mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1064 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			516 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			516 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===//
 | 
						|
//
 | 
						|
// This file implements sparse conditional constant propogation and merging:
 | 
						|
//
 | 
						|
// Specifically, this:
 | 
						|
//   * Assumes values are constant unless proven otherwise
 | 
						|
//   * Assumes BasicBlocks are dead unless proven otherwise
 | 
						|
//   * Proves values to be constant, and replaces them with constants
 | 
						|
//   . Proves conditional branches constant, and unconditionalizes them
 | 
						|
//   * Folds multiple identical constants in the constant pool together
 | 
						|
//
 | 
						|
// Notice that:
 | 
						|
//   * This pass has a habit of making definitions be dead.  It is a good idea
 | 
						|
//     to to run a DCE pass sometime after running this pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Optimizations/ConstantProp.h"
 | 
						|
#include "llvm/Optimizations/ConstantHandling.h"
 | 
						|
#include "llvm/Method.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/ConstPoolVals.h"
 | 
						|
#include "llvm/InstrTypes.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/Support/STLExtras.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
 | 
						|
// InstVal class - This class represents the different lattice values that an 
 | 
						|
// instruction may occupy.  It is a simple class with value semantics.  The
 | 
						|
// potential constant value that is pointed to is owned by the constant pool
 | 
						|
// for the method being optimized.
 | 
						|
//
 | 
						|
class InstVal {
 | 
						|
  enum { 
 | 
						|
    Undefined,           // This instruction has no known value
 | 
						|
    Constant,            // This instruction has a constant value
 | 
						|
    // Range,            // This instruction is known to fall within a range
 | 
						|
    Overdefined          // This instruction has an unknown value
 | 
						|
  } LatticeValue;    // The current lattice position
 | 
						|
  ConstPoolVal *ConstantVal;     // If Constant value, the current value
 | 
						|
public:
 | 
						|
  inline InstVal() : LatticeValue(Undefined), ConstantVal(0) {}
 | 
						|
 | 
						|
  // markOverdefined - Return true if this is a new status to be in...
 | 
						|
  inline bool markOverdefined() {
 | 
						|
    if (LatticeValue != Overdefined) {
 | 
						|
      LatticeValue = Overdefined;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // markConstant - Return true if this is a new status for us...
 | 
						|
  inline bool markConstant(ConstPoolVal *V) {
 | 
						|
    if (LatticeValue != Constant) {
 | 
						|
      LatticeValue = Constant;
 | 
						|
      ConstantVal = V;
 | 
						|
      return true;
 | 
						|
    } else {
 | 
						|
      assert(ConstantVal == V && "Marking constant with different value");
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool isUndefined()   const { return LatticeValue == Undefined; }
 | 
						|
  inline bool isConstant()    const { return LatticeValue == Constant; }
 | 
						|
  inline bool isOverdefined() const { return LatticeValue == Overdefined; }
 | 
						|
 | 
						|
  inline ConstPoolVal *getConstant() const { return ConstantVal; }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SCCP Class
 | 
						|
//
 | 
						|
// This class does all of the work of Sparse Conditional Constant Propogation.
 | 
						|
// It's public interface consists of a constructor and a doSCCP() method.
 | 
						|
//
 | 
						|
class SCCP {
 | 
						|
  Method *M;                            // The method that we are working on...
 | 
						|
 | 
						|
  set<BasicBlock*>       BBExecutable;  // The basic blocks that are executable
 | 
						|
  map<Value*, InstVal>   ValueState;    // The state each value is in...
 | 
						|
 | 
						|
  vector<Instruction*>   InstWorkList;  // The instruction work list
 | 
						|
  vector<BasicBlock*>    BBWorkList;    // The BasicBlock work list
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // The public interface for this class
 | 
						|
  //
 | 
						|
public:
 | 
						|
 | 
						|
  // SCCP Ctor - Save the method to operate on...
