mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27008 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1000 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1000 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the TargetLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| TargetLowering::TargetLowering(TargetMachine &tm)
 | |
|   : TM(tm), TD(TM.getTargetData()) {
 | |
|   assert(ISD::BUILTIN_OP_END <= 156 &&
 | |
|          "Fixed size array in TargetLowering is not large enough!");
 | |
|   // All operations default to being supported.
 | |
|   memset(OpActions, 0, sizeof(OpActions));
 | |
| 
 | |
|   IsLittleEndian = TD.isLittleEndian();
 | |
|   ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD.getIntPtrType());
 | |
|   ShiftAmtHandling = Undefined;
 | |
|   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
 | |
|   memset(TargetDAGCombineArray, 0, 
 | |
|          sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0]));
 | |
|   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
 | |
|   allowUnalignedMemoryAccesses = false;
 | |
|   UseUnderscoreSetJmpLongJmp = false;
 | |
|   IntDivIsCheap = false;
 | |
|   Pow2DivIsCheap = false;
 | |
|   StackPointerRegisterToSaveRestore = 0;
 | |
|   SchedPreferenceInfo = SchedulingForLatency;
 | |
| }
 | |
| 
 | |
| TargetLowering::~TargetLowering() {}
 | |
| 
 | |
| /// setValueTypeAction - Set the action for a particular value type.  This
 | |
| /// assumes an action has not already been set for this value type.
 | |
| static void SetValueTypeAction(MVT::ValueType VT,
 | |
|                                TargetLowering::LegalizeAction Action,
 | |
|                                TargetLowering &TLI,
 | |
|                                MVT::ValueType *TransformToType,
 | |
|                         TargetLowering::ValueTypeActionImpl &ValueTypeActions) {
 | |
|   ValueTypeActions.setTypeAction(VT, Action);
 | |
|   if (Action == TargetLowering::Promote) {
 | |
|     MVT::ValueType PromoteTo;
 | |
|     if (VT == MVT::f32)
 | |
|       PromoteTo = MVT::f64;
 | |
|     else {
 | |
|       unsigned LargerReg = VT+1;
 | |
|       while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) {
 | |
|         ++LargerReg;
 | |
|         assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
 | |
|                "Nothing to promote to??");
 | |
|       }
 | |
|       PromoteTo = (MVT::ValueType)LargerReg;
 | |
|     }
 | |
| 
 | |
|     assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
 | |
|            MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
 | |
|            "Can only promote from int->int or fp->fp!");
 | |
|     assert(VT < PromoteTo && "Must promote to a larger type!");
 | |
|     TransformToType[VT] = PromoteTo;
 | |
|   } else if (Action == TargetLowering::Expand) {
 | |
|     assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 &&
 | |
|            "Cannot expand this type: target must support SOME integer reg!");
 | |
|     // Expand to the next smaller integer type!
 | |
|     TransformToType[VT] = (MVT::ValueType)(VT-1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// computeRegisterProperties - Once all of the register classes are added,
 | |
| /// this allows us to compute derived properties we expose.
 | |
| void TargetLowering::computeRegisterProperties() {
 | |
|   assert(MVT::LAST_VALUETYPE <= 32 &&
 | |
|          "Too many value types for ValueTypeActions to hold!");
 | |
| 
 | |
|   // Everything defaults to one.
 | |
|   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i)
 | |
|     NumElementsForVT[i] = 1;
 | |
| 
 | |
|   // Find the largest integer register class.
 | |
|   unsigned LargestIntReg = MVT::i128;
 | |
|   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
 | |
|     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
 | |
| 
 | |
|   // Every integer value type larger than this largest register takes twice as
 | |
|   // many registers to represent as the previous ValueType.
 | |
|   unsigned ExpandedReg = LargestIntReg; ++LargestIntReg;
 | |
|   for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg)
 | |
|     NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1];
 | |
| 
 | |
|   // Inspect all of the ValueType's possible, deciding how to process them.
