mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3577 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			247 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
 | 
						|
//
 | 
						|
// Represent a range of possible values that may occur when the program is run
 | 
						|
// for an integral value.  This keeps track of a lower and upper bound for the
 | 
						|
// constant, which MAY wrap around the end of the numeric range.  To do this, it
 | 
						|
// keeps track of a [lower, upper) bound, which specifies an interval just like
 | 
						|
// STL iterators.  When used with boolean values, the following are important
 | 
						|
// ranges (other integral ranges use min/max values for special range values):
 | 
						|
//
 | 
						|
//  [F, F) = {}     = Empty set
 | 
						|
//  [T, F) = {T}
 | 
						|
//  [F, T) = {F}
 | 
						|
//  [T, T) = {F, T} = Full set
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Support/ConstantRange.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Instruction.h"
 | 
						|
#include "llvm/ConstantHandling.h"
 | 
						|
 | 
						|
/// Initialize a full (the default) or empty set for the specified type.
 | 
						|
///
 | 
						|
ConstantRange::ConstantRange(const Type *Ty, bool Full) {
 | 
						|
  assert(Ty->isIntegral() &&
 | 
						|
         "Cannot make constant range of non-integral type!");
 | 
						|
  if (Full)
 | 
						|
    Lower = Upper = ConstantIntegral::getMaxValue(Ty);
 | 
						|
  else
 | 
						|
    Lower = Upper = ConstantIntegral::getMinValue(Ty);
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize a range of values explicitly... this will assert out if
 | 
						|
/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
 | 
						|
/// have different types)
 | 
						|
///
 | 
						|
ConstantRange::ConstantRange(ConstantIntegral *L,
 | 
						|
                             ConstantIntegral *U) : Lower(L), Upper(U) {
 | 
						|
  assert(Lower->getType() == Upper->getType() &&
 | 
						|
         "Incompatible types for ConstantRange!");
 | 
						|
  
 | 
						|
  // Make sure that if L & U are equal that they are either Min or Max...
 | 
						|
  assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) ||
 | 
						|
                     L == ConstantIntegral::getMinValue(L->getType()))) &&
 | 
						|
         "Lower == Upper, but they aren't min or max for type!");
 | 
						|
}
 | 
						|
 | 
						|
static ConstantIntegral *Next(ConstantIntegral *CI) {
 | 
						|
  if (CI->getType() == Type::BoolTy)
 | 
						|
    return CI == ConstantBool::True ? ConstantBool::False : ConstantBool::True;
 | 
						|
      
 | 
						|
  // Otherwise use operator+ in the ConstantHandling Library.
 | 
						|
  Constant *Result = *ConstantInt::get(CI->getType(), 1) + *CI;
 | 
						|
  assert(Result && "ConstantHandling not implemented for integral plus!?");
 | 
						|
  return cast<ConstantIntegral>(Result);
 | 
						|
}
 | 
						|
 | 
						|
/// Initialize a set of values that all satisfy the condition with C.
 | 
						|
///
 | 
						|
ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) {
 | 
						|
  switch (SetCCOpcode) {
 | 
						|
  default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!");
 | 
						|
  case Instruction::SetEQ: Lower = C; Upper = Next(C); return;
 | 
						|
  case Instruction::SetNE: Upper = C; Lower = Next(C); return;
 | 
						|
  case Instruction::SetLT:
 | 
						|
    Lower = ConstantIntegral::getMinValue(C->getType());
 | 
						|
    Upper = C;
 | 
						|
    return;
 | 
						|
  case Instruction::SetGT:
 | 
						|
    Lower = Next(C);
 | 
						|
    Upper = ConstantIntegral::getMinValue(C->getType());  // Min = Next(Max)
 | 
						|
    return;
 | 
						|
  case Instruction::SetLE:
 | 
						|
    Lower = ConstantIntegral::getMinValue(C->getType());
 | 
						|
    Upper = Next(C);
 | 
						|
    return;
 | 
						|
  case Instruction::SetGE:
 | 
						|
    Lower = C;
 | 
						|
    Upper = ConstantIntegral::getMinValue(C->getType());  // Min = Next(Max)
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getType - Return the LLVM data type of this range.
 | 
						|
///
 | 
						|
const Type *ConstantRange::getType() const { return Lower->getType(); }
 | 
						|
 | 
						|
/// isFullSet - Return true if this set contains all of the elements possible
 | 
						|
/// for this data-type
 | 
						|
bool ConstantRange::isFullSet() const {
 | 
						|
  return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType());
 | 
						|
}
 | 
						|
  
 | 
						|
/// isEmptySet - Return true if this set contains no members.
 | 
						|
///
 | 
						|
bool ConstantRange::isEmptySet() const {
 | 
						|
  return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType());
 | 
						|
}
 | 
						|
 | 
						|
/// isWrappedSet - Return true if this set wraps around the top of the range,
 | 
						|
/// for example: [100, 8)
 | 
						|
///
 | 
						|
bool ConstantRange::isWrappedSet() const {
 | 
						|
  return (*(Constant*)Lower > *(Constant*)Upper)->getValue();
 | 
						|
}
 | 
						|
 | 
						|
  
