mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	half the problem. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24414 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			531 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			531 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation analyzes and transforms the induction variables (and
 | |
| // computations derived from them) into simpler forms suitable for subsequent
 | |
| // analysis and transformation.
 | |
| //
 | |
| // This transformation make the following changes to each loop with an
 | |
| // identifiable induction variable:
 | |
| //   1. All loops are transformed to have a SINGLE canonical induction variable
 | |
| //      which starts at zero and steps by one.
 | |
| //   2. The canonical induction variable is guaranteed to be the first PHI node
 | |
| //      in the loop header block.
 | |
| //   3. Any pointer arithmetic recurrences are raised to use array subscripts.
 | |
| //
 | |
| // If the trip count of a loop is computable, this pass also makes the following
 | |
| // changes:
 | |
| //   1. The exit condition for the loop is canonicalized to compare the
 | |
| //      induction value against the exit value.  This turns loops like:
 | |
| //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
 | |
| //   2. Any use outside of the loop of an expression derived from the indvar
 | |
| //      is changed to compute the derived value outside of the loop, eliminating
 | |
| //      the dependence on the exit value of the induction variable.  If the only
 | |
| //      purpose of the loop is to compute the exit value of some derived
 | |
| //      expression, this transformation will make the loop dead.
 | |
| //
 | |
| // This transformation should be followed by strength reduction after all of the
 | |
| // desired loop transformations have been performed.  Additionally, on targets
 | |
| // where it is profitable, the loop could be transformed to count down to zero
 | |
| // (the "do loop" optimization).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
 | |
|   Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
 | |
|   Statistic<> NumInserted("indvars", "Number of canonical indvars added");
 | |
|   Statistic<> NumReplaced("indvars", "Number of exit values replaced");
 | |
|   Statistic<> NumLFTR    ("indvars", "Number of loop exit tests replaced");
 | |
| 
 | |
|   class IndVarSimplify : public FunctionPass {
 | |
|     LoopInfo        *LI;
 | |
|     ScalarEvolution *SE;
 | |
|     bool Changed;
 | |
|   public:
 | |
|     virtual bool runOnFunction(Function &) {
 | |
|       LI = &getAnalysis<LoopInfo>();
 | |
|       SE = &getAnalysis<ScalarEvolution>();
 | |
|       Changed = false;
 | |
| 
 | |
|       // Induction Variables live in the header nodes of loops
 | |
|       for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
 | |
|         runOnLoop(*I);
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
|   private:
 | |
|     void runOnLoop(Loop *L);
 | |
|     void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
 | |
|                                     std::set<Instruction*> &DeadInsts);
 | |
|     void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
 | |
|                                    SCEVExpander &RW);
 | |
|     void RewriteLoopExitValues(Loop *L);
 | |
| 
 | |
|     void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
 | |
|   };
 | |
|   RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createIndVarSimplifyPass() {
 | |
|   return new IndVarSimplify();
 | |
| }
 | |
| 
 | |
| /// DeleteTriviallyDeadInstructions - If any of the instructions is the
 | |
| /// specified set are trivially dead, delete them and see if this makes any of
 | |
| /// their operands subsequently dead.
 | |
| void IndVarSimplify::
 | |
| DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
 | |
|   while (!Insts.empty()) {
 | |
|     Instruction *I = *Insts.begin();
 | |
|     Insts.erase(Insts.begin());
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|         if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
 | |
|           Insts.insert(U);
 | |
|       SE->deleteInstructionFromRecords(I);
 | |
|       I->eraseFromParent();
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
 | |
| /// recurrence.  If so, change it into an integer recurrence, permitting
 | |
| /// analysis by the SCEV routines.
 | |
| void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
 | |
|                                                 BasicBlock *Preheader,
 | |
|                                             std::set<Instruction*> &DeadInsts) {
 | |
|   assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
 | |
|   unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
 | |
|   unsigned BackedgeIdx = PreheaderIdx^1;
 | |
|   if (GetElementPtrInst *GEPI =
 | |
|           dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
 | |
|     if (GEPI->getOperand(0) == PN) {
 | |
|       assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
 | |
| 
 | |
|       // Okay, we found a pointer recurrence.  Transform this pointer
 | |
|       // recurrence into an integer recurrence.  Compute the value that gets
 | |
|       // added to the pointer at every iteration.
