mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	to be emitted. Don't add one to the latency of a completed instruction if the latency of the op is 0. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26718 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1102 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1102 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Evan Cheng and is distributed under the
 | |
| // University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements bottom-up and top-down list schedulers, using standard
 | |
| // algorithms.  The basic approach uses a priority queue of available nodes to
 | |
| // schedule.  One at a time, nodes are taken from the priority queue (thus in
 | |
| // priority order), checked for legality to schedule, and emitted if legal.
 | |
| //
 | |
| // Nodes may not be legal to schedule either due to structural hazards (e.g.
 | |
| // pipeline or resource constraints) or because an input to the instruction has
 | |
| // not completed execution.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sched"
 | |
| #include "llvm/CodeGen/ScheduleDAG.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <climits>
 | |
| #include <iostream>
 | |
| #include <queue>
 | |
| #include <set>
 | |
| #include <vector>
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumNoops ("scheduler", "Number of noops inserted");
 | |
|   Statistic<> NumStalls("scheduler", "Number of pipeline stalls");
 | |
| 
 | |
|   /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
 | |
|   /// a group of nodes flagged together.
 | |
|   struct SUnit {
 | |
|     SDNode *Node;                       // Representative node.
 | |
|     std::vector<SDNode*> FlaggedNodes;  // All nodes flagged to Node.
 | |
|     
 | |
|     // Preds/Succs - The SUnits before/after us in the graph.  The boolean value
 | |
|     // is true if the edge is a token chain edge, false if it is a value edge. 
 | |
|     std::set<std::pair<SUnit*,bool> > Preds;  // All sunit predecessors.
 | |
|     std::set<std::pair<SUnit*,bool> > Succs;  // All sunit successors.
 | |
| 
 | |
|     short NumPredsLeft;                 // # of preds not scheduled.
 | |
|     short NumSuccsLeft;                 // # of succs not scheduled.
 | |
|     short NumChainPredsLeft;            // # of chain preds not scheduled.
 | |
|     short NumChainSuccsLeft;            // # of chain succs not scheduled.
 | |
|     bool isTwoAddress     : 1;          // Is a two-address instruction.
 | |
|     bool isDefNUseOperand : 1;          // Is a def&use operand.
 | |
|     bool isPending        : 1;          // True once pending.
 | |
|     bool isAvailable      : 1;          // True once available.
 | |
|     bool isScheduled      : 1;          // True once scheduled.
 | |
|     unsigned short Latency;             // Node latency.
 | |
|     unsigned CycleBound;                // Upper/lower cycle to be scheduled at.
 | |
|     unsigned Cycle;                     // Once scheduled, the cycle of the op.
 | |
|     unsigned NodeNum;                   // Entry # of node in the node vector.
 | |
|     
 | |
|     SUnit(SDNode *node, unsigned nodenum)
 | |
|       : Node(node), NumPredsLeft(0), NumSuccsLeft(0),
 | |
|       NumChainPredsLeft(0), NumChainSuccsLeft(0),
 | |
|       isTwoAddress(false), isDefNUseOperand(false),
 | |
|       isPending(false), isAvailable(false), isScheduled(false), 
 | |
|       Latency(0), CycleBound(0), Cycle(0), NodeNum(nodenum) {}
 | |
|     
 | |
|     void dump(const SelectionDAG *G) const;
 | |
|     void dumpAll(const SelectionDAG *G) const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| void SUnit::dump(const SelectionDAG *G) const {
 | |
|   std::cerr << "SU: ";
 | |
|   Node->dump(G);
 | |
|   std::cerr << "\n";
 | |
|   if (FlaggedNodes.size() != 0) {
 | |
|     for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
 | |
|       std::cerr << "    ";
 | |
|       FlaggedNodes[i]->dump(G);
 | |
|       std::cerr << "\n";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SUnit::dumpAll(const SelectionDAG *G) const {
 | |
|   dump(G);
 | |
| 
 | |
|   std::cerr << "  # preds left       : " << NumPredsLeft << "\n";
 | |
|   std::cerr << "  # succs left       : " << NumSuccsLeft << "\n";
 | |
|   std::cerr << "  # chain preds left : " << NumChainPredsLeft << "\n";
 | |
|   std::cerr << "  # chain succs left : " << NumChainSuccsLeft << "\n";
 | |
|   std::cerr << "  Latency            : " << Latency << "\n";
 | |
| 
 | |
|   if (Preds.size() != 0) {
 | |
|     std::cerr << "  Predecessors:\n";
 | |
|     for (std::set<std::pair<SUnit*,bool> >::const_iterator I = Preds.begin(),
 | |
|            E = Preds.end(); I != E; ++I) {
 | |
|       if (I->second)
 | |
|         std::cerr << "   ch  ";
 | |
|       else
 | |
|         std::cerr << "   val ";
 | |
|       I->first->dump(G);
 | |
|     }
 | |
|   }
 | |
|   if (Succs.size() != 0) {
 | |
|     std::cerr << "  Successors:\n";
 | |
|     for (std::set<std::pair<SUnit*, bool> >::const_iterator I = Succs.begin(),
 | |
|            E = Succs.end(); I != E; ++I) {
 | |
|       if (I->second)
 | |
|         std::cerr << "   ch  ";
 | |
|       else
 | |
|         std::cerr << "   val ";
 | |
|       I->first->dump(G);
 | |
|     }
 | |
|   }
 | |
|   std::cerr << "\n";
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// SchedulingPriorityQueue - This interface is used to plug different
 | |
| /// priorities computation algorithms into the list scheduler. It implements the
 | |
| /// interface of a standard priority queue, where nodes are inserted in 
 | |
| /// arbitrary order and returned in priority order.  The computation of the
 | |
| /// priority and the representation of the queue are totally up to the
 | |
| /// implementation to decide.