 | 
						|
  inline SCCP(Method *m) : M(m) {}
 | 
						|
 | 
						|
  // doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and 
 | 
						|
  // return true if the method was modified.
 | 
						|
  bool doSCCP();
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // The implementation of this class
 | 
						|
  //
 | 
						|
private:
 | 
						|
 | 
						|
  // markValueOverdefined - Make a value be marked as "constant".  If the value
 | 
						|
  // is not already a constant, add it to the instruction work list so that 
 | 
						|
  // the users of the instruction are updated later.
 | 
						|
  //
 | 
						|
  inline bool markConstant(Instruction *I, ConstPoolVal *V) {
 | 
						|
    //cerr << "markConstant: " << V << " = " << I;
 | 
						|
    if (ValueState[I].markConstant(V)) {
 | 
						|
      InstWorkList.push_back(I);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // markValueOverdefined - Make a value be marked as "overdefined". If the
 | 
						|
  // value is not already overdefined, add it to the instruction work list so
 | 
						|
  // that the users of the instruction are updated later.
 | 
						|
  //
 | 
						|
  inline bool markOverdefined(Value *V) {
 | 
						|
    if (ValueState[V].markOverdefined()) {
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
	//cerr << "markOverdefined: " << V;
 | 
						|
	InstWorkList.push_back(I);  // Only instructions go on the work list
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // getValueState - Return the InstVal object that corresponds to the value.
 | 
						|
  // This function is neccesary because not all values should start out in the
 | 
						|
  // underdefined state... MethodArgument's should be overdefined, and constants
 | 
						|
  // should be marked as constants.  If a value is not known to be an
 | 
						|
  // Instruction object, then use this accessor to get its value from the map.
 | 
						|
  //
 | 
						|
  inline InstVal &getValueState(Value *V) {
 | 
						|
    map<Value*, InstVal>::iterator I = ValueState.find(V);
 | 
						|
    if (I != ValueState.end()) return I->second;  // Common case, in the map
 | 
						|
      
 | 
						|
    if (ConstPoolVal *CPV = dyn_cast<ConstPoolVal>(V)) {//Constants are constant
 | 
						|
      ValueState[CPV].markConstant(CPV);
 | 
						|
    } else if (isa<MethodArgument>(V)) {          // MethodArgs are overdefined
 | 
						|
      ValueState[V].markOverdefined();
 | 
						|
    } 
 | 
						|
    // All others are underdefined by default...
 | 
						|
    return ValueState[V];
 | 
						|
  }
 | 
						|
 | 
						|
  // markExecutable - Mark a basic block as executable, adding it to the BB 
 | 
						|
  // work list if it is not already executable...
 | 
						|
  // 
 | 
						|
  void markExecutable(BasicBlock *BB) {
 | 
						|
    if (BBExecutable.count(BB)) return;
 | 
						|
    //cerr << "Marking BB Executable: " << BB;
 | 
						|
    BBExecutable.insert(BB);   // Basic block is executable!
 | 
						|
    BBWorkList.push_back(BB);  // Add the block to the work list!
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // UpdateInstruction - Something changed in this instruction... Either an 
 | 
						|
  // operand made a transition, or the instruction is newly executable.  Change
 | 
						|
  // the value type of I to reflect these changes if appropriate.
 | 
						|
  //
 | 
						|
  void UpdateInstruction(Instruction *I);
 | 
						|
 | 
						|
  // OperandChangedState - This method is invoked on all of the users of an
 | 
						|
  // instruction that was just changed state somehow....  Based on this
 | 
						|
  // information, we need to update the specified user of this instruction.
 | 
						|
  //
 | 
						|
  void OperandChangedState(User *U);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SCCP Class Implementation
 | 
						|
 | 
						|
 | 
						|
// doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and 
 | 
						|
// return true if the method was modified.
 | 
						|
//
 | 
						|
bool SCCP::doSCCP() {
 | 
						|
  // Mark the first block of the method as being executable...
