, Lo(G))).
 | |
|       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
 | |
|              && "Cannot handle constant offsets yet!");
 | |
|       Disp = N.getOperand(1).getOperand(0);  // The global address.
 | |
|       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | |
|              Disp.getOpcode() == ISD::TargetConstantPool ||
 | |
|              Disp.getOpcode() == ISD::TargetJumpTable);
 | |
|       Base = N.getOperand(0);
 | |
|       return true;  // [&g+r]
 | |
|     }
 | |
|   } else if (N.getOpcode() == ISD::OR) {
 | |
|     unsigned imm = 0;
 | |
|     if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) &&
 | |
|         (imm & 3) == 0) {
 | |
|       // If this is an or of disjoint bitfields, we can codegen this as an add
 | |
|       // (for better address arithmetic) if the LHS and RHS of the OR are
 | |
|       // provably disjoint.
 | |
|       uint64_t LHSKnownZero, LHSKnownOne;
 | |
|       PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
 | |
|                                     LHSKnownZero, LHSKnownOne);
 | |
|       if ((LHSKnownZero|~imm) == ~0U) {
 | |
|         // If all of the bits are known zero on the LHS or RHS, the add won't
 | |
|         // carry.
 | |
|         Base = N.getOperand(0);
 | |
|         Disp = getI32Imm((imm & 0xFFFF) >> 2);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | |
|     // Loading from a constant address.
 | |
|     int Addr = (int)CN->getValue();
 | |
|     if ((Addr & 3) == 0) {
 | |
|       // If this address fits entirely in a 16-bit sext immediate field, codegen
 | |
|       // this as "d, 0"
 | |
|       if (Addr == (short)Addr) {
 | |
|         Disp = getI32Imm(Addr >> 2);
 | |
|         Base = CurDAG->getRegister(PPC::R0, MVT::i32);
 | |
|         return true;
 | |
|       }
 | |
|       
 | |
|       // Otherwise, break this down into an LIS + disp.
 | |
|       Disp = getI32Imm((short)Addr >> 2);
 | |
|       Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   Disp = getI32Imm(0);
 | |
|   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
 | |
|     Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | |
|   else
 | |
|     Base = N;
 | |
|   return true;      // [r+0]
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectCC - Select a comparison of the specified values with the specified
 | |
| /// condition code, returning the CR# of the expression.
 | |
| SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
 | |
|                                     ISD::CondCode CC) {
 | |
|   // Always select the LHS.
 | |
|   Select(LHS, LHS);
 | |
| 
 | |
|   // Use U to determine whether the SETCC immediate range is signed or not.
 | |
|   if (MVT::isInteger(LHS.getValueType())) {
 | |
|     bool U = ISD::isUnsignedIntSetCC(CC);
 | |
|     unsigned Imm;
 | |
|     if (isIntImmediate(RHS, Imm) && 
 | |
|         ((U && isUInt16(Imm)) || (!U && isInt16(Imm))))
 | |
|       return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI,
 | |
|                                     MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0);
 | |
|     Select(RHS, RHS);
 | |
|     return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32,
 | |
|                                            LHS, RHS), 0);
 | |
|   } else if (LHS.getValueType() == MVT::f32) {
 | |
|     Select(RHS, RHS);
 | |
|     return SDOperand(CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, RHS), 0);
 | |
|   } else {
 | |
|     Select(RHS, RHS);
 | |
|     return SDOperand(CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, RHS), 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
 | |
| /// to Condition.