 | |
| /// 
 | |
| namespace {
 | |
| class SchedulingPriorityQueue {
 | |
| public:
 | |
|   virtual ~SchedulingPriorityQueue() {}
 | |
|   
 | |
|   virtual void initNodes(const std::vector<SUnit> &SUnits) = 0;
 | |
|   virtual void releaseState() = 0;
 | |
|   
 | |
|   virtual bool empty() const = 0;
 | |
|   virtual void push(SUnit *U) = 0;
 | |
|   
 | |
|   virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
 | |
|   virtual SUnit *pop() = 0;
 | |
|   
 | |
|   /// ScheduledNode - As each node is scheduled, this method is invoked.  This
 | |
|   /// allows the priority function to adjust the priority of node that have
 | |
|   /// already been emitted.
 | |
|   virtual void ScheduledNode(SUnit *Node) {}
 | |
| };
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// ScheduleDAGList - The actual list scheduler implementation.  This supports
 | |
| /// both top-down and bottom-up scheduling.
 | |
| ///
 | |
| class ScheduleDAGList : public ScheduleDAG {
 | |
| private:
 | |
|   // SDNode to SUnit mapping (many to one).
 | |
|   std::map<SDNode*, SUnit*> SUnitMap;
 | |
|   // The schedule.  Null SUnit*'s represent noop instructions.
 | |
|   std::vector<SUnit*> Sequence;
 | |
|   
 | |
|   // The scheduling units.
 | |
|   std::vector<SUnit> SUnits;
 | |
| 
 | |
|   /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
 | |
|   /// it is top-down.
 | |
|   bool isBottomUp;
 | |
|   
 | |
|   /// AvailableQueue - The priority queue to use for the available SUnits.
 | |
|   ///
 | |
|   SchedulingPriorityQueue *AvailableQueue;
 | |
|   
 | |
|   /// PendingQueue - This contains all of the instructions whose operands have
 | |
|   /// been issued, but their results are not ready yet (due to the latency of
 | |
|   /// the operation).  Once the operands becomes available, the instruction is
 | |
|   /// added to the AvailableQueue.  This keeps track of each SUnit and the
 | |
|   /// number of cycles left to execute before the operation is available.
 | |
|   std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
 | |
|   
 | |
|   /// HazardRec - The hazard recognizer to use.
 | |
|   HazardRecognizer *HazardRec;
 | |
|   
 | |
| public:
 | |
|   ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
 | |
|                   const TargetMachine &tm, bool isbottomup,
 | |
|                   SchedulingPriorityQueue *availqueue,
 | |
|                   HazardRecognizer *HR)
 | |
|     : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), 
 | |
|       AvailableQueue(availqueue), HazardRec(HR) {
 | |
|     }
 | |
| 
 | |
|   ~ScheduleDAGList() {
 | |
|     delete HazardRec;
 | |
|     delete AvailableQueue;
 | |
|   }
 | |
| 
 | |
|   void Schedule();
 | |
| 
 | |
|   void dumpSchedule() const;
 | |
| 
 | |
| private:
 | |
|   SUnit *NewSUnit(SDNode *N);
 | |
|   void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
 | |
|   void ReleaseSucc(SUnit *SuccSU, bool isChain);
 | |
|   void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
 | |
|   void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | |
|   void ListScheduleTopDown();
 | |
|   void ListScheduleBottomUp();
 | |
|   void BuildSchedUnits();
 | |
|   void EmitSchedule();
 | |
| };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| HazardRecognizer::~HazardRecognizer() {}
 | |
| 
 | |
| 
 | |
| /// NewSUnit - Creates a new SUnit and return a ptr to it.
 | |
| SUnit *ScheduleDAGList::NewSUnit(SDNode *N) {
 | |
|   SUnits.push_back(SUnit(N, SUnits.size()));
 | |
|   return &SUnits.back();
 | |
| }
 | |
| 
 | |
| /// BuildSchedUnits - Build SUnits from the selection dag that we are input.
 | |
| /// This SUnit graph is similar to the SelectionDAG, but represents flagged
 | |
| /// together nodes with a single SUnit.
 | |
| void ScheduleDAGList::BuildSchedUnits() {
 | |
|   // Reserve entries in the vector for each of the SUnits we are creating.  This
 | |
|   // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
 | |
|   // invalidated.
 | |
|   SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
 | |
|   
 | |
|   const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
 | |
|   
 | |
|   for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
 | |
|        E = DAG.allnodes_end(); NI != E; ++NI) {
 | |
|     if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
 | |
|       continue;
 | |
|     
 | |
|     // If this node has already been processed, stop now.
 | |
|     if (SUnitMap[NI]) continue;
 | |
|     
 | |
|     SUnit *NodeSUnit = NewSUnit(NI);
 | |
|     
 | |
|     // See if anything is flagged to this node, if so, add them to flagged
 | |
|     // nodes.  Nodes can have at most one flag input and one flag output.  Flags
 | |
|     // are required the be the last operand and result of a node.
 | |
|     
 | |
|     // Scan up, adding flagged preds to FlaggedNodes.
