llvm-6502/lib/Analysis/DataStructure/ComputeClosure.cpp
2002-04-27 02:27:48 +00:00

259 lines
9.4 KiB
C++

//===- ComputeClosure.cpp - Implement interprocedural closing of graphs ---===//
//
// Compute the interprocedural closure of a data structure graph
//
//===----------------------------------------------------------------------===//
// DEBUG_IP_CLOSURE - Define this to debug the act of linking up graphs
//#define DEBUG_IP_CLOSURE 1
#include "llvm/Analysis/DataStructure.h"
#include "llvm/Function.h"
#include "llvm/iOther.h"
#include "Support/STLExtras.h"
#include <algorithm>
// Make all of the pointers that point to Val also point to N.
//
static void copyEdgesFromTo(PointerVal Val, DSNode *N) {
unsigned ValIdx = Val.Index;
unsigned NLinks = N->getNumLinks();
const vector<PointerValSet*> &PVSsToUpdate(Val.Node->getReferrers());
for (unsigned i = 0, e = PVSsToUpdate.size(); i != e; ++i) {
// Loop over all of the pointers pointing to Val...
PointerValSet &PVS = *PVSsToUpdate[i];
for (unsigned j = 0, je = PVS.size(); j != je; ++j) {
if (PVS[j].Node == Val.Node && PVS[j].Index >= ValIdx &&
PVS[j].Index < ValIdx+NLinks)
PVS.add(PointerVal(N, PVS[j].Index-ValIdx));
}
}
}
static void ResolveNodesTo(const PointerValSet &FromVals,
const PointerValSet &ToVals) {
// Only resolve the first pointer, although there many be many pointers here.
// The problem is that the inlined function might return one of the arguments
// to the function, and if so, extra values can be added to the arg or call
// node that point to what the other one got resolved to. Since these will
// be added to the end of the PVS pointed in, we just ignore them.
//
assert(!FromVals.empty() && "From should have at least a shadow node!");
const PointerVal &FromPtr = FromVals[0];
assert(FromPtr.Index == 0 &&
"Resolved node return pointer should be index 0!");
DSNode *N = FromPtr.Node;
// Make everything that pointed to the shadow node also point to the values in
// ToVals...
//
for (unsigned i = 0, e = ToVals.size(); i != e; ++i)
copyEdgesFromTo(ToVals[i], N);
// Make everything that pointed to the shadow node now also point to the
// values it is equivalent to...
const vector<PointerValSet*> &PVSToUpdate(N->getReferrers());
for (unsigned i = 0, e = PVSToUpdate.size(); i != e; ++i)
PVSToUpdate[i]->add(ToVals);
}
// ResolveNodeTo - The specified node is now known to point to the set of values
// in ToVals, instead of the old shadow node subgraph that it was pointing to.
//
static void ResolveNodeTo(DSNode *Node, const PointerValSet &ToVals) {
assert(Node->getNumLinks() == 1 && "Resolved node can only be a scalar!!");
const PointerValSet &PVS = Node->getLink(0);
ResolveNodesTo(PVS, ToVals);
}
// isResolvableCallNode - Return true if node is a call node and it is a call
// node that we can inline...
//
static bool isResolvableCallNode(CallDSNode *CN) {
// Only operate on call nodes with direct function calls
if (CN->getArgValues(0).size() == 1 &&
isa<GlobalDSNode>(CN->getArgValues(0)[0].Node)) {
GlobalDSNode *GDN = cast<GlobalDSNode>(CN->getArgValues(0)[0].Node);
Function *F = cast<Function>(GDN->getGlobal());
// Only work on call nodes with direct calls to methods with bodies.
return !F->isExternal();
}
return false;
}
#include "Support/CommandLine.h"
static cl::Int InlineLimit("dsinlinelimit", "Max number of graphs to inline when computing ds closure", cl::Hidden, 100);
// computeClosure - Replace all of the resolvable call nodes with the contents
// of their corresponding method data structure graph...
//
void FunctionDSGraph::computeClosure(const DataStructure &DS) {
// Note that this cannot be a real vector because the keys will be changing
// as nodes are eliminated!
//
typedef pair<vector<PointerValSet>, CallInst *> CallDescriptor;
vector<pair<CallDescriptor, PointerValSet> > CallMap;
unsigned NumInlines = 0;
// Loop over the resolvable call nodes...
vector<CallDSNode*>::iterator NI;
NI = std::find_if(CallNodes.begin(), CallNodes.end(), isResolvableCallNode);
while (NI != CallNodes.end()) {
CallDSNode *CN = *NI;
GlobalDSNode *FGDN = cast<GlobalDSNode>(CN->getArgValues(0)[0].Node);
Function *F = cast<Function>(FGDN->getGlobal());
if (NumInlines++ == InlineLimit) { // CUTE hack huh?
cerr << "Infinite (?) recursion halted\n";
cerr << "Not inlining: " << F->getName() << "\n";
CN->dump();
return;
}
CallNodes.erase(NI); // Remove the call node from the graph
unsigned CallNodeOffset = NI-CallNodes.begin();
// Find out if we have already incorporated this node... if so, it will be
// in the CallMap...