 | |
|   for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
 | |
|     // If we are expanding this type, expand it!
 | |
|     if (getNumElements((MVT::ValueType)IntReg) != 1)
 | |
|       SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType,
 | |
|                          ValueTypeActions);
 | |
|     else if (!isTypeLegal((MVT::ValueType)IntReg))
 | |
|       // Otherwise, if we don't have native support, we must promote to a
 | |
|       // larger type.
 | |
|       SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this,
 | |
|                          TransformToType, ValueTypeActions);
 | |
|     else
 | |
|       TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg;
 | |
| 
 | |
|   // If the target does not have native support for F32, promote it to F64.
 | |
|   if (!isTypeLegal(MVT::f32))
 | |
|     SetValueTypeAction(MVT::f32, Promote, *this,
 | |
|                        TransformToType, ValueTypeActions);
 | |
|   else
 | |
|     TransformToType[MVT::f32] = MVT::f32;
 | |
|   
 | |
|   // Set MVT::Vector to always be Expanded
 | |
|   SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, 
 | |
|                      ValueTypeActions);
 | |
|   
 | |
|   // Loop over all of the legal vector value types, specifying an identity type
 | |
|   // transformation.
 | |
|   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
 | |
|        i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
 | |
|     if (isTypeLegal((MVT::ValueType)i))
 | |
|       TransformToType[i] = (MVT::ValueType)i;
 | |
|   }
 | |
| 
 | |
|   assert(isTypeLegal(MVT::f64) && "Target does not support FP?");
 | |
|   TransformToType[MVT::f64] = MVT::f64;
 | |
| }
 | |
| 
 | |
| const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Optimization Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ShrinkDemandedConstant - Check to see if the specified operand of the 
 | |
| /// specified instruction is a constant integer.  If so, check to see if there
 | |
| /// are any bits set in the constant that are not demanded.  If so, shrink the
 | |
| /// constant and return true.
 | |
| bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, 
 | |
|                                                             uint64_t Demanded) {
 | |
|   // FIXME: ISD::SELECT, ISD::SELECT_CC
 | |
|   switch(Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::AND:
 | |
|   case ISD::OR:
 | |
|   case ISD::XOR:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
 | |
|       if ((~Demanded & C->getValue()) != 0) {
 | |
|         MVT::ValueType VT = Op.getValueType();
 | |
|         SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
 | |
|                                     DAG.getConstant(Demanded & C->getValue(), 
 | |
|                                                     VT));
 | |
|         return CombineTo(Op, New);
 | |
|       }
 | |
|     break;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
 | |
| /// DemandedMask bits of the result of Op are ever used downstream.  If we can
 | |
| /// use this information to simplify Op, create a new simplified DAG node and
 | |
| /// return true, returning the original and new nodes in Old and New. Otherwise,
 | |
| /// analyze the expression and return a mask of KnownOne and KnownZero bits for
 | |
| /// the expression (used to simplify the caller).  The KnownZero/One bits may
 | |
| /// only be accurate for those bits in the DemandedMask.
 | |
| bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, 
 | |
|                                           uint64_t &KnownZero,
 | |
|                                           uint64_t &KnownOne,
 | |
|                                           TargetLoweringOpt &TLO,
 | |
|                                           unsigned Depth) const {
 | |
|   KnownZero = KnownOne = 0;   // Don't know anything.
 | |
|   // Other users may use these bits.
 | |
|   if (!Op.Val->hasOneUse()) { 
 | |
|     if (Depth != 0) {
 | |
|       // If not at the root, Just compute the KnownZero/KnownOne bits to 
 | |
|       // simplify things downstream.
 | |
|       ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
 | |
|       return false;
 | |
|     }
 | |
|     // If this is the root being simplified, allow it to have multiple uses,
 | |
|     // just set the DemandedMask to all bits.
 | |
|     DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
 | |
|   } else if (DemandedMask == 0) {   
 | |
|     // Not demanding any bits from Op.