 | |
|     SDNode *N = NI;
 | |
|     while (N->getNumOperands() &&
 | |
|            N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
 | |
|       N = N->getOperand(N->getNumOperands()-1).Val;
 | |
|       NodeSUnit->FlaggedNodes.push_back(N);
 | |
|       SUnitMap[N] = NodeSUnit;
 | |
|     }
 | |
|     
 | |
|     // Scan down, adding this node and any flagged succs to FlaggedNodes if they
 | |
|     // have a user of the flag operand.
 | |
|     N = NI;
 | |
|     while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
 | |
|       SDOperand FlagVal(N, N->getNumValues()-1);
 | |
|       
 | |
|       // There are either zero or one users of the Flag result.
 | |
|       bool HasFlagUse = false;
 | |
|       for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 
 | |
|            UI != E; ++UI)
 | |
|         if (FlagVal.isOperand(*UI)) {
 | |
|           HasFlagUse = true;
 | |
|           NodeSUnit->FlaggedNodes.push_back(N);
 | |
|           SUnitMap[N] = NodeSUnit;
 | |
|           N = *UI;
 | |
|           break;
 | |
|         }
 | |
|           if (!HasFlagUse) break;
 | |
|     }
 | |
|     
 | |
|     // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
 | |
|     // Update the SUnit
 | |
|     NodeSUnit->Node = N;
 | |
|     SUnitMap[N] = NodeSUnit;
 | |
|     
 | |
|     // Compute the latency for the node.  We use the sum of the latencies for
 | |
|     // all nodes flagged together into this SUnit.
 | |
|     if (InstrItins.isEmpty()) {
 | |
|       // No latency information.
 | |
|       NodeSUnit->Latency = 1;
 | |
|     } else {
 | |
|       NodeSUnit->Latency = 0;
 | |
|       if (N->isTargetOpcode()) {
 | |
|         unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
 | |
|         InstrStage *S = InstrItins.begin(SchedClass);
 | |
|         InstrStage *E = InstrItins.end(SchedClass);
 | |
|         for (; S != E; ++S)
 | |
|           NodeSUnit->Latency += S->Cycles;
 | |
|       }
 | |
|       for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
 | |
|         SDNode *FNode = NodeSUnit->FlaggedNodes[i];
 | |
|         if (FNode->isTargetOpcode()) {
 | |
|           unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
 | |
|           InstrStage *S = InstrItins.begin(SchedClass);
 | |
|           InstrStage *E = InstrItins.end(SchedClass);
 | |
|           for (; S != E; ++S)
 | |
|             NodeSUnit->Latency += S->Cycles;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Pass 2: add the preds, succs, etc.
 | |
|   for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
 | |
|     SUnit *SU = &SUnits[su];
 | |
|     SDNode *MainNode = SU->Node;
 | |
|     
 | |
|     if (MainNode->isTargetOpcode() &&
 | |
|         TII->isTwoAddrInstr(MainNode->getTargetOpcode()))
 | |
|       SU->isTwoAddress = true;
 | |
|     
 | |
|     // Find all predecessors and successors of the group.
 | |
|     // Temporarily add N to make code simpler.
 | |
|     SU->FlaggedNodes.push_back(MainNode);
 | |
|     
 | |
|     for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
 | |
|       SDNode *N = SU->FlaggedNodes[n];
 | |
|       
 | |
|       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|         SDNode *OpN = N->getOperand(i).Val;
 | |
|         if (isPassiveNode(OpN)) continue;   // Not scheduled.
 | |
|         SUnit *OpSU = SUnitMap[OpN];
 | |
|         assert(OpSU && "Node has no SUnit!");
 | |
|         if (OpSU == SU) continue;           // In the same group.
 | |
|         
 | |
|         MVT::ValueType OpVT = N->getOperand(i).getValueType();
 | |
|         assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
 | |
|         bool isChain = OpVT == MVT::Other;
 | |
|         
 | |
|         if (SU->Preds.insert(std::make_pair(OpSU, isChain)).second) {
 | |
|           if (!isChain) {
 | |
|             SU->NumPredsLeft++;
 | |
|           } else {
 | |
|             SU->NumChainPredsLeft++;
 | |
|           }
 | |
|         }
 | |
|         if (OpSU->Succs.insert(std::make_pair(SU, isChain)).second) {
 | |
|           if (!isChain) {
 | |
|             OpSU->NumSuccsLeft++;
 | |
|           } else {
 | |
|             OpSU->NumChainSuccsLeft++;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Remove MainNode from FlaggedNodes again.
 | |
|     SU->FlaggedNodes.pop_back();
 | |
|   }
 | |
|   
 | |
|   return;
 | |
|   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | |
|         SUnits[su].dumpAll(&DAG));
 | |
| }
 | |
| 
 | |
| /// EmitSchedule - Emit the machine code in scheduled order.
 | |
| void ScheduleDAGList::EmitSchedule() {
 | |
|   std::map<SDNode*, unsigned> VRBaseMap;
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     if (SUnit *SU = Sequence[i]) {
 | |
|       for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
 | |
|         EmitNode(SU->FlaggedNodes[j], VRBaseMap);
 | |
|       EmitNode(SU->Node, VRBaseMap);
 | |
|     } else {
 | |
|       // Null SUnit* is a noop.
 | |
|       EmitNoop();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// dump - dump the schedule.
 | |
| void ScheduleDAGList::dumpSchedule() const {
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     if (SUnit *SU = Sequence[i])
 | |
|       SU->dump(&DAG);
 | |
|     else
 | |
|       std::cerr << "**** NOOP ****\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Schedule - Schedule the DAG using list scheduling.