//
#if 0
cerr << "\nSearching for: " << (void*)CN->getCall() << ": ";
for (unsigned X = 0; X != CN->getArgs().size(); ++X) {
cerr << " " << X << " is\n";
CN->getArgs().first[X].print(cerr);
}
#endif
const vector<PointerValSet> &Args = CN->getArgs();
PointerValSet *CMI = 0;
for (unsigned i = 0, e = CallMap.size(); i != e; ++i) {
#if 0
cerr << "Found: " << (void*)CallMap[i].first.second << ": ";
for (unsigned X = 0; X != CallMap[i].first.first.size(); ++X) {
cerr << " " << X << " is\n"; CallMap[i].first.first[X].print(cerr);
}
#endif
// Look to see if the function call takes a superset of the values we are
// providing as input
//
CallDescriptor &CD = CallMap[i].first;
if (CD.second == CN->getCall() && CD.first.size() == Args.size()) {
bool FoundMismatch = false;
for (unsigned j = 0, je = Args.size(); j != je; ++j) {
PointerValSet ArgSet = CD.first[j];
if (ArgSet.add(Args[j])) {
FoundMismatch = true; break;
}
}
if (!FoundMismatch) { CMI = &CallMap[i].second; break; }
}
}
// Hold the set of values that correspond to the incorporated methods
// return set.
//
PointerValSet RetVals;
if (CMI) {
// We have already inlined an identical function call!
RetVals = *CMI;
} else {
// Get the datastructure graph for the new method. Note that we are not
// allowed to modify this graph because it will be the cached graph that
// is returned by other users that want the local datastructure graph for
// a method.
//
const FunctionDSGraph &NewFunction = DS.getDSGraph(F);
// StartNode - The first node of the incorporated graph, last node of the
// preexisting data structure graph...
//
unsigned StartAllocNode = AllocNodes.size();
// Incorporate a copy of the called function graph into the current graph,
// allowing us to do local transformations to local graph to link
// arguments to call values, and call node to return value...
//
vector<PointerValSet> Args;
RetVals = cloneFunctionIntoSelf(NewFunction, false, Args);
CallMap.push_back(make_pair(CallDescriptor(CN->getArgs(), CN->getCall()),
RetVals));
// If the call node has arguments, process them now!
assert(Args.size() == CN->getNumArgs()-1 &&
"Call node doesn't match function?");
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
// Now we make all of the nodes inside of the incorporated method
// point to the real arguments values, not to the shadow nodes for the
// argument.
ResolveNodesTo(Args[i], CN->getArgValues(i+1));
}
// Loop through the nodes, deleting alloca nodes in the inlined function.
// Since the memory has been released, we cannot access their pointer
// fields (with defined results at least), so it is not possible to use
// any pointers to the alloca. Drop them now, and remove the alloca's
// since they are dead (we just removed all links to them).
//
for (unsigned i = StartAllocNode; i != AllocNodes.size(); ++i)
if (AllocNodes[i]->isAllocaNode()) {
AllocDSNode *NDS = AllocNodes[i];
NDS->removeAllIncomingEdges(); // These edges are invalid now
delete NDS; // Node is dead
AllocNodes.erase(AllocNodes.begin()+i); // Remove slot in Nodes array
--i; // Don't skip the next node
}
}
// If the function returns a pointer value... Resolve values pointing to
// the shadow nodes pointed to by CN to now point the values in RetVals...
//
if (CN->getNumLinks()) ResolveNodeTo(CN, RetVals);
// Now the call node is completely destructable. Eliminate it now.
delete CN;
bool Changed = true;
while (Changed) {
// Eliminate shadow nodes that are not distinguishable from some other
// node in the graph...
//
Changed = UnlinkUndistinguishableNodes();
// Eliminate shadow nodes that are now extraneous due to linking...
Changed |= RemoveUnreachableNodes();
}
//if (F == Func) return; // Only do one self inlining
// Move on to the next call node...
NI = std::find_if(CallNodes.begin(), CallNodes.end(), isResolvableCallNode);
}
// Drop references to globals...
CallMap.clear();
bool Changed = true;
while (Changed) {
// Eliminate shadow nodes that are not distinguishable from some other
// node in the graph...
//
Changed = UnlinkUndistinguishableNodes();
// Eliminate shadow nodes that are now extraneous due to linking...
Changed |= RemoveUnreachableNodes();
}
}