 | |
|       Value *AddedVal = GEPI->getOperand(1);
 | |
| 
 | |
|       // Insert a new integer PHI node into the top of the block.
 | |
|       PHINode *NewPhi = new PHINode(AddedVal->getType(),
 | |
|                                     PN->getName()+".rec", PN);
 | |
|       NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
 | |
| 
 | |
|       // Create the new add instruction.
 | |
|       Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
 | |
|                                                 GEPI->getName()+".rec", GEPI);
 | |
|       NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
 | |
| 
 | |
|       // Update the existing GEP to use the recurrence.
 | |
|       GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
 | |
| 
 | |
|       // Update the GEP to use the new recurrence we just inserted.
 | |
|       GEPI->setOperand(1, NewAdd);
 | |
| 
 | |
|       // If the incoming value is a constant expr GEP, try peeling out the array
 | |
|       // 0 index if possible to make things simpler.
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
 | |
|         if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|           unsigned NumOps = CE->getNumOperands();
 | |
|           assert(NumOps > 1 && "CE folding didn't work!");
 | |
|           if (CE->getOperand(NumOps-1)->isNullValue()) {
 | |
|             // Check to make sure the last index really is an array index.
 | |
|             gep_type_iterator GTI = gep_type_begin(CE);
 | |
|             for (unsigned i = 1, e = CE->getNumOperands()-1;
 | |
|                  i != e; ++i, ++GTI)
 | |
|               /*empty*/;
 | |
|             if (isa<SequentialType>(*GTI)) {
 | |
|               // Pull the last index out of the constant expr GEP.
 | |
|               std::vector<Value*> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
 | |
|               Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
 | |
|                                                              CEIdxs);
 | |
|               GetElementPtrInst *NGEPI =
 | |
|                 new GetElementPtrInst(NCE, Constant::getNullValue(Type::IntTy),
 | |
|                                       NewAdd, GEPI->getName(), GEPI);
 | |
|               GEPI->replaceAllUsesWith(NGEPI);
 | |
|               GEPI->eraseFromParent();
 | |
|               GEPI = NGEPI;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
| 
 | |
|       // Finally, if there are any other users of the PHI node, we must
 | |
|       // insert a new GEP instruction that uses the pre-incremented version
 | |
|       // of the induction amount.
 | |
|       if (!PN->use_empty()) {
 | |
|         BasicBlock::iterator InsertPos = PN; ++InsertPos;
 | |
|         while (isa<PHINode>(InsertPos)) ++InsertPos;
 | |
|         std::string Name = PN->getName(); PN->setName("");
 | |
|         Value *PreInc =
 | |
|           new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
 | |
|                                 std::vector<Value*>(1, NewPhi), Name,
 | |
|                                 InsertPos);
 | |
|         PN->replaceAllUsesWith(PreInc);
 | |
|       }
 | |
| 
 | |
|       // Delete the old PHI for sure, and the GEP if its otherwise unused.
 | |
|       DeadInsts.insert(PN);
 | |
| 
 | |
|       ++NumPointer;
 | |
|       Changed = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// LinearFunctionTestReplace - This method rewrites the exit condition of the
 | |
| /// loop to be a canonical != comparison against the incremented loop induction
 | |
| /// variable.  This pass is able to rewrite the exit tests of any loop where the
 | |
| /// SCEV analysis can determine a loop-invariant trip count of the loop, which
 | |
| /// is actually a much broader range than just linear tests.
 | |
| void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
 | |
|                                                SCEVExpander &RW) {
 | |
|   // Find the exit block for the loop.  We can currently only handle loops with
 | |
|   // a single exit.
 | |
|   std::vector<BasicBlock*> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() != 1) return;
 | |
|   BasicBlock *ExitBlock = ExitBlocks[0];
 | |
| 
 | |
|   // Make sure there is only one predecessor block in the loop.
 | |
|   BasicBlock *ExitingBlock = 0;
 | |
|   for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
 | |
|        PI != PE; ++PI)
 | |
|     if (L->contains(*PI)) {
 | |
|       if (ExitingBlock == 0)
 | |
|         ExitingBlock = *PI;
 | |
|       else
 | |
|         return;  // Multiple exits from loop to this block.
 | |
|     }
 | |
|   assert(ExitingBlock && "Loop info is broken");
 | |
| 
 | |
|   if (!isa<BranchInst>(ExitingBlock->getTerminator()))
 | |
|     return;  // Can't rewrite non-branch yet
 | |
|   BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
 | |
|   assert(BI->isConditional() && "Must be conditional to be part of loop!");
 | |
| 
 | |
|   std::set<Instruction*> InstructionsToDelete;
 | |
|   if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
 | |
|     InstructionsToDelete.insert(Cond);
 | |
| 
 | |
|   // If the exiting block is not the same as the backedge block, we must compare
 | |
|   // against the preincremented value, otherwise we prefer to compare against
 | |
|   // the post-incremented value.