 | |
| void ScheduleDAGList::Schedule() {
 | |
|   DEBUG(std::cerr << "********** List Scheduling **********\n");
 | |
|   
 | |
|   // Build scheduling units.
 | |
|   BuildSchedUnits();
 | |
|   
 | |
|   AvailableQueue->initNodes(SUnits);
 | |
|   
 | |
|   // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
 | |
|   if (isBottomUp)
 | |
|     ListScheduleBottomUp();
 | |
|   else
 | |
|     ListScheduleTopDown();
 | |
|   
 | |
|   AvailableQueue->releaseState();
 | |
|   
 | |
|   DEBUG(std::cerr << "*** Final schedule ***\n");
 | |
|   DEBUG(dumpSchedule());
 | |
|   DEBUG(std::cerr << "\n");
 | |
|   
 | |
|   // Emit in scheduled order
 | |
|   EmitSchedule();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Bottom-Up Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | |
| /// the Available queue is the count reaches zero. Also update its cycle bound.
 | |
| void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain, 
 | |
|                                   unsigned CurCycle) {
 | |
|   // FIXME: the distance between two nodes is not always == the predecessor's
 | |
|   // latency. For example, the reader can very well read the register written
 | |
|   // by the predecessor later than the issue cycle. It also depends on the
 | |
|   // interrupt model (drain vs. freeze).
 | |
|   PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
 | |
| 
 | |
|   if (!isChain)
 | |
|     PredSU->NumSuccsLeft--;
 | |
|   else
 | |
|     PredSU->NumChainSuccsLeft--;
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
 | |
|     std::cerr << "*** List scheduling failed! ***\n";
 | |
|     PredSU->dump(&DAG);
 | |
|     std::cerr << " has been released too many times!\n";
 | |
|     assert(0);
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
 | |
|     // EntryToken has to go last!  Special case it here.
 | |
|     if (PredSU->Node->getOpcode() != ISD::EntryToken) {
 | |
|       PredSU->isAvailable = true;
 | |
|       AvailableQueue->push(PredSU);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | |
| /// count of its predecessors. If a predecessor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | |
|   DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
 | |
|   DEBUG(SU->dump(&DAG));
 | |
|   SU->Cycle = CurCycle;
 | |
| 
 | |
|   Sequence.push_back(SU);
 | |
| 
 | |
|   // Bottom up: release predecessors
 | |
|   for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
 | |
|          E = SU->Preds.end(); I != E; ++I) {
 | |
|     ReleasePred(I->first, I->second, CurCycle);
 | |
|     // FIXME: This is something used by the priority function that it should
 | |
|     // calculate directly.
 | |
|     if (!I->second)
 | |
|       SU->NumPredsLeft--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isReady - True if node's lower cycle bound is less or equal to the current
 | |
| /// scheduling cycle. Always true if all nodes have uniform latency 1.
 | |
| static inline bool isReady(SUnit *SU, unsigned CurrCycle) {
 | |
|   return SU->CycleBound <= CurrCycle;
 | |
| }
 | |
| 
 | |
| /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | |
| /// schedulers.
 | |
| void ScheduleDAGList::ListScheduleBottomUp() {
 | |
|   unsigned CurrCycle = 0;
 | |
|   // Add root to Available queue.
 | |
|   AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back. Schedule the node.
 | |
|   std::vector<SUnit*> NotReady;
 | |
|   while (!AvailableQueue->empty()) {
 | |
|     SUnit *CurrNode = AvailableQueue->pop();
 | |
| 
 | |
|     while (!isReady(CurrNode, CurrCycle)) {
 | |
|       NotReady.push_back(CurrNode);
 | |
|       CurrNode = AvailableQueue->pop();
 | |
|     }
 | |
|     
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     AvailableQueue->push_all(NotReady);
 | |
|     NotReady.clear();
 | |
| 
 | |
|     ScheduleNodeBottomUp(CurrNode, CurrCycle);
 | |
|     CurrCycle++;
 | |
|     CurrNode->isScheduled = true;
 | |
|     AvailableQueue->ScheduledNode(CurrNode);
 | |
|   }
 | |
| 
 | |
|   // Add entry node last
 | |
|   if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
 | |
|     SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | |
|     Sequence.push_back(Entry);
 | |
|   }
 | |
| 
 | |
|   // Reverse the order if it is bottom up.
 | |
|   std::reverse(Sequence.begin(), Sequence.end());
 | |
|   
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   // Verify that all SUnits were scheduled.
 | |
|   bool AnyNotSched = false;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
 | |
|       if (!AnyNotSched)
 | |
|         std::cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       std::cerr << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|   }
 | |
|   assert(!AnyNotSched);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Top-Down Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | |
| /// the PendingQueue if the count reaches zero.
 | |
| void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
 | |
|   if (!isChain)
 | |
|     SuccSU->NumPredsLeft--;
 | |
|   else
 | |
|     SuccSU->NumChainPredsLeft--;
 | |
|   
 | |
|   assert(SuccSU->NumPredsLeft >= 0 && SuccSU->NumChainPredsLeft >= 0 &&
 | |
|          "List scheduling internal error");
 | |
|   
 | |
|   if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
 | |
|     // Compute how many cycles it will be before this actually becomes
 | |
|     // available.  This is the max of the start time of all predecessors plus
 | |
|     // their latencies.
 | |
|     unsigned AvailableCycle = 0;
 | |
|     for (std::set<std::pair<SUnit*, bool> >::iterator I = SuccSU->Preds.begin(),
 | |
|          E = SuccSU->Preds.end(); I != E; ++I) {
 | |
|       // If this is a token edge, we don't need to wait for the latency of the
 | |
|       // preceeding instruction (e.g. a long-latency load) unless there is also
 | |
|       // some other data dependence.