 | |
|     if (Op.getOpcode() != ISD::UNDEF)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
 | |
|     return false;
 | |
|   } else if (Depth == 6) {        // Limit search depth.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
 | |
|     KnownZero = ~KnownOne & DemandedMask;
 | |
|     return false;   // Don't fall through, will infinitely loop.
 | |
|   case ISD::AND:
 | |
|     // If the RHS is a constant, check to see if the LHS would be zero without
 | |
|     // using the bits from the RHS.  Below, we use knowledge about the RHS to
 | |
|     // simplify the LHS, here we're using information from the LHS to simplify
 | |
|     // the RHS.
 | |
|     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       uint64_t LHSZero, LHSOne;
 | |
|       ComputeMaskedBits(Op.getOperand(0), DemandedMask,
 | |
|                         LHSZero, LHSOne, Depth+1);
 | |
|       // If the LHS already has zeros where RHSC does, this and is dead.
 | |
|       if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
 | |
|         return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|       // If any of the set bits in the RHS are known zero on the LHS, shrink
 | |
|       // the constant.
 | |
|       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
 | |
|         return true;
 | |
|     }
 | |
|     
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
 | |
|                              KnownZero2, KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|       
 | |
|     // If all of the demanded bits are known one on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'and'.
 | |
|     if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If all of the demanded bits in the inputs are known zeros, return zero.
 | |
|     if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
 | |
|       return true;
 | |
|       
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, 
 | |
|                              KnownZero2, KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'or'.
 | |
|     if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If all of the potentially set bits on one side are known to be set on
 | |
|     // the other side, just use the 'other' side.
 | |
|     if ((DemandedMask & (~KnownZero) & KnownOne2) == 
 | |
|         (DemandedMask & (~KnownZero)))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((DemandedMask & (~KnownZero2) & KnownOne) == 
 | |
|         (DemandedMask & (~KnownZero2)))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
 | |
|       return true;
 | |
|           
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     break;
 | |
|   case ISD::XOR:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'xor'.
 | |
|     if ((DemandedMask & KnownZero) == DemandedMask)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((DemandedMask & KnownZero2) == DemandedMask)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     
 | |
|     // If all of the unknown bits are known to be zero on one side or the other
 | |
|     // (but not both) turn this into an *inclusive* or.
 | |
|     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|     if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
 | |
|       if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
 | |
|                                                  Op.getOperand(0),
 | |
|                                                  Op.getOperand(1)));
 | |
|     // If all of the demanded bits on one side are known, and all of the set
 | |
|     // bits on that side are also known to be set on the other side, turn this
 | |
|     // into an AND, as we know the bits will be cleared.
 | |
|     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | |
|     if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
 | |
|       if ((KnownOne & KnownOne2) == KnownOne) {
 | |
|         MVT::ValueType VT = Op.getValueType();
 | |
|         SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
 | |
|                                                  ANDC));
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
 | |
|       return true;
 | |
|     
 | |
|     KnownZero = KnownZeroOut;
 | |
|     KnownOne  = KnownOneOut;
 | |
|     break;
 | |
|   case ISD::SETCC:
 | |
|     // If we know the result of a setcc has the top bits zero, use this info.
 | |
|     if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
 | |
|       KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
 | |
|     break;
 | |
|   case ISD::SELECT:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
 | |
|       return true;
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     break;
 | |
|   case ISD::SELECT_CC:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
 | |
|       return true;
 | |
|       
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       KnownZero <<= SA->getValue();
 | |
|       KnownOne  <<= SA->getValue();
 | |
|       KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       MVT::ValueType VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getValue();
 | |
|       
 | |
|       // Compute the new bits that are at the top now.
 | |
|       uint64_t HighBits = (1ULL << ShAmt)-1;
 | |
|       HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
 | |
|       uint64_t TypeMask = MVT::getIntVTBitMask(VT);
 | |
|       
 | |
|       if (SimplifyDemandedBits(Op.getOperand(0), 
 | |
|                                (DemandedMask << ShAmt) & TypeMask,
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero &= TypeMask;
 | |
|       KnownOne  &= TypeMask;
 | |
|       KnownZero >>= ShAmt;
 | |
|       KnownOne  >>= ShAmt;
 | |
|       KnownZero |= HighBits;  // high bits known zero.