 | |
| static unsigned getBCCForSetCC(ISD::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: assert(0 && "Unknown condition!"); abort();
 | |
|   case ISD::SETOEQ:    // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETEQ:  return PPC::BEQ;
 | |
|   case ISD::SETONE:    // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETNE:  return PPC::BNE;
 | |
|   case ISD::SETOLT:    // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:  return PPC::BLT;
 | |
|   case ISD::SETOLE:    // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  return PPC::BLE;
 | |
|   case ISD::SETOGT:    // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETGT:  return PPC::BGT;
 | |
|   case ISD::SETOGE:    // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  return PPC::BGE;
 | |
|     
 | |
|   case ISD::SETO:   return PPC::BUN;
 | |
|   case ISD::SETUO:  return PPC::BNU;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getCRIdxForSetCC - Return the index of the condition register field
 | |
| /// associated with the SetCC condition, and whether or not the field is
 | |
| /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | |
| static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
 | |
|   switch (CC) {
 | |
|   default: assert(0 && "Unknown condition!"); abort();
 | |
|   case ISD::SETOLT:  // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:  Inv = false;  return 0;
 | |
|   case ISD::SETOGE:  // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETUGE:
 | |
|   case ISD::SETGE:  Inv = true;   return 0;
 | |
|   case ISD::SETOGT:  // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETGT:  Inv = false;  return 1;
 | |
|   case ISD::SETOLE:  // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETULE:
 | |
|   case ISD::SETLE:  Inv = true;   return 1;
 | |
|   case ISD::SETOEQ:  // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETEQ:  Inv = false;  return 2;
 | |
|   case ISD::SETONE:  // FIXME: This is incorrect see PR642.
 | |
|   case ISD::SETNE:  Inv = true;   return 2;
 | |
|   case ISD::SETO:   Inv = true;   return 3;
 | |
|   case ISD::SETUO:  Inv = false;  return 3;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
 | |
|   SDNode *N = Op.Val;
 | |
|   unsigned Imm;
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | |
|   if (isIntImmediate(N->getOperand(1), Imm)) {
 | |
|     // We can codegen setcc op, imm very efficiently compared to a brcond.
 | |
|     // Check for those cases here.
 | |
|     // setcc op, 0
 | |
|     if (Imm == 0) {
 | |
|       SDOperand Op;
 | |
|       Select(Op, N->getOperand(0));
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ:
 | |
|         Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27),
 | |
|                                     getI32Imm(5), getI32Imm(31));
 | |
|       case ISD::SETNE: {
 | |
|         SDOperand AD =
 | |
|           SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | |
|                                           Op, getI32Imm(~0U)), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 
 | |
|                                     AD.getValue(1));
 | |
|       }
 | |
|       case ISD::SETLT:
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
 | |
|                                     getI32Imm(31), getI32Imm(31));
 | |
|       case ISD::SETGT: {
 | |
|         SDOperand T =
 | |
|           SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
 | |
|         T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1),
 | |
|                                     getI32Imm(31), getI32Imm(31));
 | |
|       }
 | |
|       }
 | |
|     } else if (Imm == ~0U) {        // setcc op, -1
 | |
|       SDOperand Op;
 | |
|       Select(Op, N->getOperand(0));
 | |
|       switch (CC) {
 | |
|       default: break;
 | |
|       case ISD::SETEQ:
 | |
|         Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | |
|                                              Op, getI32Imm(1)), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
 | |
|                               SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
 | |
|                                                               getI32Imm(0)), 0),
 | |
|                                     Op.getValue(1));
 | |
|       case ISD::SETNE: {
 | |
|         Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
 | |
|         SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | |
|                                            Op, getI32Imm(~0U));
 | |
|         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0), Op, 
 | |
|                                     SDOperand(AD, 1));
 | |
|       }
 | |
|       case ISD::SETLT: {
 | |
|         SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
 | |
|                                                        getI32Imm(1)), 0);
 | |
|         SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
 | |
|                                                        Op), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1),
 | |
|                                     getI32Imm(31), getI32Imm(31));
 | |
|       }
 | |
|       case ISD::SETGT:
 | |
|         Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op,
 | |
|                                              getI32Imm(1), getI32Imm(31),
 | |
|                                              getI32Imm(31)), 0);
 | |
|         return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   bool Inv;
 | |
|   unsigned Idx = getCRIdxForSetCC(CC, Inv);
 | |
|   SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
 | |
|   SDOperand IntCR;
 | |
|   
 | |
|   // Force the ccreg into CR7.