 | |
|       unsigned PredDoneCycle = I->first->Cycle;
 | |
|       if (!I->second)
 | |
|         PredDoneCycle += I->first->Latency;
 | |
|       else if (I->first->Latency)
 | |
|         PredDoneCycle += 1;
 | |
| 
 | |
|       AvailableCycle = std::max(AvailableCycle, PredDoneCycle);
 | |
|     }
 | |
|     
 | |
|     PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
 | |
|     SuccSU->isPending = true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | |
| /// count of its successors. If a successor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | |
|   DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
 | |
|   DEBUG(SU->dump(&DAG));
 | |
|   
 | |
|   Sequence.push_back(SU);
 | |
|   SU->Cycle = CurCycle;
 | |
|   
 | |
|   // Bottom up: release successors.
 | |
|   for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
 | |
|        E = SU->Succs.end(); I != E; ++I)
 | |
|     ReleaseSucc(I->first, I->second);
 | |
| }
 | |
| 
 | |
| /// ListScheduleTopDown - The main loop of list scheduling for top-down
 | |
| /// schedulers.
 | |
| void ScheduleDAGList::ListScheduleTopDown() {
 | |
|   unsigned CurCycle = 0;
 | |
|   SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | |
| 
 | |
|   // All leaves to Available queue.
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     // It is available if it has no predecessors.
 | |
|     if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
 | |
|       AvailableQueue->push(&SUnits[i]);
 | |
|       SUnits[i].isAvailable = SUnits[i].isPending = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Emit the entry node first.
 | |
|   ScheduleNodeTopDown(Entry, CurCycle);
 | |
|   HazardRec->EmitInstruction(Entry->Node);
 | |
|   
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back.  Schedule the node.
 | |
|   std::vector<SUnit*> NotReady;
 | |
|   while (!AvailableQueue->empty() || !PendingQueue.empty()) {
 | |
|     // Check to see if any of the pending instructions are ready to issue.  If
 | |
|     // so, add them to the available queue.
 | |
|     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
 | |
|       if (PendingQueue[i].first == CurCycle) {
 | |
|         AvailableQueue->push(PendingQueue[i].second);
 | |
|         PendingQueue[i].second->isAvailable = true;
 | |
|         PendingQueue[i] = PendingQueue.back();
 | |
|         PendingQueue.pop_back();
 | |
|         --i; --e;
 | |
|       } else {
 | |
|         assert(PendingQueue[i].first > CurCycle && "Negative latency?");
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If there are no instructions available, don't try to issue anything, and
 | |
|     // don't advance the hazard recognizer.
 | |
|     if (AvailableQueue->empty()) {
 | |
|       ++CurCycle;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SUnit *FoundSUnit = 0;
 | |
|     SDNode *FoundNode = 0;
 | |
|     
 | |
|     bool HasNoopHazards = false;
 | |
|     while (!AvailableQueue->empty()) {
 | |
|       SUnit *CurSUnit = AvailableQueue->pop();
 | |
|       
 | |
|       // Get the node represented by this SUnit.
 | |
|       FoundNode = CurSUnit->Node;
 | |
|       
 | |
|       // If this is a pseudo op, like copyfromreg, look to see if there is a
 | |
|       // real target node flagged to it.  If so, use the target node.
 | |
|       for (unsigned i = 0, e = CurSUnit->FlaggedNodes.size(); 
 | |
|            FoundNode->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
 | |
|         FoundNode = CurSUnit->FlaggedNodes[i];
 | |
|       
 | |
|       HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode);
 | |
|       if (HT == HazardRecognizer::NoHazard) {
 | |
|         FoundSUnit = CurSUnit;
 | |
|         break;
 | |
|       }
 | |
|       
 | |
|       // Remember if this is a noop hazard.
 | |
|       HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
 | |
|       
 | |
|       NotReady.push_back(CurSUnit);
 | |
|     }
 | |
|     
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     if (!NotReady.empty()) {
 | |
|       AvailableQueue->push_all(NotReady);
 | |
|       NotReady.clear();
 | |
|     }
 | |
| 
 | |
|     // If we found a node to schedule, do it now.
 | |
|     if (FoundSUnit) {
 | |
|       ScheduleNodeTopDown(FoundSUnit, CurCycle);
 | |
|       HazardRec->EmitInstruction(FoundNode);
 | |
|       FoundSUnit->isScheduled = true;
 | |
|       AvailableQueue->ScheduledNode(FoundSUnit);
 | |
| 
 | |
|       // If this is a pseudo-op node, we don't want to increment the current
 | |
|       // cycle.
 | |
|       if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
 | |
|         ++CurCycle;        
 | |
|     } else if (!HasNoopHazards) {
 | |
|       // Otherwise, we have a pipeline stall, but no other problem, just advance
 | |
|       // the current cycle and try again.
 | |
|       DEBUG(std::cerr << "*** Advancing cycle, no work to do\n");
 | |
|       HazardRec->AdvanceCycle();
 | |
|       ++NumStalls;
 | |
|       ++CurCycle;
 | |
|     } else {
 | |
|       // Otherwise, we have no instructions to issue and we have instructions
 | |
|       // that will fault if we don't do this right.  This is the case for
 | |
|       // processors without pipeline interlocks and other cases.