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       MVT::ValueType VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getValue();
 | |
|       
 | |
|       // Compute the new bits that are at the top now.
 | |
|       uint64_t HighBits = (1ULL << ShAmt)-1;
 | |
|       HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
 | |
|       uint64_t TypeMask = MVT::getIntVTBitMask(VT);
 | |
|       
 | |
|       if (SimplifyDemandedBits(Op.getOperand(0),
 | |
|                                (DemandedMask << ShAmt) & TypeMask,
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero &= TypeMask;
 | |
|       KnownOne  &= TypeMask;
 | |
|       KnownZero >>= SA->getValue();
 | |
|       KnownOne  >>= SA->getValue();
 | |
|       
 | |
|       // Handle the sign bits.
 | |
|       uint64_t SignBit = MVT::getIntVTSignBit(VT);
 | |
|       SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
 | |
|       
 | |
|       // If the input sign bit is known to be zero, or if none of the top bits
 | |
|       // are demanded, turn this into an unsigned shift right.
 | |
|       if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
 | |
|                                                  Op.getOperand(1)));
 | |
|       } else if (KnownOne & SignBit) { // New bits are known one.
 | |
|         KnownOne |= HighBits;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     MVT::ValueType  VT = Op.getValueType();
 | |
|     MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
| 
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not 
 | |
|     // present in the input.
 | |
|     uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
 | |
|     
 | |
|     // If none of the extended bits are demanded, eliminate the sextinreg.
 | |
|     if (NewBits == 0)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
| 
 | |
|     uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
 | |
|     int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
 | |
|     
 | |
|     // Since the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     InputDemandedBits |= InSignBit;
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     
 | |
|     // If the input sign bit is known zero, convert this into a zero extension.
 | |
|     if (KnownZero & InSignBit)
 | |
|       return TLO.CombineTo(Op, 
 | |
|                            TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
 | |
|     
 | |
|     if (KnownOne & InSignBit) {    // Input sign bit known set
 | |
|       KnownOne |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {                       // Input sign bit unknown
 | |
|       KnownZero &= ~NewBits;
 | |
|       KnownOne &= ~NewBits;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::CTTZ:
 | |
|   case ISD::CTLZ:
 | |
|   case ISD::CTPOP: {
 | |
|     MVT::ValueType VT = Op.getValueType();
 | |
|     unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
 | |
|     KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
 | |
|     KnownOne  = 0;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ZEXTLOAD: {
 | |
|     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
 | |
|     KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
 | |
|     
 | |
|     // If none of the top bits are demanded, convert this into an any_extend.
 | |
|     uint64_t NewBits = (~InMask) & DemandedMask;
 | |
|     if (NewBits == 0)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, 
 | |
|                                                Op.getValueType(), 
 | |
|                                                Op.getOperand(0)));
 | |
|     
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZero |= NewBits;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     MVT::ValueType InVT = Op.getOperand(0).getValueType();
 | |
|     uint64_t InMask    = MVT::getIntVTBitMask(InVT);
 | |
|     uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
 | |
|     uint64_t NewBits   = (~InMask) & DemandedMask;
 | |
|     
 | |
|     // If none of the top bits are demanded, convert this into an any_extend.
 | |
|     if (NewBits == 0)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
 | |
|                                            Op.getOperand(0)));
 | |
|     
 | |
|     // Since some of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     uint64_t InDemandedBits = DemandedMask & InMask;
 | |
|     InDemandedBits |= InSignBit;
 | |
|     
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     
 | |
|     // If the sign bit is known zero, convert this to a zero extend.
 | |
|     if (KnownZero & InSignBit)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, 
 | |
|                                                Op.getValueType(), 
 | |
|                                                Op.getOperand(0)));
 | |
|     
 | |
|     // If the sign bit is known one, the top bits match.
