mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26705 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1759 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1759 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Constants.cpp - Implement Constant nodes --------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Constant* classes...
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Constants.h"
 | |
| #include "ConstantFolding.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| using namespace llvm;
 | |
| 
 | |
| ConstantBool *ConstantBool::True  = new ConstantBool(true);
 | |
| ConstantBool *ConstantBool::False = new ConstantBool(false);
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              Constant Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void Constant::destroyConstantImpl() {
 | |
|   // When a Constant is destroyed, there may be lingering
 | |
|   // references to the constant by other constants in the constant pool.  These
 | |
|   // constants are implicitly dependent on the module that is being deleted,
 | |
|   // but they don't know that.  Because we only find out when the CPV is
 | |
|   // deleted, we must now notify all of our users (that should only be
 | |
|   // Constants) that they are, in fact, invalid now and should be deleted.
 | |
|   //
 | |
|   while (!use_empty()) {
 | |
|     Value *V = use_back();
 | |
| #ifndef NDEBUG      // Only in -g mode...
 | |
|     if (!isa<Constant>(V))
 | |
|       std::cerr << "While deleting: " << *this
 | |
|                 << "\n\nUse still stuck around after Def is destroyed: "
 | |
|                 << *V << "\n\n";
 | |
| #endif
 | |
|     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
 | |
|     Constant *CV = cast<Constant>(V);
 | |
|     CV->destroyConstant();
 | |
| 
 | |
|     // The constant should remove itself from our use list...
 | |
|     assert((use_empty() || use_back() != V) && "Constant not removed!");
 | |
|   }
 | |
| 
 | |
|   // Value has no outstanding references it is safe to delete it now...
 | |
|   delete this;
 | |
| }
 | |
| 
 | |
| // Static constructor to create a '0' constant of arbitrary type...
 | |
| Constant *Constant::getNullValue(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::BoolTyID: {
 | |
|     static Constant *NullBool = ConstantBool::get(false);
 | |
|     return NullBool;
 | |
|   }
 | |
|   case Type::SByteTyID: {
 | |
|     static Constant *NullSByte = ConstantSInt::get(Type::SByteTy, 0);
 | |
|     return NullSByte;
 | |
|   }
 | |
|   case Type::UByteTyID: {
 | |
|     static Constant *NullUByte = ConstantUInt::get(Type::UByteTy, 0);
 | |
|     return NullUByte;
 | |
|   }
 | |
|   case Type::ShortTyID: {
 | |
|     static Constant *NullShort = ConstantSInt::get(Type::ShortTy, 0);
 | |
|     return NullShort;
 | |
|   }
 | |
|   case Type::UShortTyID: {
 | |
|     static Constant *NullUShort = ConstantUInt::get(Type::UShortTy, 0);
 | |
|     return NullUShort;
 | |
|   }
 | |
|   case Type::IntTyID: {
 | |
|     static Constant *NullInt = ConstantSInt::get(Type::IntTy, 0);
 | |
|     return NullInt;
 | |
|   }
 | |
|   case Type::UIntTyID: {
 | |
|     static Constant *NullUInt = ConstantUInt::get(Type::UIntTy, 0);
 | |
|     return NullUInt;
 | |
|   }
 | |
|   case Type::LongTyID: {
 | |
|     static Constant *NullLong = ConstantSInt::get(Type::LongTy, 0);
 | |
|     return NullLong;
 | |
|   }
 | |
|   case Type::ULongTyID: {
 | |
|     static Constant *NullULong = ConstantUInt::get(Type::ULongTy, 0);
 | |
|     return NullULong;
 | |
|   }
 | |
| 
 | |
|   case Type::FloatTyID: {
 | |
|     static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0);
 | |
|     return NullFloat;
 | |
|   }
 | |
|   case Type::DoubleTyID: {
 | |
|     static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0);
 | |
|     return NullDouble;
 | |
|   }
 | |
| 
 | |
|   case Type::PointerTyID:
 | |
|     return ConstantPointerNull::get(cast<PointerType>(Ty));
 | |
| 
 | |
|   case Type::StructTyID:
 | |
|   case Type::ArrayTyID:
 | |
|   case Type::PackedTyID:
 | |
|     return ConstantAggregateZero::get(Ty);
 | |
|   default:
 | |
|     // Function, Label, or Opaque type?
 | |
|     assert(!"Cannot create a null constant of that type!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Static constructor to create the maximum constant of an integral type...
 | |
| ConstantIntegral *ConstantIntegral::getMaxValue(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::BoolTyID:   return ConstantBool::True;
 | |
|   case Type::SByteTyID:
 | |
|   case Type::ShortTyID:
 | |
|   case Type::IntTyID:
 | |
|   case Type::LongTyID: {
 | |
|     // Calculate 011111111111111...