 | 
						|
/// getSingleElement - If this set contains a single element, return it,
 | 
						|
/// otherwise return null.
 | 
						|
ConstantIntegral *ConstantRange::getSingleElement() const {
 | 
						|
  if (Upper == Next(Lower))  // Is it a single element range?
 | 
						|
    return Lower;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getSetSize - Return the number of elements in this set.
 | 
						|
///
 | 
						|
uint64_t ConstantRange::getSetSize() const {
 | 
						|
  if (isEmptySet()) return 0;
 | 
						|
  if (getType() == Type::BoolTy) {
 | 
						|
    if (Lower != Upper)  // One of T or F in the set...
 | 
						|
      return 1;
 | 
						|
    return 2;            // Must be full set...
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Simply subtract the bounds...
 | 
						|
  Constant *Result = *(Constant*)Upper - *(Constant*)Lower;
 | 
						|
  assert(Result && "Subtraction of constant integers not implemented?");
 | 
						|
  if (getType()->isSigned())
 | 
						|
    return (uint64_t)cast<ConstantSInt>(Result)->getValue();
 | 
						|
  else
 | 
						|
    return cast<ConstantUInt>(Result)->getValue();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// intersect1Wrapped - This helper function is used to intersect two ranges when
 | 
						|
// it is known that LHS is wrapped and RHS isn't.
 | 
						|
//
 | 
						|
static ConstantRange intersect1Wrapped(const ConstantRange &LHS,
 | 
						|
                                       const ConstantRange &RHS) {
 | 
						|
  assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
 | 
						|
 | 
						|
  // Check to see if we overlap on the Left side of RHS...
 | 
						|
  //
 | 
						|
  if ((*(Constant*)RHS.getLower() < *(Constant*)LHS.getUpper())->getValue()) {
 | 
						|
    // We do overlap on the left side of RHS, see if we overlap on the right of
 | 
						|
    // RHS...
 | 
						|
    if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) {
 | 
						|
      // Ok, the result overlaps on both the left and right sides.  See if the
 | 
						|
      // resultant interval will be smaller if we wrap or not...
 | 
						|
      //
 | 
						|
      if (LHS.getSetSize() < RHS.getSetSize())
 | 
						|
        return LHS;
 | 
						|
      else
 | 
						|
        return RHS;
 | 
						|
 | 
						|
    } else {
 | 
						|
      // No overlap on the right, just on the left.
 | 
						|
      return ConstantRange(RHS.getLower(), LHS.getUpper());
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    // We don't overlap on the left side of RHS, see if we overlap on the right
 | 
						|
    // of RHS...
 | 
						|
    if ((*(Constant*)RHS.getUpper() > *(Constant*)LHS.getLower())->getValue()) {
 | 
						|
      // Simple overlap...
 | 
						|
      return ConstantRange(LHS.getLower(), RHS.getUpper());
 | 
						|
    } else {
 | 
						|
      // No overlap...
 | 
						|
      return ConstantRange(LHS.getType(), false);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B) {
 | 
						|
  if ((*(Constant*)A < *(Constant*)B)->getValue())
 | 
						|
    return A;
 | 
						|
  return B;
 | 
						|
}
 | 
						|
static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B) {
 | 
						|
  if ((*(Constant*)A > *(Constant*)B)->getValue())
 | 
						|
    return A;
 | 
						|
  return B;
 | 
						|
}
 | 
						|
 | 
						|
  
 | 
						|
/// intersect - Return the range that results from the intersection of this
 | 
						|
/// range with another range.
 | 
						|
///
 | 
						|
ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
 | 
						|
  assert(getType() == CR.getType() && "ConstantRange types don't agree!");
 | 
						|
  // Handle common special cases
 | 
						|
  if (isEmptySet() || CR.isFullSet())  return *this;
 | 
						|
  if (isFullSet()  || CR.isEmptySet()) return CR;
 | 
						|
 | 
						|
  if (!isWrappedSet()) {
 | 
						|
    if (!CR.isWrappedSet()) {
 | 
						|
      ConstantIntegral *L = Max(Lower, CR.Lower);
 | 
						|
      ConstantIntegral *U = Min(Upper, CR.Upper);
 | 
						|
 | 
						|
      if ((*L < *U)->getValue())  // If range isn't empty...
 | 
						|
        return ConstantRange(L, U);
 | 
						|
      else
 | 
						|
        return ConstantRange(getType(), false);  // Otherwise, return empty set
 | 
						|
    } else
 | 
						|
      return intersect1Wrapped(CR, *this);
 | 
						|
  } else {   // We know "this" is wrapped...
 | 
						|
    if (!CR.isWrappedSet())
 | 
						|
      return intersect1Wrapped(*this, CR);
 | 
						|
    else {
 | 
						|
      // Both ranges are wrapped...
 | 
						|
      ConstantIntegral *L = Max(Lower, CR.Lower);
 | 
						|
      ConstantIntegral *U = Min(Upper, CR.Upper);
 | 
						|
      return ConstantRange(L, U);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
/// union - Return the range that results from the union of this range with
 | 
						|
/// another range.  The resultant range is guaranteed to include the elements of
 | 
						|
/// both sets, but may contain more.  For example, [3, 9) union [12,15) is [3,
 | 
						|
/// 15), which includes 9, 10, and 11, which were not included in either set
 | 
						|
/// before.
 | 
						|
///
 | 
						|
ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
 | 
						|
  assert(getType() == CR.getType() && "ConstantRange types don't agree!");
 | 
						|
 | 
						|
  assert(0 && "Range union not implemented yet!");
 | 
						|
 | 
						|
  return *this;
 | 
						|
}
 | 
						|
 | 
						|
/// print - Print out the bounds to a stream...
 | 
						|
///
 | 
						|
void ConstantRange::print(std::ostream &OS) const {
 | 
						|
  OS << "[" << Lower << "," << Upper << " )";
 | 
						|
}
 | 
						|
 | 
						|
/// dump - Allow printing from a debugger easily...
 | 
						|
///
 | 
						|
void ConstantRange::dump() const {
 | 
						|
  print(std::cerr);
 | 
						|
}
 |