 | |
|     if (KnownOne & InSignBit) {
 | |
|       KnownOne  |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {   // Otherwise, top bits aren't known.
 | |
|       KnownOne  &= ~NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     uint64_t InMask = MVT::getIntVTBitMask(VT);
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZero |= ~InMask & DemandedMask;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ADD:
 | |
|   case ISD::SUB:
 | |
|     // Just use ComputeMaskedBits to compute output bits, there are no
 | |
|     // simplifications that can be done here, and sub always demands all input
 | |
|     // bits.
 | |
|     ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // If we know the value of all of the demanded bits, return this as a
 | |
|   // constant.
 | |
|   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
 | |
|     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
 | |
| /// this predicate to simplify operations downstream.  Mask is known to be zero
 | |
| /// for bits that V cannot have.
 | |
| bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, 
 | |
|                                        unsigned Depth) const {
 | |
|   uint64_t KnownZero, KnownOne;
 | |
|   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
 | |
|   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|   return (KnownZero & Mask) == Mask;
 | |
| }
 | |
| 
 | |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are
 | |
| /// known to be either zero or one and return them in the KnownZero/KnownOne
 | |
| /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
 | |
| /// processing.
 | |
| void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, 
 | |
|                                        uint64_t &KnownZero, uint64_t &KnownOne,
 | |
|                                        unsigned Depth) const {
 | |
|   KnownZero = KnownOne = 0;   // Don't know anything.
 | |
|   if (Depth == 6 || Mask == 0)
 | |
|     return;  // Limit search depth.
 | |
|   
 | |
|   uint64_t KnownZero2, KnownOne2;
 | |
| 
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
 | |
|     KnownZero = ~KnownOne & Mask;
 | |
|     return;
 | |
|   case ISD::AND:
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     Mask &= ~KnownZero;
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     return;
 | |
|   case ISD::OR:
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     Mask &= ~KnownOne;
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     return;
 | |
|   case ISD::XOR: {
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     KnownZero = KnownZeroOut;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SELECT:
 | |
|     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case ISD::SELECT_CC:
 | |
|     ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case ISD::SETCC:
 | |
|     // If we know the result of a setcc has the top bits zero, use this info.
 | |
|     if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
 | |
|       KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
 | |
|     return;
 | |
|   case ISD::SHL:
 | |
|     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       Mask >>= SA->getValue();
 | |
|       ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero <<= SA->getValue();
 | |
|       KnownOne  <<= SA->getValue();
 | |
|       KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SRL:
 | |
|     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       uint64_t HighBits = (1ULL << SA->getValue())-1;
 | |
|       HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
 | |
|       Mask <<= SA->getValue();
 | |
|       ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero >>= SA->getValue();
 | |
|       KnownOne  >>= SA->getValue();
 | |
|       KnownZero |= HighBits;  // high bits known zero.
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SRA:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       uint64_t HighBits = (1ULL << SA->getValue())-1;
 | |
|       HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
 | |
|       Mask <<= SA->getValue();
 | |
|       ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); 
 | |
|       KnownZero >>= SA->getValue();
 | |
|       KnownOne  >>= SA->getValue();
 | |
|       
 | |
|       // Handle the sign bits.
 | |
|       uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1);
 | |
|       SignBit >>= SA->getValue();  // Adjust to where it is now in the mask.
 | |
|       
 | |
|       if (KnownZero & SignBit) {       // New bits are known zero.
 | |
|         KnownZero |= HighBits;
 | |
|       } else if (KnownOne & SignBit) { // New bits are known one.
 | |
|         KnownOne |= HighBits;
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     MVT::ValueType  VT = Op.getValueType();
 | |
|     MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not 
 | |
|     // present in the input.