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   pred_iterator HPI = pred_begin(Header);
 | |
|   assert(HPI != pred_end(Header) && "Loop with zero preds???");
 | |
|   if (!L->contains(*HPI)) ++HPI;
 | |
|   assert(HPI != pred_end(Header) && L->contains(*HPI) &&
 | |
|          "No backedge in loop?");
 | |
| 
 | |
|   SCEVHandle TripCount = IterationCount;
 | |
|   Value *IndVar;
 | |
|   if (*HPI == ExitingBlock) {
 | |
|     // The IterationCount expression contains the number of times that the
 | |
|     // backedge actually branches to the loop header.  This is one less than the
 | |
|     // number of times the loop executes, so add one to it.
 | |
|     Constant *OneC = ConstantInt::get(IterationCount->getType(), 1);
 | |
|     TripCount = SCEVAddExpr::get(IterationCount, SCEVUnknown::get(OneC));
 | |
|     IndVar = L->getCanonicalInductionVariableIncrement();
 | |
|   } else {
 | |
|     // We have to use the preincremented value...
 | |
|     IndVar = L->getCanonicalInductionVariable();
 | |
|   }
 | |
| 
 | |
|   // Expand the code for the iteration count into the preheader of the loop.
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
 | |
|                                     IndVar->getType());
 | |
| 
 | |
|   // Insert a new setne or seteq instruction before the branch.
 | |
|   Instruction::BinaryOps Opcode;
 | |
|   if (L->contains(BI->getSuccessor(0)))
 | |
|     Opcode = Instruction::SetNE;
 | |
|   else
 | |
|     Opcode = Instruction::SetEQ;
 | |
| 
 | |
|   Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
 | |
|   BI->setCondition(Cond);
 | |
|   ++NumLFTR;
 | |
|   Changed = true;
 | |
| 
 | |
|   DeleteTriviallyDeadInstructions(InstructionsToDelete);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// RewriteLoopExitValues - Check to see if this loop has a computable
 | |
| /// loop-invariant execution count.  If so, this means that we can compute the
 | |
| /// final value of any expressions that are recurrent in the loop, and
 | |
| /// substitute the exit values from the loop into any instructions outside of
 | |
| /// the loop that use the final values of the current expressions.
 | |
| void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
| 
 | |
|   // Scan all of the instructions in the loop, looking at those that have
 | |
|   // extra-loop users and which are recurrences.
 | |
|   SCEVExpander Rewriter(*SE, *LI);
 | |
| 
 | |
|   // We insert the code into the preheader of the loop if the loop contains
 | |
|   // multiple exit blocks, or in the exit block if there is exactly one.
 | |
|   BasicBlock *BlockToInsertInto;
 | |
|   std::vector<BasicBlock*> ExitBlocks;
 | |
|   L->getExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() == 1)
 | |
|     BlockToInsertInto = ExitBlocks[0];
 | |
|   else
 | |
|     BlockToInsertInto = Preheader;
 | |
|   BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
 | |
|   while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
| 
 | |
|   bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
 | |
| 
 | |
|   std::set<Instruction*> InstructionsToDelete;
 | |
| 
 | |
|   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
 | |
|     if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
 | |
|       BasicBlock *BB = L->getBlocks()[i];
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
 | |
|         if (I->getType()->isInteger()) {      // Is an integer instruction
 | |
|           SCEVHandle SH = SE->getSCEV(I);
 | |
|           if (SH->hasComputableLoopEvolution(L) ||    // Varies predictably
 | |
|               HasConstantItCount) {
 | |
|             // Find out if this predictably varying value is actually used
 | |
|             // outside of the loop.  "extra" as opposed to "intra".