 | |
|     unsigned TypeBits = Ty->getPrimitiveSize()*8;
 | |
|     int64_t Val = INT64_MAX;             // All ones
 | |
|     Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | |
|     return ConstantSInt::get(Ty, Val);
 | |
|   }
 | |
| 
 | |
|   case Type::UByteTyID:
 | |
|   case Type::UShortTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::ULongTyID:  return getAllOnesValue(Ty);
 | |
| 
 | |
|   default: return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Static constructor to create the minimum constant for an integral type...
 | |
| ConstantIntegral *ConstantIntegral::getMinValue(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::BoolTyID:   return ConstantBool::False;
 | |
|   case Type::SByteTyID:
 | |
|   case Type::ShortTyID:
 | |
|   case Type::IntTyID:
 | |
|   case Type::LongTyID: {
 | |
|      // Calculate 1111111111000000000000
 | |
|      unsigned TypeBits = Ty->getPrimitiveSize()*8;
 | |
|      int64_t Val = -1;                    // All ones
 | |
|      Val <<= TypeBits-1;                  // Shift over to the right spot
 | |
|      return ConstantSInt::get(Ty, Val);
 | |
|   }
 | |
| 
 | |
|   case Type::UByteTyID:
 | |
|   case Type::UShortTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::ULongTyID:  return ConstantUInt::get(Ty, 0);
 | |
| 
 | |
|   default: return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Static constructor to create an integral constant with all bits set
 | |
| ConstantIntegral *ConstantIntegral::getAllOnesValue(const Type *Ty) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::BoolTyID:   return ConstantBool::True;
 | |
|   case Type::SByteTyID:
 | |
|   case Type::ShortTyID:
 | |
|   case Type::IntTyID:
 | |
|   case Type::LongTyID:   return ConstantSInt::get(Ty, -1);
 | |
| 
 | |
|   case Type::UByteTyID:
 | |
|   case Type::UShortTyID:
 | |
|   case Type::UIntTyID:
 | |
|   case Type::ULongTyID: {
 | |
|     // Calculate ~0 of the right type...
 | |
|     unsigned TypeBits = Ty->getPrimitiveSize()*8;
 | |
|     uint64_t Val = ~0ULL;                // All ones
 | |
|     Val >>= 64-TypeBits;                 // Shift out unwanted 1 bits...
 | |
|     return ConstantUInt::get(Ty, Val);
 | |
|   }
 | |
|   default: return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ConstantUInt::isAllOnesValue() const {
 | |
|   unsigned TypeBits = getType()->getPrimitiveSize()*8;
 | |
|   uint64_t Val = ~0ULL;                // All ones
 | |
|   Val >>= 64-TypeBits;                 // Shift out inappropriate bits
 | |
|   return getValue() == Val;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            ConstantXXX Classes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Normal Constructors
 | |
| 
 | |
| ConstantIntegral::ConstantIntegral(const Type *Ty, ValueTy VT, uint64_t V)
 | |
|   : Constant(Ty, VT, 0, 0) {
 | |
|     Val.Unsigned = V;
 | |
| }
 | |
| 
 | |
| ConstantBool::ConstantBool(bool V) 
 | |
|   : ConstantIntegral(Type::BoolTy, ConstantBoolVal, V) {
 | |
| }
 | |
| 
 | |
| ConstantInt::ConstantInt(const Type *Ty, ValueTy VT, uint64_t V)
 | |
|   : ConstantIntegral(Ty, VT, V) {
 | |
| }
 | |
| 
 | |
| ConstantSInt::ConstantSInt(const Type *Ty, int64_t V)
 | |
|   : ConstantInt(Ty, ConstantSIntVal, V) {
 | |
|   assert(Ty->isInteger() && Ty->isSigned() &&
 | |
|          "Illegal type for signed integer constant!");
 | |
|   assert(isValueValidForType(Ty, V) && "Value too large for type!");
 | |
| }
 | |
| 
 | |
| ConstantUInt::ConstantUInt(const Type *Ty, uint64_t V)
 | |
|   : ConstantInt(Ty, ConstantUIntVal, V) {
 | |
|   assert(Ty->isInteger() && Ty->isUnsigned() &&
 | |
|          "Illegal type for unsigned integer constant!");
 | |
|   assert(isValueValidForType(Ty, V) && "Value too large for type!");
 | |
| }
 | |
| 
 | |
| ConstantFP::ConstantFP(const Type *Ty, double V)
 | |
|   : Constant(Ty, ConstantFPVal, 0, 0) {
 | |
|   assert(isValueValidForType(Ty, V) && "Value too large for type!");
 | |
|   Val = V;
 | |
| }
 | |
| 
 | |
| ConstantArray::ConstantArray(const ArrayType *T,
 | |
|                              const std::vector<Constant*> &V)
 | |
|   : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) {
 | |