 | |
|     uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
 | |
| 
 | |
|     uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
 | |
|     int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
 | |
|     
 | |
|     // If the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     if (NewBits)
 | |
|       InputDemandedBits |= InSignBit;
 | |
|     
 | |
|     ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
 | |
|                       KnownZero, KnownOne, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     if (KnownZero & InSignBit) {          // Input sign bit known clear
 | |
|       KnownZero |= NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     } else if (KnownOne & InSignBit) {    // Input sign bit known set
 | |
|       KnownOne  |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {                              // Input sign bit unknown
 | |
|       KnownZero &= ~NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::CTTZ:
 | |
|   case ISD::CTLZ:
 | |
|   case ISD::CTPOP: {
 | |
|     MVT::ValueType VT = Op.getValueType();
 | |
|     unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
 | |
|     KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
 | |
|     KnownOne  = 0;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ZEXTLOAD: {
 | |
|     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(3))->getVT();
 | |
|     KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
 | |
|     uint64_t NewBits = (~InMask) & Mask;
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
 | |
|                       KnownOne, Depth+1);
 | |
|     KnownZero |= NewBits & Mask;
 | |
|     KnownOne  &= ~NewBits;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     MVT::ValueType InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits    = MVT::getSizeInBits(InVT);
 | |
|     uint64_t InMask    = MVT::getIntVTBitMask(InVT);
 | |
|     uint64_t InSignBit = 1ULL << (InBits-1);
 | |
|     uint64_t NewBits   = (~InMask) & Mask;
 | |
|     uint64_t InDemandedBits = Mask & InMask;
 | |
| 
 | |
|     // If any of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     if (NewBits & Mask)
 | |
|       InDemandedBits |= InSignBit;
 | |
|     
 | |
|     ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
 | |
|                       KnownOne, Depth+1);
 | |
|     // If the sign bit is known zero or one, the  top bits match.
 | |
|     if (KnownZero & InSignBit) {
 | |
|       KnownZero |= NewBits;
 | |
|       KnownOne  &= ~NewBits;
 | |
|     } else if (KnownOne & InSignBit) {
 | |
|       KnownOne  |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {   // Otherwise, top bits aren't known.
 | |
|       KnownOne  &= ~NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     MVT::ValueType VT = Op.getOperand(0).getValueType();
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
 | |
|                       KnownZero, KnownOne, Depth+1);
 | |
|     return;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     uint64_t InMask = MVT::getIntVTBitMask(VT);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, 
 | |
|                       KnownOne, Depth+1);
 | |
|     KnownZero |= (~InMask) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::ADD: {
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
 | |
|     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the low clear bits
 | |
|     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
 | |
|     // low 3 bits clear.
 | |
|     uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), 
 | |
|                                      CountTrailingZeros_64(~KnownZero2));
 | |
|     
 | |
|     KnownZero = (1ULL << KnownZeroOut) - 1;
 | |
|     KnownOne = 0;
 | |
|     return;
 | |
|   }
 | |
|   case ISD::SUB: {
 | |
|     ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
 | |
|     if (!CLHS) return;
 | |
| 
 | |
|     // We know that the top bits of C-X are clear if X contains less bits
 | |
|     // than C (i.e. no wrap-around can happen).  For example, 20-X is
 | |
|     // positive if we can prove that X is >= 0 and < 16.
 | |
|     MVT::ValueType VT = CLHS->getValueType(0);
 | |
|     if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
 | |
|       unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
 | |
|       uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
 | |
|       MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
 | |
|       ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
 | |
| 
 | |
|       // If all of the MaskV bits are known to be zero, then we know the output
 | |
|       // top bits are zero, because we now know that the output is from [0-C].
 | |
|       if ((KnownZero & MaskV) == MaskV) {
 | |
|         unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
 | |
|         KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
 | |
|         KnownOne = 0;   // No one bits known.
 | |
|       } else {
 | |
|         KnownOne = KnownOne = 0;  // Otherwise, nothing known.