 | |
|             std::vector<User*> ExtraLoopUsers;
 | |
|             for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|                  UI != E; ++UI)
 | |
|               if (!L->contains(cast<Instruction>(*UI)->getParent()))
 | |
|                 ExtraLoopUsers.push_back(*UI);
 | |
|             if (!ExtraLoopUsers.empty()) {
 | |
|               // Okay, this instruction has a user outside of the current loop
 | |
|               // and varies predictably in this loop.  Evaluate the value it
 | |
|               // contains when the loop exits, and insert code for it.
 | |
|               SCEVHandle ExitValue = SE->getSCEVAtScope(I, L->getParentLoop());
 | |
|               if (!isa<SCEVCouldNotCompute>(ExitValue)) {
 | |
|                 Changed = true;
 | |
|                 ++NumReplaced;
 | |
|                 // Remember the next instruction.  The rewriter can move code
 | |
|                 // around in some cases.
 | |
|                 BasicBlock::iterator NextI = I; ++NextI;
 | |
| 
 | |
|                 Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
 | |
|                                                        I->getType());
 | |
| 
 | |
|                 // Rewrite any users of the computed value outside of the loop
 | |
|                 // with the newly computed value.
 | |
|                 for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
 | |
|                   ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
 | |
| 
 | |
|                 // If this instruction is dead now, schedule it to be removed.
 | |
|                 if (I->use_empty())
 | |
|                   InstructionsToDelete.insert(I);
 | |
|                 I = NextI;
 | |
|                 continue;  // Skip the ++I
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Next instruction.  Continue instruction skips this.
 | |
|         ++I;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   DeleteTriviallyDeadInstructions(InstructionsToDelete);
 | |
| }
 | |
| 
 | |
| 
 | |
| void IndVarSimplify::runOnLoop(Loop *L) {
 | |
|   // First step.  Check to see if there are any trivial GEP pointer recurrences.
 | |
|   // If there are, change them into integer recurrences, permitting analysis by
 | |
|   // the SCEV routines.
 | |
|   //
 | |
|   BasicBlock *Header    = L->getHeader();
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
| 
 | |
|   std::set<Instruction*> DeadInsts;
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     if (isa<PointerType>(PN->getType()))
 | |
|       EliminatePointerRecurrence(PN, Preheader, DeadInsts);
 | |
|   }
 | |
| 
 | |
|   if (!DeadInsts.empty())
 | |
|     DeleteTriviallyDeadInstructions(DeadInsts);
 | |
| 
 | |
| 
 | |
|   // Next, transform all loops nesting inside of this loop.
 | |
|   for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|     runOnLoop(*I);
 | |
| 
 | |
|   // Check to see if this loop has a computable loop-invariant execution count.
 | |
|   // If so, this means that we can compute the final value of any expressions
 | |
|   // that are recurrent in the loop, and substitute the exit values from the
 | |
|   // loop into any instructions outside of the loop that use the final values of
 | |
|   // the current expressions.
 | |
|   //
 | |
|   SCEVHandle IterationCount = SE->getIterationCount(L);
 | |
|   if (!isa<SCEVCouldNotCompute>(IterationCount))
 | |
|     RewriteLoopExitValues(L);
 | |
| 
 | |
|   // Next, analyze all of the induction variables in the loop, canonicalizing
 | |
|   // auxillary induction variables.
 | |
|   std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
 | |
| 
 | |
|   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     if (PN->getType()->isInteger()) {  // FIXME: when we have fast-math, enable!
 | |
|       SCEVHandle SCEV = SE->getSCEV(PN);
 | |
|       if (SCEV->hasComputableLoopEvolution(L))
 | |
|         // FIXME: It is an extremely bad idea to indvar substitute anything more
 | |
|         // complex than affine induction variables.  Doing so will put expensive
 | |
|         // polynomial evaluations inside of the loop, and the str reduction pass
 | |
|         // currently can only reduce affine polynomials.  For now just disable
 | |
|         // indvar subst on anything more complex than an affine addrec.
 | |
|         if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
 | |
|           if (AR->isAffine())
 | |
|             IndVars.push_back(std::make_pair(PN, SCEV));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are no induction variables in the loop, there is nothing more to
 | |
|   // do.
 | |
|   if (IndVars.empty()) {
 | |
|     // Actually, if we know how many times the loop iterates, lets insert a
 | |
|     // canonical induction variable to help subsequent passes.
 | |
|     if (!isa<SCEVCouldNotCompute>(IterationCount)) {
 | |
|       SCEVExpander Rewriter(*SE, *LI);
 | |
|       Rewriter.getOrInsertCanonicalInductionVariable(L,
 | |
|                                                      IterationCount->getType());
 | |
|       LinearFunctionTestReplace(L, IterationCount, Rewriter);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Compute the type of the largest recurrence expression.