 | |
|   SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
 | |
|   
 | |
|   SDOperand InFlag(0, 0);  // Null incoming flag value.
 | |
|   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg, 
 | |
|                                InFlag).getValue(1);
 | |
|   
 | |
|   if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
 | |
|     IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
 | |
|                                             CCReg), 0);
 | |
|   else
 | |
|     IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
 | |
|   
 | |
|   if (!Inv) {
 | |
|     return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR,
 | |
|                                 getI32Imm((32-(3-Idx)) & 31),
 | |
|                                 getI32Imm(31), getI32Imm(31));
 | |
|   } else {
 | |
|     SDOperand Tmp =
 | |
|       SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR,
 | |
|                                       getI32Imm((32-(3-Idx)) & 31),
 | |
|                                       getI32Imm(31),getI32Imm(31)), 0);
 | |
|     return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isCallCompatibleAddress - Return true if the specified 32-bit value is
 | |
| /// representable in the immediate field of a Bx instruction.
 | |
| static bool isCallCompatibleAddress(ConstantSDNode *C) {
 | |
|   int Addr = C->getValue();
 | |
|   if (Addr & 3) return false;  // Low 2 bits are implicitly zero.
 | |
|   return (Addr << 6 >> 6) == Addr;  // Top 6 bits have to be sext of immediate.
 | |
| }
 | |
| 
 | |
| SDOperand PPCDAGToDAGISel::SelectCALL(SDOperand Op) {
 | |
|   SDNode *N = Op.Val;
 | |
|   SDOperand Chain;
 | |
|   Select(Chain, N->getOperand(0));
 | |
|   
 | |
|   unsigned CallOpcode;
 | |
|   std::vector<SDOperand> CallOperands;
 | |
|   
 | |
|   if (GlobalAddressSDNode *GASD =
 | |
|       dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
 | |
|     CallOpcode = PPC::BL;
 | |
|     CallOperands.push_back(N->getOperand(1));
 | |
|   } else if (ExternalSymbolSDNode *ESSDN =
 | |
|              dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
 | |
|     CallOpcode = PPC::BL;
 | |
|     CallOperands.push_back(N->getOperand(1));
 | |
|   } else if (isa<ConstantSDNode>(N->getOperand(1)) &&
 | |
|              isCallCompatibleAddress(cast<ConstantSDNode>(N->getOperand(1)))) {
 | |
|     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
 | |
|     CallOpcode = PPC::BLA;
 | |
|     CallOperands.push_back(getI32Imm((int)C->getValue() >> 2));
 | |
|   } else {
 | |
|     // Copy the callee address into the CTR register.
 | |
|     SDOperand Callee;
 | |
|     Select(Callee, N->getOperand(1));
 | |
|     Chain = SDOperand(CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee,
 | |
|                                             Chain), 0);
 | |
|     
 | |
|     // Copy the callee address into R12 on darwin.
 | |
|     SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32);
 | |
|     Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee);
 | |
| 
 | |
|     CallOperands.push_back(R12);
 | |
|     CallOpcode = PPC::BCTRL;
 | |
|   }
 | |
|   
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0;
 | |
|   static const unsigned GPR[] = {
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const unsigned FPR[] = {
 | |
|     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | |
|   };
 | |
|   
 | |
|   SDOperand InFlag;  // Null incoming flag value.