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   default:
 | |
|     // Allow the target to implement this method for its nodes.
 | |
|     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
 | |
|       computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// computeMaskedBitsForTargetNode - Determine which of the bits specified 
 | |
| /// in Mask are known to be either zero or one and return them in the 
 | |
| /// KnownZero/KnownOne bitsets.
 | |
| void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, 
 | |
|                                                     uint64_t Mask,
 | |
|                                                     uint64_t &KnownZero, 
 | |
|                                                     uint64_t &KnownOne,
 | |
|                                                     unsigned Depth) const {
 | |
|   assert(Op.getOpcode() >= ISD::BUILTIN_OP_END &&
 | |
|          "Should use MaskedValueIsZero if you don't know whether Op"
 | |
|          " is a target node!");
 | |
|   KnownZero = 0;
 | |
|   KnownOne = 0;
 | |
| }
 | |
| 
 | |
| SDOperand TargetLowering::
 | |
| PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   // Default implementation: no optimization.
 | |
|   return SDOperand();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Inline Assembler Implementation Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TargetLowering::ConstraintType
 | |
| TargetLowering::getConstraintType(char ConstraintLetter) const {
 | |
|   // FIXME: lots more standard ones to handle.
 | |
|   switch (ConstraintLetter) {
 | |
|   default: return C_Unknown;
 | |
|   case 'r': return C_RegisterClass;
 | |
|   case 'm':    // memory
 | |
|   case 'o':    // offsetable
 | |
|   case 'V':    // not offsetable
 | |
|     return C_Memory;
 | |
|   case 'i':    // Simple Integer or Relocatable Constant
 | |
|   case 'n':    // Simple Integer
 | |
|   case 's':    // Relocatable Constant
 | |
|   case 'I':    // Target registers.
 | |
|   case 'J':
 | |
|   case 'K':
 | |
|   case 'L':
 | |
|   case 'M':
 | |
|   case 'N':
 | |
|   case 'O':
 | |
|   case 'P':
 | |
|     return C_Other;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool TargetLowering::isOperandValidForConstraint(SDOperand Op, 
 | |
|                                                  char ConstraintLetter) {
 | |
|   switch (ConstraintLetter) {
 | |
|   default: return false;
 | |
|   case 'i':    // Simple Integer or Relocatable Constant
 | |
|   case 'n':    // Simple Integer
 | |
|   case 's':    // Relocatable Constant
 | |
|     return true;   // FIXME: not right.
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| std::vector<unsigned> TargetLowering::
 | |
| getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                   MVT::ValueType VT) const {
 | |
|   return std::vector<unsigned>();
 | |
| }
 | |
| 
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
 | |
| getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                              MVT::ValueType VT) const {
 | |
|   if (Constraint[0] != '{')
 | |
|     return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
 | |
|   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
 | |
| 
 | |
|   // Remove the braces from around the name.
 | |
|   std::string RegName(Constraint.begin()+1, Constraint.end()-1);
 | |
| 
 | |
|   // Figure out which register class contains this reg.
 | |
|   const MRegisterInfo *RI = TM.getRegisterInfo();
 | |
|   for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
 | |
|        E = RI->regclass_end(); RCI != E; ++RCI) {
 | |
|     const TargetRegisterClass *RC = *RCI;
 | |
|     
 | |
|     // If none of the the value types for this register class are valid, we 
 | |
|     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | |
|     bool isLegal = false;
 | |
|     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
 | |
|          I != E; ++I) {
 | |
|       if (isTypeLegal(*I)) {
 | |
|         isLegal = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (!isLegal) continue;
 | |
|     
 | |
|     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 
 | |
|          I != E; ++I) {
 | |
|       if (StringsEqualNoCase(RegName, RI->get(*I).Name))
 | |
|         return std::make_pair(*I, RC);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Loop Strength Reduction hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isLegalAddressImmediate - Return true if the integer value or
 | |
| /// GlobalValue can be used as the offset of the target addressing mode.
 | |
| bool TargetLowering::isLegalAddressImmediate(int64_t V) const {
 | |
|   return false;
 | |
| }
 | |
| bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
 | |
|   return false;
 | |
| }
 |