 | |
|   //
 | |
|   const Type *LargestType = IndVars[0].first->getType();
 | |
|   bool DifferingSizes = false;
 | |
|   for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
 | |
|     const Type *Ty = IndVars[i].first->getType();
 | |
|     DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize();
 | |
|     if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize())
 | |
|       LargestType = Ty;
 | |
|   }
 | |
| 
 | |
|   // Create a rewriter object which we'll use to transform the code with.
 | |
|   SCEVExpander Rewriter(*SE, *LI);
 | |
| 
 | |
|   // Now that we know the largest of of the induction variables in this loop,
 | |
|   // insert a canonical induction variable of the largest size.
 | |
|   LargestType = LargestType->getUnsignedVersion();
 | |
|   Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
 | |
|   ++NumInserted;
 | |
|   Changed = true;
 | |
| 
 | |
|   if (!isa<SCEVCouldNotCompute>(IterationCount))
 | |
|     LinearFunctionTestReplace(L, IterationCount, Rewriter);
 | |
| 
 | |
|   // Now that we have a canonical induction variable, we can rewrite any
 | |
|   // recurrences in terms of the induction variable.  Start with the auxillary
 | |
|   // induction variables, and recursively rewrite any of their uses.
 | |
|   BasicBlock::iterator InsertPt = Header->begin();
 | |
|   while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
| 
 | |
|   // If there were induction variables of other sizes, cast the primary
 | |
|   // induction variable to the right size for them, avoiding the need for the
 | |
|   // code evaluation methods to insert induction variables of different sizes.
 | |
|   if (DifferingSizes) {
 | |
|     bool InsertedSizes[17] = { false };
 | |
|     InsertedSizes[LargestType->getPrimitiveSize()] = true;
 | |
|     for (unsigned i = 0, e = IndVars.size(); i != e; ++i)
 | |
|       if (!InsertedSizes[IndVars[i].first->getType()->getPrimitiveSize()]) {
 | |
|         PHINode *PN = IndVars[i].first;
 | |
|         InsertedSizes[PN->getType()->getPrimitiveSize()] = true;
 | |
|         Instruction *New = new CastInst(IndVar,
 | |
|                                         PN->getType()->getUnsignedVersion(),
 | |
|                                         "indvar", InsertPt);
 | |
|         Rewriter.addInsertedValue(New, SE->getSCEV(New));
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If there were induction variables of other sizes, cast the primary
 | |
|   // induction variable to the right size for them, avoiding the need for the
 | |
|   // code evaluation methods to insert induction variables of different sizes.
 | |
|   std::map<unsigned, Value*> InsertedSizes;
 | |
|   while (!IndVars.empty()) {
 | |
|     PHINode *PN = IndVars.back().first;
 | |
|     Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
 | |
|                                            PN->getType());
 | |
|     std::string Name = PN->getName();
 | |
|     PN->setName("");
 | |
|     NewVal->setName(Name);
 | |
| 
 | |
|     // Replace the old PHI Node with the inserted computation.
 | |
|     PN->replaceAllUsesWith(NewVal);
 | |
|     DeadInsts.insert(PN);
 | |
|     IndVars.pop_back();
 | |
|     ++NumRemoved;
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
| #if 0
 | |
|   // Now replace all derived expressions in the loop body with simpler
 | |
|   // expressions.
 | |
|   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
 | |
|     if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
 | |
|       BasicBlock *BB = L->getBlocks()[i];
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|         if (I->getType()->isInteger() &&      // Is an integer instruction
 | |
|             !I->use_empty() &&
 | |
|             !Rewriter.isInsertedInstruction(I)) {
 | |
|           SCEVHandle SH = SE->getSCEV(I);
 | |
|           Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
 | |
|           if (V != I) {
 | |
|             if (isa<Instruction>(V)) {
 | |
|               std::string Name = I->getName();
 | |
|               I->setName("");
 | |
|               V->setName(Name);
 | |
|             }
 | |
|             I->replaceAllUsesWith(V);
 | |
|             DeadInsts.insert(I);
 | |
|             ++NumRemoved;
 | |
|             Changed = true;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   DeleteTriviallyDeadInstructions(DeadInsts);
 | |
| }
 |