|   assert(V.size() == T->getNumElements() &&
 | |
|          "Invalid initializer vector for constant array");
 | |
|   Use *OL = OperandList;
 | |
|   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | |
|        I != E; ++I, ++OL) {
 | |
|     Constant *C = *I;
 | |
|     assert((C->getType() == T->getElementType() ||
 | |
|             (T->isAbstract() &&
 | |
|              C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
 | |
|            "Initializer for array element doesn't match array element type!");
 | |
|     OL->init(C, this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConstantArray::~ConstantArray() {
 | |
|   delete [] OperandList;
 | |
| }
 | |
| 
 | |
| ConstantStruct::ConstantStruct(const StructType *T,
 | |
|                                const std::vector<Constant*> &V)
 | |
|   : Constant(T, ConstantStructVal, new Use[V.size()], V.size()) {
 | |
|   assert(V.size() == T->getNumElements() &&
 | |
|          "Invalid initializer vector for constant structure");
 | |
|   Use *OL = OperandList;
 | |
|   for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | |
|        I != E; ++I, ++OL) {
 | |
|     Constant *C = *I;
 | |
|     assert((C->getType() == T->getElementType(I-V.begin()) ||
 | |
|             ((T->getElementType(I-V.begin())->isAbstract() ||
 | |
|               C->getType()->isAbstract()) &&
 | |
|              T->getElementType(I-V.begin())->getTypeID() == 
 | |
|                    C->getType()->getTypeID())) &&
 | |
|            "Initializer for struct element doesn't match struct element type!");
 | |
|     OL->init(C, this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConstantStruct::~ConstantStruct() {
 | |
|   delete [] OperandList;
 | |
| }
 | |
| 
 | |
| 
 | |
| ConstantPacked::ConstantPacked(const PackedType *T,
 | |
|                                const std::vector<Constant*> &V)
 | |
|   : Constant(T, ConstantPackedVal, new Use[V.size()], V.size()) {
 | |
|   Use *OL = OperandList;
 | |
|     for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
 | |
|          I != E; ++I, ++OL) {
 | |
|       Constant *C = *I;
 | |
|       assert((C->getType() == T->getElementType() ||
 | |
|             (T->isAbstract() &&
 | |
|              C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
 | |
|            "Initializer for packed element doesn't match packed element type!");
 | |
|     OL->init(C, this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| ConstantPacked::~ConstantPacked() {
 | |
|   delete [] OperandList;
 | |
| }
 | |
| 
 | |
| /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement unary constant exprs.
 | |
| class UnaryConstantExpr : public ConstantExpr {
 | |
|   Use Op;
 | |
| public:
 | |
|   UnaryConstantExpr(unsigned Opcode, Constant *C, const Type *Ty)
 | |
|     : ConstantExpr(Ty, Opcode, &Op, 1), Op(C, this) {}
 | |
| };
 | |
| 
 | |
| static bool isSetCC(unsigned Opcode) {
 | |
|   return Opcode == Instruction::SetEQ || Opcode == Instruction::SetNE ||
 | |
|          Opcode == Instruction::SetLT || Opcode == Instruction::SetGT ||
 | |
|          Opcode == Instruction::SetLE || Opcode == Instruction::SetGE;
 | |
| }
 | |
| 
 | |
| /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement binary constant exprs.
 | |
| class BinaryConstantExpr : public ConstantExpr {
 | |
|   Use Ops[2];
 | |
| public:
 | |
|   BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2)
 | |
|     : ConstantExpr(isSetCC(Opcode) ? Type::BoolTy : C1->getType(),
 | |
|                    Opcode, Ops, 2) {
 | |
|     Ops[0].init(C1, this);
 | |
|     Ops[1].init(C2, this);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// SelectConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement select constant exprs.
 | |
| class SelectConstantExpr : public ConstantExpr {
 | |
|   Use Ops[3];
 | |
| public:
 | |
|   SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|     : ConstantExpr(C2->getType(), Instruction::Select, Ops, 3) {
 | |
|     Ops[0].init(C1, this);
 | |
|     Ops[1].init(C2, this);
 | |
|     Ops[2].init(C3, this);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// ExtractElementConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// extractelement constant exprs.