 | |
|       DEBUG(std::cerr << "*** Emitting noop\n");
 | |
|       HazardRec->EmitNoop();
 | |
|       Sequence.push_back(0);   // NULL SUnit* -> noop
 | |
|       ++NumNoops;
 | |
|       ++CurCycle;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Verify that all SUnits were scheduled.
 | |
|   bool AnyNotSched = false;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
 | |
|       if (!AnyNotSched)
 | |
|         std::cerr << "*** List scheduling failed! ***\n";
 | |
|       SUnits[i].dump(&DAG);
 | |
|       std::cerr << "has not been scheduled!\n";
 | |
|       AnyNotSched = true;
 | |
|     }
 | |
|   }
 | |
|   assert(!AnyNotSched);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                RegReductionPriorityQueue Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
 | |
| // to reduce register pressure.
 | |
| // 
 | |
| namespace {
 | |
|   class RegReductionPriorityQueue;
 | |
|   
 | |
|   /// Sorting functions for the Available queue.
 | |
|   struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     RegReductionPriorityQueue *SPQ;
 | |
|     ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {}
 | |
|     ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| namespace {
 | |
|   class RegReductionPriorityQueue : public SchedulingPriorityQueue {
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     const std::vector<SUnit> *SUnits;
 | |
|     
 | |
|     // SethiUllmanNumbers - The SethiUllman number for each node.
 | |
|     std::vector<int> SethiUllmanNumbers;
 | |
|     
 | |
|     std::priority_queue<SUnit*, std::vector<SUnit*>, ls_rr_sort> Queue;
 | |
|   public:
 | |
|     RegReductionPriorityQueue() : Queue(ls_rr_sort(this)) {
 | |
|     }
 | |
|     
 | |
|     void initNodes(const std::vector<SUnit> &sunits) {
 | |
|       SUnits = &sunits;
 | |
|       // Calculate node priorities.
 | |
|       CalculatePriorities();
 | |
|     }
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       SethiUllmanNumbers.clear();
 | |
|     }
 | |
|     
 | |
|     unsigned getSethiUllmanNumber(unsigned NodeNum) const {
 | |
|       assert(NodeNum < SethiUllmanNumbers.size());
 | |
|       return SethiUllmanNumbers[NodeNum];
 | |
|     }
 | |
|     
 | |
|     bool empty() const { return Queue.empty(); }
 | |
|     
 | |
|     void push(SUnit *U) {
 | |
|       Queue.push(U);
 | |
|     }
 | |
|     void push_all(const std::vector<SUnit *> &Nodes) {
 | |
|       for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|         Queue.push(Nodes[i]);
 | |
|     }
 | |
|     
 | |
|     SUnit *pop() {
 | |
|       SUnit *V = Queue.top();
 | |
|       Queue.pop();
 | |
|       return V;
 | |
|     }
 | |
|   private:
 | |
|     void CalculatePriorities();
 | |
|     int CalcNodePriority(const SUnit *SU);
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
 | |
|   unsigned LeftNum  = left->NodeNum;
 | |
|   unsigned RightNum = right->NodeNum;
 | |
|   
 | |
|   int LBonus = (int)left ->isDefNUseOperand;
 | |
|   int RBonus = (int)right->isDefNUseOperand;
 | |
|   
 | |
|   // Special tie breaker: if two nodes share a operand, the one that
 | |
|   // use it as a def&use operand is preferred.
 | |
|   if (left->isTwoAddress && !right->isTwoAddress) {
 | |
|     SDNode *DUNode = left->Node->getOperand(0).Val;
 | |
|     if (DUNode->isOperand(right->Node))
 | |
|       LBonus++;
 | |
|   }
 | |
|   if (!left->isTwoAddress && right->isTwoAddress) {
 | |
|     SDNode *DUNode = right->Node->getOperand(0).Val;
 | |
|     if (DUNode->isOperand(left->Node))
 | |
|       RBonus++;
 | |
|   }
 | |
|   
 | |
|   // Priority1 is just the number of live range genned.
 | |
|   int LPriority1 = left ->NumPredsLeft - LBonus;
 | |
|   int RPriority1 = right->NumPredsLeft - RBonus;
 | |
|   int LPriority2 = SPQ->getSethiUllmanNumber(LeftNum) + LBonus;
 | |
|   int RPriority2 = SPQ->getSethiUllmanNumber(RightNum) + RBonus;
 | |
|   
 | |
|   if (LPriority1 > RPriority1)
 | |
|     return true;
 | |
|   else if (LPriority1 == RPriority1)
 | |
|     if (LPriority2 < RPriority2)
 | |
|       return true;
 | |
|     else if (LPriority2 == RPriority2)
 | |
|       if (left->CycleBound > right->CycleBound) 
 | |
|         return true;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CalcNodePriority - Priority is the Sethi Ullman number. 
 | |
| /// Smaller number is the higher priority.
 | |
| int RegReductionPriorityQueue::CalcNodePriority(const SUnit *SU) {
 | |
|   int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
 | |
|   if (SethiUllmanNumber != INT_MIN)
 | |
|     return SethiUllmanNumber;
 | |
|   
 | |
|   if (SU->Preds.size() == 0) {
 | |
|     SethiUllmanNumber = 1;
 | |
|   } else {
 | |
|     int Extra = 0;
 | |
|     for (std::set<std::pair<SUnit*, bool> >::const_iterator
 | |
|          I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
 | |
|       if (I->second) continue;  // ignore chain preds.