 | 
						|
  markExecutable(M->front());
 | 
						|
 | 
						|
  // Process the work lists until their are empty!
 | 
						|
  while (!BBWorkList.empty() || !InstWorkList.empty()) {
 | 
						|
    // Process the instruction work list...
 | 
						|
    while (!InstWorkList.empty()) {
 | 
						|
      Instruction *I = InstWorkList.back();
 | 
						|
      InstWorkList.pop_back();
 | 
						|
 | 
						|
      //cerr << "\nPopped off I-WL: " << I;
 | 
						|
 | 
						|
      
 | 
						|
      // "I" got into the work list because it either made the transition from
 | 
						|
      // bottom to constant, or to Overdefined.
 | 
						|
      //
 | 
						|
      // Update all of the users of this instruction's value...
 | 
						|
      //
 | 
						|
      for_each(I->use_begin(), I->use_end(),
 | 
						|
	       bind_obj(this, &SCCP::OperandChangedState));
 | 
						|
    }
 | 
						|
 | 
						|
    // Process the basic block work list...
 | 
						|
    while (!BBWorkList.empty()) {
 | 
						|
      BasicBlock *BB = BBWorkList.back();
 | 
						|
      BBWorkList.pop_back();
 | 
						|
 | 
						|
      //cerr << "\nPopped off BBWL: " << BB;
 | 
						|
 | 
						|
      // If this block only has a single successor, mark it as executable as
 | 
						|
      // well... if not, terminate the do loop.
 | 
						|
      //
 | 
						|
      if (BB->getTerminator()->getNumSuccessors() == 1)
 | 
						|
	markExecutable(BB->getTerminator()->getSuccessor(0));
 | 
						|
 | 
						|
      // Loop over all of the instructions and notify them that they are newly
 | 
						|
      // executable...
 | 
						|
      for_each(BB->begin(), BB->end(),
 | 
						|
	       bind_obj(this, &SCCP::UpdateInstruction));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#if 0
 | 
						|
  for (Method::iterator BBI = M->begin(), BBEnd = M->end(); BBI != BBEnd; ++BBI)
 | 
						|
    if (!BBExecutable.count(*BBI))
 | 
						|
      cerr << "BasicBlock Dead:" << *BBI;
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
  // Iterate over all of the instructions in a method, replacing them with
 | 
						|
  // constants if we have found them to be of constant values.
 | 
						|
  //
 | 
						|
  bool MadeChanges = false;
 | 
						|
  for (Method::inst_iterator II = M->inst_begin(); II != M->inst_end(); ) {
 | 
						|
    Instruction *Inst = *II;
 | 
						|
    InstVal &IV = ValueState[Inst];
 | 
						|
    if (IV.isConstant()) {
 | 
						|
      ConstPoolVal *Const = IV.getConstant();
 | 
						|
      // cerr << "Constant: " << Inst << "  is: " << Const;
 | 
						|
      
 | 
						|
      // Replaces all of the uses of a variable with uses of the constant.
 | 
						|
      Inst->replaceAllUsesWith(Const);
 | 
						|
 | 
						|
      // Remove the operator from the list of definitions...
 | 
						|
      Inst->getParent()->getInstList().remove(II.getInstructionIterator());
 | 
						|
      
 | 
						|
      // The new constant inherits the old name of the operator...
 | 
						|
      if (Inst->hasName() && !Const->hasName())
 | 
						|
	Const->setName(Inst->getName(), M->getSymbolTableSure());
 | 
						|
  
 | 
						|
      // Delete the operator now...
 | 
						|
      delete Inst;
 | 
						|
 | 
						|
      // Incrementing the iterator in an unchecked manner could mess up the
 | 
						|
      // internals of 'II'.  To make sure everything is happy, tell it we might
 | 
						|
      // have broken it.
 | 
						|
      II.resyncInstructionIterator();
 | 
						|
 | 
						|
      // Hey, we just changed something!