 | |
|   
 | |
|   for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
 | |
|     unsigned DestReg = 0;
 | |
|     MVT::ValueType RegTy = N->getOperand(i).getValueType();
 | |
|     if (RegTy == MVT::i32) {
 | |
|       assert(GPR_idx < 8 && "Too many int args");
 | |
|       DestReg = GPR[GPR_idx++];
 | |
|     } else {
 | |
|       assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
 | |
|              "Unpromoted integer arg?");
 | |
|       assert(FPR_idx < 13 && "Too many fp args");
 | |
|       DestReg = FPR[FPR_idx++];
 | |
|     }
 | |
|     
 | |
|     if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
 | |
|       SDOperand Val;
 | |
|       Select(Val, N->getOperand(i));
 | |
|       Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|       CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Finally, once everything is in registers to pass to the call, emit the
 | |
|   // call itself.
 | |
|   if (InFlag.Val)
 | |
|     CallOperands.push_back(InFlag);   // Strong dep on register copies.
 | |
|   else
 | |
|     CallOperands.push_back(Chain);    // Weak dep on whatever occurs before
 | |
|   Chain = SDOperand(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
 | |
|                                           CallOperands), 0);
 | |
|   
 | |
|   std::vector<SDOperand> CallResults;
 | |
|   
 | |
|   // If the call has results, copy the values out of the ret val registers.
 | |
|   switch (N->getValueType(0)) {
 | |
|     default: assert(0 && "Unexpected ret value!");
 | |
|     case MVT::Other: break;
 | |
|     case MVT::i32:
 | |
|       if (N->getValueType(1) == MVT::i32) {
 | |
|         Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32, 
 | |
|                                        Chain.getValue(1)).getValue(1);
 | |
|         CallResults.push_back(Chain.getValue(0));
 | |
|         Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
 | |
|                                        Chain.getValue(2)).getValue(1);
 | |
|         CallResults.push_back(Chain.getValue(0));
 | |
|       } else {
 | |
|         Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
 | |
|                                        Chain.getValue(1)).getValue(1);
 | |
|         CallResults.push_back(Chain.getValue(0));
 | |
|       }
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0),
 | |
|                                      Chain.getValue(1)).getValue(1);
 | |
|       CallResults.push_back(Chain.getValue(0));
 | |
|       break;
 | |
|   }
 | |
|   
 | |
|   CallResults.push_back(Chain);
 | |
|   for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
 | |
|     CodeGenMap[Op.getValue(i)] = CallResults[i];
 | |
|   return CallResults[Op.ResNo];
 | |
| }
 | |
| 
 | |
| // Select - Convert the specified operand from a target-independent to a
 | |
| // target-specific node if it hasn't already been changed.
 | |
| void PPCDAGToDAGISel::Select(SDOperand &Result, SDOperand Op) {
 | |
|   SDNode *N = Op.Val;
 | |
|   if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
 | |
|       N->getOpcode() < PPCISD::FIRST_NUMBER) {
 | |
|     Result = Op;
 | |
|     return;   // Already selected.
 | |
|   }
 | |
| 
 | |
|   // If this has already been converted, use it.
 | |
|   std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op);
 | |
|   if (CGMI != CodeGenMap.end()) {
 | |
|     Result = CGMI->second;
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::SETCC:
 | |
|     Result = SelectSETCC(Op);
 | |
|     return;
 | |
|   case PPCISD::CALL:
 | |
|     Result = SelectCALL(Op);
 | |
|     return;
 | |
|   case PPCISD::GlobalBaseReg:
 | |
|     Result = getGlobalBaseReg();
 | |
|     return;
 | |
|     
 | |
|   case ISD::FrameIndex: {
 | |
|     int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     if (N->hasOneUse()) {
 | |
|       Result = CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32,
 | |
|                                     CurDAG->getTargetFrameIndex(FI, MVT::i32),
 | |
|                                     getI32Imm(0));
 | |
|       return;
 | |
|     }
 | |
|     Result = CodeGenMap[Op] = 
 | |
|       SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32,
 | |
|                                       CurDAG->getTargetFrameIndex(FI, MVT::i32),
 | |
|                                       getI32Imm(0)), 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   case PPCISD::MFCR: {
 | |
|     SDOperand InFlag;
 | |
|     Select(InFlag, N->getOperand(1));
 | |
|     // Use MFOCRF if supported.