 | |
|       SUnit *PredSU = I->first;
 | |
|       int PredSethiUllman = CalcNodePriority(PredSU);
 | |
|       if (PredSethiUllman > SethiUllmanNumber) {
 | |
|         SethiUllmanNumber = PredSethiUllman;
 | |
|         Extra = 0;
 | |
|       } else if (PredSethiUllman == SethiUllmanNumber)
 | |
|         Extra++;
 | |
|     }
 | |
|     
 | |
|     if (SU->Node->getOpcode() != ISD::TokenFactor)
 | |
|       SethiUllmanNumber += Extra;
 | |
|     else
 | |
|       SethiUllmanNumber = (Extra == 1) ? 0 : Extra-1;
 | |
|   }
 | |
|   
 | |
|   return SethiUllmanNumber;
 | |
| }
 | |
| 
 | |
| /// CalculatePriorities - Calculate priorities of all scheduling units.
 | |
| void RegReductionPriorityQueue::CalculatePriorities() {
 | |
|   SethiUllmanNumbers.assign(SUnits->size(), INT_MIN);
 | |
|   
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcNodePriority(&(*SUnits)[i]);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    LatencyPriorityQueue Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is a SchedulingPriorityQueue that schedules using latency information to
 | |
| // reduce the length of the critical path through the basic block.
 | |
| // 
 | |
| namespace {
 | |
|   class LatencyPriorityQueue;
 | |
|   
 | |
|   /// Sorting functions for the Available queue.
 | |
|   struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
 | |
|     LatencyPriorityQueue *PQ;
 | |
|     latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
 | |
|     latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
 | |
|     
 | |
|     bool operator()(const SUnit* left, const SUnit* right) const;
 | |
|   };
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| namespace {
 | |
|   class LatencyPriorityQueue : public SchedulingPriorityQueue {
 | |
|     // SUnits - The SUnits for the current graph.
 | |
|     const std::vector<SUnit> *SUnits;
 | |
|     
 | |
|     // Latencies - The latency (max of latency from this node to the bb exit)
 | |
|     // for each node.
 | |
|     std::vector<int> Latencies;
 | |
| 
 | |
|     /// NumNodesSolelyBlocking - This vector contains, for every node in the
 | |
|     /// Queue, the number of nodes that the node is the sole unscheduled
 | |
|     /// predecessor for.  This is used as a tie-breaker heuristic for better
 | |
|     /// mobility.
 | |
|     std::vector<unsigned> NumNodesSolelyBlocking;
 | |
| 
 | |
|     std::priority_queue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
 | |
| public:
 | |
|     LatencyPriorityQueue() : Queue(latency_sort(this)) {
 | |
|     }
 | |
|     
 | |
|     void initNodes(const std::vector<SUnit> &sunits) {
 | |
|       SUnits = &sunits;
 | |
|       // Calculate node priorities.
 | |
|       CalculatePriorities();
 | |
|     }
 | |
|     void releaseState() {
 | |
|       SUnits = 0;
 | |
|       Latencies.clear();
 | |
|     }
 | |
|     
 | |
|     unsigned getLatency(unsigned NodeNum) const {
 | |
|       assert(NodeNum < Latencies.size());
 | |
|       return Latencies[NodeNum];
 | |
|     }
 | |
|     
 | |
|     unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
 | |
|       assert(NodeNum < NumNodesSolelyBlocking.size());
 | |
|       return NumNodesSolelyBlocking[NodeNum];
 | |
|     }
 | |
|     
 | |
|     bool empty() const { return Queue.empty(); }
 | |
|     
 | |
|     virtual void push(SUnit *U) {
 | |
|       push_impl(U);
 | |
|     }
 | |
|     void push_impl(SUnit *U);
 | |
|     
 | |
|     void push_all(const std::vector<SUnit *> &Nodes) {
 | |
|       for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|         push_impl(Nodes[i]);
 | |
|     }
 | |
|     
 | |
|     SUnit *pop() {
 | |
|       SUnit *V = Queue.top();
 | |
|       Queue.pop();
 | |
|       return V;
 | |
|     }
 | |
|     
 | |
|     // ScheduledNode - As nodes are scheduled, we look to see if there are any
 | |
|     // successor nodes that have a single unscheduled predecessor.  If so, that
 | |
|     // single predecessor has a higher priority, since scheduling it will make
 | |
|     // the node available.
 | |
|     void ScheduledNode(SUnit *Node);
 | |
|     
 | |
| private:
 | |
|     void CalculatePriorities();
 | |
|     int CalcLatency(const SUnit &SU);
 | |
|     void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
 | |
|     
 | |
|     /// RemoveFromPriorityQueue - This is a really inefficient way to remove a
 | |
|     /// node from a priority queue.  We should roll our own heap to make this
 | |
|     /// better or something.
 | |
|     void RemoveFromPriorityQueue(SUnit *SU) {
 | |
|       std::vector<SUnit*> Temp;
 | |
|       
 | |
|       assert(!Queue.empty() && "Not in queue!");
 | |
|       while (Queue.top() != SU) {
 | |
|         Temp.push_back(Queue.top());
 | |
|         Queue.pop();
 | |
|         assert(!Queue.empty() && "Not in queue!");
 | |
|       }
 | |
| 
 | |
|       // Remove the node from the PQ.
 | |
|       Queue.pop();
 | |
|       
 | |
|       // Add all the other nodes back.
 | |
|       for (unsigned i = 0, e = Temp.size(); i != e; ++i)
 | |
|         Queue.push(Temp[i]);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
 | |
|   unsigned LHSNum = LHS->NodeNum;
 | |
|   unsigned RHSNum = RHS->NodeNum;
 | |
| 
 | |
|   // The most important heuristic is scheduling the critical path.