 | 
						|
      MadeChanges = true;
 | 
						|
      continue;   // Skip the ++II at the end of the loop here...
 | 
						|
    } else if (Inst->isTerminator()) {
 | 
						|
      MadeChanges |= opt::ConstantFoldTerminator(cast<TerminatorInst>(Inst));
 | 
						|
    }
 | 
						|
 | 
						|
    ++II;
 | 
						|
  }
 | 
						|
 | 
						|
  // Merge identical constants last: this is important because we may have just
 | 
						|
  // introduced constants that already exist, and we don't want to pollute later
 | 
						|
  // stages with extraneous constants.
 | 
						|
  //
 | 
						|
  return MadeChanges;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// UpdateInstruction - Something changed in this instruction... Either an 
 | 
						|
// operand made a transition, or the instruction is newly executable.  Change
 | 
						|
// the value type of I to reflect these changes if appropriate.  This method
 | 
						|
// makes sure to do the following actions:
 | 
						|
//
 | 
						|
// 1. If a phi node merges two constants in, and has conflicting value coming
 | 
						|
//    from different branches, or if the PHI node merges in an overdefined
 | 
						|
//    value, then the PHI node becomes overdefined.
 | 
						|
// 2. If a phi node merges only constants in, and they all agree on value, the
 | 
						|
//    PHI node becomes a constant value equal to that.
 | 
						|
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
 | 
						|
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
 | 
						|
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
 | 
						|
// 6. If a conditional branch has a value that is constant, make the selected
 | 
						|
//    destination executable
 | 
						|
// 7. If a conditional branch has a value that is overdefined, make all
 | 
						|
//    successors executable.
 | 
						|
//
 | 
						|
void SCCP::UpdateInstruction(Instruction *I) {
 | 
						|
  InstVal &IValue = ValueState[I];
 | 
						|
  if (IValue.isOverdefined())
 | 
						|
    return; // If already overdefined, we aren't going to effect anything
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
    //===-----------------------------------------------------------------===//
 | 
						|
    // Handle PHI nodes...
 | 
						|
    //
 | 
						|
  case Instruction::PHINode: {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    unsigned NumValues = PN->getNumIncomingValues(), i;
 | 
						|
    InstVal *OperandIV = 0;
 | 
						|
 | 
						|
    // Look at all of the executable operands of the PHI node.  If any of them
 | 
						|
    // are overdefined, the PHI becomes overdefined as well.  If they are all
 | 
						|
    // constant, and they agree with each other, the PHI becomes the identical
 | 
						|
    // constant.  If they are constant and don't agree, the PHI is overdefined.
 | 
						|
    // If there are no executable operands, the PHI remains undefined.
 | 
						|
    //
 | 
						|
    for (i = 0; i < NumValues; ++i) {
 | 
						|
      if (BBExecutable.count(PN->getIncomingBlock(i))) {
 | 
						|
	InstVal &IV = getValueState(PN->getIncomingValue(i));
 | 
						|
	if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
 | 
						|
	if (IV.isOverdefined()) {   // PHI node becomes overdefined!
 | 
						|
	  markOverdefined(PN);
 | 
						|
	  return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (OperandIV == 0) {   // Grab the first value...
 | 
						|
	  OperandIV = &IV;
 | 
						|
	} else {                // Another value is being merged in!
 | 
						|
	  // There is already a reachable operand.  If we conflict with it,
 | 
						|
	  // then the PHI node becomes overdefined.  If we agree with it, we
 | 
						|
	  // can continue on.
 | 
						|
	  
 | 
						|
	  // Check to see if there are two different constants merging...
 | 
						|
	  if (IV.getConstant() != OperandIV->getConstant()) {
 | 
						|
	    // Yes there is.  This means the PHI node is not constant.
 | 
						|
	    // You must be overdefined poor PHI.