 | |
|     if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
 | |
|       Result = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
 | |
|                                                N->getOperand(0), InFlag), 0);
 | |
|     else
 | |
|       Result = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag), 0);
 | |
|     CodeGenMap[Op] = Result;
 | |
|     return;
 | |
|   }
 | |
|     
 | |
|   case ISD::SDIV: {
 | |
|     // FIXME: since this depends on the setting of the carry flag from the srawi
 | |
|     //        we should really be making notes about that for the scheduler.
 | |
|     // FIXME: It sure would be nice if we could cheaply recognize the 
 | |
|     //        srl/add/sra pattern the dag combiner will generate for this as
 | |
|     //        sra/addze rather than having to handle sdiv ourselves.  oh well.
 | |
|     unsigned Imm;
 | |
|     if (isIntImmediate(N->getOperand(1), Imm)) {
 | |
|       SDOperand N0;
 | |
|       Select(N0, N->getOperand(0));
 | |
|       if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
 | |
|         SDNode *Op =
 | |
|           CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
 | |
|                                 N0, getI32Imm(Log2_32(Imm)));
 | |
|         Result = CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
 | |
|                                       SDOperand(Op, 0), SDOperand(Op, 1));
 | |
|       } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
 | |
|         SDNode *Op =
 | |
|           CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
 | |
|                                 N0, getI32Imm(Log2_32(-Imm)));
 | |
|         SDOperand PT =
 | |
|           SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
 | |
|                                           SDOperand(Op, 0), SDOperand(Op, 1)),
 | |
|                     0);
 | |
|         Result = CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AND: {
 | |
|     unsigned Imm, Imm2;
 | |
|     // If this is an and of a value rotated between 0 and 31 bits and then and'd
 | |
|     // with a mask, emit rlwinm
 | |
|     if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
 | |
|                                                   isShiftedMask_32(~Imm))) {
 | |
|       SDOperand Val;
 | |
|       unsigned SH, MB, ME;
 | |
|       if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
 | |
|         Select(Val, N->getOperand(0).getOperand(0));
 | |
|       } else if (Imm == 0) {
 | |
|         // AND X, 0 -> 0, not "rlwinm 32".
 | |
|         Select(Result, N->getOperand(1));
 | |
|         return ;
 | |
|       } else {        
 | |
|         Select(Val, N->getOperand(0));
 | |
|         isRunOfOnes(Imm, MB, ME);
 | |
|         SH = 0;
 | |
|       }
 | |
|       Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val,
 | |
|                                     getI32Imm(SH), getI32Imm(MB),
 | |
|                                     getI32Imm(ME));
 | |
|       return;
 | |
|     }
 | |
|     // ISD::OR doesn't get all the bitfield insertion fun.