 | |
|   unsigned LHSLatency = PQ->getLatency(LHSNum);
 | |
|   unsigned RHSLatency = PQ->getLatency(RHSNum);
 | |
|   if (LHSLatency < RHSLatency) return true;
 | |
|   if (LHSLatency > RHSLatency) return false;
 | |
|   
 | |
|   // After that, if two nodes have identical latencies, look to see if one will
 | |
|   // unblock more other nodes than the other.
 | |
|   unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
 | |
|   unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
 | |
|   if (LHSBlocked < RHSBlocked) return true;
 | |
|   if (LHSBlocked > RHSBlocked) return false;
 | |
|   
 | |
|   // Finally, just to provide a stable ordering, use the node number as a
 | |
|   // deciding factor.
 | |
|   return LHSNum < RHSNum;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CalcNodePriority - Calculate the maximal path from the node to the exit.
 | |
| ///
 | |
| int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
 | |
|   int &Latency = Latencies[SU.NodeNum];
 | |
|   if (Latency != -1)
 | |
|     return Latency;
 | |
|   
 | |
|   int MaxSuccLatency = 0;
 | |
|   for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU.Succs.begin(),
 | |
|        E = SU.Succs.end(); I != E; ++I)
 | |
|     MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(*I->first));
 | |
| 
 | |
|   return Latency = MaxSuccLatency + SU.Latency;
 | |
| }
 | |
| 
 | |
| /// CalculatePriorities - Calculate priorities of all scheduling units.
 | |
| void LatencyPriorityQueue::CalculatePriorities() {
 | |
|   Latencies.assign(SUnits->size(), -1);
 | |
|   NumNodesSolelyBlocking.assign(SUnits->size(), 0);
 | |
|   
 | |
|   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
 | |
|     CalcLatency((*SUnits)[i]);
 | |
| }
 | |
| 
 | |
| /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
 | |
| /// of SU, return it, otherwise return null.
 | |
| static SUnit *getSingleUnscheduledPred(SUnit *SU) {
 | |
|   SUnit *OnlyAvailablePred = 0;
 | |
|   for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Preds.begin(),
 | |
|        E = SU->Preds.end(); I != E; ++I)
 | |
|     if (!I->first->isScheduled) {
 | |
|       // We found an available, but not scheduled, predecessor.  If it's the
 | |
|       // only one we have found, keep track of it... otherwise give up.
 | |
|       if (OnlyAvailablePred && OnlyAvailablePred != I->first)
 | |
|         return 0;
 | |
|       OnlyAvailablePred = I->first;
 | |
|     }
 | |
|       
 | |
|   return OnlyAvailablePred;
 | |
| }
 | |
| 
 | |
| void LatencyPriorityQueue::push_impl(SUnit *SU) {
 | |
|   // Look at all of the successors of this node.  Count the number of nodes that
 | |
|   // this node is the sole unscheduled node for.
 | |
|   unsigned NumNodesBlocking = 0;
 | |
|   for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(),
 | |
|        E = SU->Succs.end(); I != E; ++I)
 | |
|     if (getSingleUnscheduledPred(I->first) == SU)
 | |
|       ++NumNodesBlocking;
 | |
|   NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
 | |
|   
 | |
|   Queue.push(SU);
 | |
| }
 | |
| 
 | |
| 
 | |
| // ScheduledNode - As nodes are scheduled, we look to see if there are any
 | |
| // successor nodes that have a single unscheduled predecessor.  If so, that
 | |
| // single predecessor has a higher priority, since scheduling it will make
 | |
| // the node available.
 | |
| void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
 | |
|   for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(),
 | |
|        E = SU->Succs.end(); I != E; ++I)
 | |
|     AdjustPriorityOfUnscheduledPreds(I->first);
 | |
| }
 | |
| 
 | |
| /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
 | |
| /// scheduled.  If SU is not itself available, then there is at least one
 | |
| /// predecessor node that has not been scheduled yet.  If SU has exactly ONE
 | |
| /// unscheduled predecessor, we want to increase its priority: it getting
 | |
| /// scheduled will make this node available, so it is better than some other
 | |
| /// node of the same priority that will not make a node available.
 | |
| void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
 | |
|   if (SU->isPending) return;  // All preds scheduled.
 | |
|   
 | |
|   SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
 | |
|   if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
 | |
|   
 | |
|   // Okay, we found a single predecessor that is available, but not scheduled.
 | |
|   // Since it is available, it must be in the priority queue.  First remove it.
 | |
|   RemoveFromPriorityQueue(OnlyAvailablePred);
 | |
| 
 | |
|   // Reinsert the node into the priority queue, which recomputes its
 | |
|   // NumNodesSolelyBlocking value.
 | |
|   push(OnlyAvailablePred);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
 | |
|                                                     MachineBasicBlock *BB) {
 | |
|   return new ScheduleDAGList(DAG, BB, DAG.getTarget(), true, 
 | |
|                              new RegReductionPriorityQueue(),
 | |
|                              new HazardRecognizer());
 | |
| }
 | |
| 
 | |
| /// createTDListDAGScheduler - This creates a top-down list scheduler with the
 | |
| /// specified hazard recognizer.
 | |
| ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG,
 | |
|                                             MachineBasicBlock *BB,
 | |
|                                             HazardRecognizer *HR) {
 | |
|   return new ScheduleDAGList(DAG, BB, DAG.getTarget(), false,
 | |
|                              new LatencyPriorityQueue(),
 | |
|                              HR);
 | |
| }
 |