 | 
						|
	    //
 | 
						|
	    markOverdefined(I);         // The PHI node now becomes overdefined
 | 
						|
	    return;    // I'm done analyzing you
 | 
						|
	  }
 | 
						|
	}
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we exited the loop, this means that the PHI node only has constant
 | 
						|
    // arguments that agree with each other(and OperandIV is a pointer to one
 | 
						|
    // of their InstVal's) or OperandIV is null because there are no defined
 | 
						|
    // incoming arguments.  If this is the case, the PHI remains undefined.
 | 
						|
    //
 | 
						|
    if (OperandIV) {
 | 
						|
      assert(OperandIV->isConstant() && "Should only be here for constants!");
 | 
						|
      markConstant(I, OperandIV->getConstant());  // Aquire operand value
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
    //===-----------------------------------------------------------------===//
 | 
						|
    // Handle instructions that unconditionally provide overdefined values...
 | 
						|
    //
 | 
						|
  case Instruction::Malloc:
 | 
						|
  case Instruction::Free:
 | 
						|
  case Instruction::Alloca:
 | 
						|
  case Instruction::Load:
 | 
						|
  case Instruction::Store:
 | 
						|
    // TODO: getfield
 | 
						|
  case Instruction::Call:
 | 
						|
  case Instruction::Invoke:
 | 
						|
    markOverdefined(I);          // Memory and call's are all overdefined
 | 
						|
    return;
 | 
						|
 | 
						|
    //===-----------------------------------------------------------------===//
 | 
						|
    // Handle Terminator instructions...
 | 
						|
    //
 | 
						|
  case Instruction::Ret: return;  // Method return doesn't affect anything
 | 
						|
  case Instruction::Br: {        // Handle conditional branches...
 | 
						|
    BranchInst *BI = cast<BranchInst>(I);
 | 
						|
    if (BI->isUnconditional()) 
 | 
						|
      return; // Unconditional branches are already handled!
 | 
						|
 | 
						|
    InstVal &BCValue = getValueState(BI->getCondition());
 | 
						|
    if (BCValue.isOverdefined()) {
 | 
						|
      // Overdefined condition variables mean the branch could go either way.
 | 
						|
      markExecutable(BI->getSuccessor(0));
 | 
						|
      markExecutable(BI->getSuccessor(1));
 | 
						|
    } else if (BCValue.isConstant()) {
 | 
						|
      // Constant condition variables mean the branch can only go a single way.
 | 
						|
      ConstPoolBool *CPB = cast<ConstPoolBool>(BCValue.getConstant());
 | 
						|
      if (CPB->getValue())       // If the branch condition is TRUE...
 | 
						|
	markExecutable(BI->getSuccessor(0));
 | 
						|
      else                       // Else if the br cond is FALSE...
 | 
						|
	markExecutable(BI->getSuccessor(1));
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::Switch: {
 | 
						|
    SwitchInst *SI = cast<SwitchInst>(I);
 | 
						|
    InstVal &SCValue = getValueState(SI->getCondition());
 | 
						|
    if (SCValue.isOverdefined()) {  // Overdefined condition?  All dests are exe
 | 
						|
      for(unsigned i = 0; BasicBlock *Succ = SI->getSuccessor(i); ++i)
 | 
						|
	markExecutable(Succ);
 | 
						|
    } else if (SCValue.isConstant()) {
 | 
						|
      ConstPoolVal *CPV = SCValue.getConstant();
 | 
						|
      // Make sure to skip the "default value" which isn't a value
 | 
						|
      for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) {
 | 
						|
	if (SI->getSuccessorValue(i) == CPV) {// Found the right branch...
 | 
						|
	  markExecutable(SI->getSuccessor(i));
 | 
						|
	  return;
 | 
						|
	}
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Constant value not equal to any of the branches... must execute 
 | 
						|
      // default branch then...
 | 
						|
      markExecutable(SI->getDefaultDest());
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  default: break;  // Handle math operators as groups.
 | 
						|
  } // end switch(I->getOpcode())
 | 
						|
 | 
						|
  
 | 
						|
  //===-------------------------------------------------------------------===//
 | 
						|
  // Handle Unary instructions...