 | |
|     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
 | |
|     if (isIntImmediate(N->getOperand(1), Imm) && 
 | |
|         N->getOperand(0).getOpcode() == ISD::OR &&
 | |
|         isIntImmediate(N->getOperand(0).getOperand(1), Imm2)) {
 | |
|       unsigned MB, ME;
 | |
|       Imm = ~(Imm^Imm2);
 | |
|       if (isRunOfOnes(Imm, MB, ME)) {
 | |
|         SDOperand Tmp1, Tmp2;
 | |
|         Select(Tmp1, N->getOperand(0).getOperand(0));
 | |
|         Select(Tmp2, N->getOperand(0).getOperand(1));
 | |
|         Result = SDOperand(CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32,
 | |
|                                                  Tmp1, Tmp2,
 | |
|                                                  getI32Imm(0), getI32Imm(MB),
 | |
|                                                  getI32Imm(ME)), 0);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::OR:
 | |
|     if (SDNode *I = SelectBitfieldInsert(N)) {
 | |
|       Result = CodeGenMap[Op] = SDOperand(I, 0);
 | |
|       return;
 | |
|     }
 | |
|       
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   case ISD::SHL: {
 | |
|     unsigned Imm, SH, MB, ME;
 | |
|     if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
 | |
|         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | |
|       SDOperand Val;
 | |
|       Select(Val, N->getOperand(0).getOperand(0));
 | |
|       Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, 
 | |
|                                     Val, getI32Imm(SH), getI32Imm(MB),
 | |
|                                     getI32Imm(ME));
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SRL: {
 | |
|     unsigned Imm, SH, MB, ME;
 | |
|     if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
 | |
|         isRotateAndMask(N, Imm, true, SH, MB, ME)) { 
 | |
|       SDOperand Val;
 | |
|       Select(Val, N->getOperand(0).getOperand(0));
 | |
|       Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, 
 | |
|                                     Val, getI32Imm(SH & 0x1F), getI32Imm(MB),
 | |
|                                     getI32Imm(ME));
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Other cases are autogenerated.
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SELECT_CC: {
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | |
|     
 | |
|     // handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
 | |
|     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | |
|       if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
 | |
|         if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
 | |
|           if (N1C->isNullValue() && N3C->isNullValue() &&
 | |
|               N2C->getValue() == 1ULL && CC == ISD::SETNE) {
 | |
|             SDOperand LHS;
 | |
|             Select(LHS, N->getOperand(0));
 | |
|             SDNode *Tmp =
 | |
|               CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | |
|                                     LHS, getI32Imm(~0U));
 | |
|             Result = CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
 | |
|                                           SDOperand(Tmp, 0), LHS,
 | |
|                                           SDOperand(Tmp, 1));
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|     SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
 | |
|     unsigned BROpc = getBCCForSetCC(CC);
 | |
| 
 | |
|     bool isFP = MVT::isFloatingPoint(N->getValueType(0));
 | |
|     unsigned SelectCCOp;
 | |
|     if (MVT::isInteger(N->getValueType(0)))
 | |
|       SelectCCOp = PPC::SELECT_CC_Int;
 | |
|     else if (N->getValueType(0) == MVT::f32)
 | |
|       SelectCCOp = PPC::SELECT_CC_F4;
 | |
|     else if (N->getValueType(0) == MVT::f64)
 | |
|       SelectCCOp = PPC::SELECT_CC_F8;
 | |
|     else
 | |
|       SelectCCOp = PPC::SELECT_CC_VRRC;
 | |
| 
 | |
|     SDOperand N2, N3;
 | |
|     Select(N2, N->getOperand(2));
 | |
|     Select(N3, N->getOperand(3));
 | |
|     Result = CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg,
 | |
|                                   N2, N3, getI32Imm(BROpc));
 | |
|     return;
 | |
|   }
 | |
|   case ISD::BR_CC: {
 | |
|     SDOperand Chain;
 | |
|     Select(Chain, N->getOperand(0));
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | |
|     SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
 | |
|     Result = CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, 
 | |
|                                   CondCode, getI32Imm(getBCCForSetCC(CC)), 
 | |
|                                   N->getOperand(4), Chain);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::BRIND: {
 | |
|     SDOperand Chain, Target;
 | |
|     Select(Chain, N->getOperand(0));
 | |
|     Select(Target,N->getOperand(1));
 | |
|     Chain = SDOperand(CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Target,
 | |
|                                             Chain), 0);
 | |
|     Result = CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
 | |
|     return;
 | |
|   }
 | |
|   }
 | |
|   
 | |
|   SelectCode(Result, Op);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// createPPCISelDag - This pass converts a legalized DAG into a 
 | |
| /// PowerPC-specific DAG, ready for instruction scheduling.
 | |
| ///
 | |
| FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
 | |
|   return new PPCDAGToDAGISel(TM);
 | |
| }
 | |
| 
 |