 | 
						|
  //   Also treated as unary here, are cast instructions and getelementptr
 | 
						|
  //   instructions on struct* operands.
 | 
						|
  //
 | 
						|
  if (isa<UnaryOperator>(I) || isa<CastInst>(I) ||
 | 
						|
      (isa<GetElementPtrInst>(I) &&
 | 
						|
       cast<GetElementPtrInst>(I)->isStructSelector())) {
 | 
						|
 | 
						|
    Value *V = I->getOperand(0);
 | 
						|
    InstVal &VState = getValueState(V);
 | 
						|
    if (VState.isOverdefined()) {        // Inherit overdefinedness of operand
 | 
						|
      markOverdefined(I);
 | 
						|
    } else if (VState.isConstant()) {    // Propogate constant value
 | 
						|
      ConstPoolVal *Result = isa<CastInst>(I)
 | 
						|
        ? opt::ConstantFoldCastInstruction(VState.getConstant(), I->getType())
 | 
						|
        : opt::ConstantFoldUnaryInstruction(I->getOpcode(), 
 | 
						|
                                            VState.getConstant());
 | 
						|
 | 
						|
      if (Result) {
 | 
						|
	// This instruction constant folds!
 | 
						|
	markConstant(I, Result);
 | 
						|
      } else {
 | 
						|
	markOverdefined(I);   // Don't know how to fold this instruction.  :(
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //===-----------------------------------------------------------------===//
 | 
						|
  // Handle Binary instructions...
 | 
						|
  //
 | 
						|
  if (isa<BinaryOperator>(I) || isa<ShiftInst>(I)) {
 | 
						|
    Value *V1 = I->getOperand(0);
 | 
						|
    Value *V2 = I->getOperand(1);
 | 
						|
 | 
						|
    InstVal &V1State = getValueState(V1);
 | 
						|
    InstVal &V2State = getValueState(V2);
 | 
						|
    if (V1State.isOverdefined() || V2State.isOverdefined()) {
 | 
						|
      markOverdefined(I);
 | 
						|
    } else if (V1State.isConstant() && V2State.isConstant()) {
 | 
						|
      ConstPoolVal *Result = 
 | 
						|
	opt::ConstantFoldBinaryInstruction(I->getOpcode(), 
 | 
						|
					   V1State.getConstant(),
 | 
						|
					   V2State.getConstant());
 | 
						|
      if (Result) {
 | 
						|
	// This instruction constant folds!
 | 
						|
	markConstant(I, Result);
 | 
						|
      } else {
 | 
						|
	markOverdefined(I);   // Don't know how to fold this instruction.  :(
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Shouldn't get here... either the switch statement or one of the group
 | 
						|
  // handlers should have kicked in...
 | 
						|
  //
 | 
						|
  cerr << "SCCP: Don't know how to handle: " << I;
 | 
						|
  markOverdefined(I);   // Just in case
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// OperandChangedState - This method is invoked on all of the users of an
 | 
						|
// instruction that was just changed state somehow....  Based on this
 | 
						|
// information, we need to update the specified user of this instruction.
 | 
						|
//
 | 
						|
void SCCP::OperandChangedState(User *U) {
 | 
						|
  // Only instructions use other variable values!
 | 
						|
  Instruction *I = cast<Instruction>(U);
 | 
						|
  if (!BBExecutable.count(I->getParent())) return;  // Inst not executable yet!
 | 
						|
 | 
						|
  UpdateInstruction(I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// DoSparseConditionalConstantProp - Use Sparse Conditional Constant Propogation
 | 
						|
// to prove whether a value is constant and whether blocks are used.
 | 
						|
//
 | 
						|
bool opt::SCCPPass::doSCCP(Method *M) {
 | 
						|
  if (M->isExternal()) return false;
 | 
						|
  SCCP S(M);
 | 
						|
  return S.doSCCP();
 | 
						|
}
 |