 | |
| class ExtractElementConstantExpr : public ConstantExpr {
 | |
|   Use Ops[2];
 | |
| public:
 | |
|   ExtractElementConstantExpr(Constant *C1, Constant *C2)
 | |
|     : ConstantExpr(cast<PackedType>(C1->getType())->getElementType(), 
 | |
|                    Instruction::ExtractElement, Ops, 2) {
 | |
|     Ops[0].init(C1, this);
 | |
|     Ops[1].init(C2, this);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// InsertElementConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// insertelement constant exprs.
 | |
| class InsertElementConstantExpr : public ConstantExpr {
 | |
|   Use Ops[3];
 | |
| public:
 | |
|   InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|     : ConstantExpr(C1->getType(), Instruction::InsertElement, 
 | |
|                    Ops, 3) {
 | |
|     Ops[0].init(C1, this);
 | |
|     Ops[1].init(C2, this);
 | |
|     Ops[2].init(C3, this);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
 | |
| /// used behind the scenes to implement getelementpr constant exprs.
 | |
| struct GetElementPtrConstantExpr : public ConstantExpr {
 | |
|   GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
 | |
|                             const Type *DestTy)
 | |
|     : ConstantExpr(DestTy, Instruction::GetElementPtr,
 | |
|                    new Use[IdxList.size()+1], IdxList.size()+1) {
 | |
|     OperandList[0].init(C, this);
 | |
|     for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
 | |
|       OperandList[i+1].init(IdxList[i], this);
 | |
|   }
 | |
|   ~GetElementPtrConstantExpr() {
 | |
|     delete [] OperandList;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// ConstantExpr::get* - Return some common constants without having to
 | |
| /// specify the full Instruction::OPCODE identifier.
 | |
| ///
 | |
| Constant *ConstantExpr::getNeg(Constant *C) {
 | |
|   if (!C->getType()->isFloatingPoint())
 | |
|     return get(Instruction::Sub, getNullValue(C->getType()), C);
 | |
|   else
 | |
|     return get(Instruction::Sub, ConstantFP::get(C->getType(), -0.0), C);
 | |
| }
 | |
| Constant *ConstantExpr::getNot(Constant *C) {
 | |
|   assert(isa<ConstantIntegral>(C) && "Cannot NOT a nonintegral type!");
 | |
|   return get(Instruction::Xor, C,
 | |
|              ConstantIntegral::getAllOnesValue(C->getType()));
 | |
| }
 | |
| Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Add, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getSub(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Sub, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getMul(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Mul, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getDiv(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Div, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getRem(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Rem, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::And, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Or, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Xor, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getSetEQ(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::SetEQ, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getSetNE(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::SetNE, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getSetLT(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::SetLT, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getSetGT(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::SetGT, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getSetLE(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::SetLE, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getSetGE(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::SetGE, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getShl(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Shl, C1, C2);
 | |
| }
 | |
| Constant *ConstantExpr::getShr(Constant *C1, Constant *C2) {
 | |
|   return get(Instruction::Shr, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getUShr(Constant *C1, Constant *C2) {
 | |
|   if (C1->getType()->isUnsigned()) return getShr(C1, C2);
 | |
|   return getCast(getShr(getCast(C1,
 | |
|                     C1->getType()->getUnsignedVersion()), C2), C1->getType());
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSShr(Constant *C1, Constant *C2) {
 | |
|   if (C1->getType()->isSigned()) return getShr(C1, C2);
 | |
|   return getCast(getShr(getCast(C1,
 | |
|                         C1->getType()->getSignedVersion()), C2), C1->getType());
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      isValueValidForType implementations
 | |
| 
 | |
| bool ConstantSInt::isValueValidForType(const Type *Ty, int64_t Val) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   default:
 | |
|     return false;         // These can't be represented as integers!!!
 | |
|     // Signed types...
 | |
|   case Type::SByteTyID:
 | |
|     return (Val <= INT8_MAX && Val >= INT8_MIN);
 | |
|   case Type::ShortTyID:
 | |
|     return (Val <= INT16_MAX && Val >= INT16_MIN);
 | |
|   case Type::IntTyID:
 | |
|     return (Val <= int(INT32_MAX) && Val >= int(INT32_MIN));
 | |
|   case Type::LongTyID:
 | |
|     return true;          // This is the largest type...
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ConstantUInt::isValueValidForType(const Type *Ty, uint64_t Val) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   default:
 | |
|     return false;         // These can't be represented as integers!!!
 | |
| 
 | |
|     // Unsigned types...
 | |
|   case Type::UByteTyID:
 | |
|     return (Val <= UINT8_MAX);
 | |
|   case Type::UShortTyID:
 | |
|     return (Val <= UINT16_MAX);
 | |
|   case Type::UIntTyID:
 | |
|     return (Val <= UINT32_MAX);
 | |
|   case Type::ULongTyID:
 | |
|     return true;          // This is the largest type...
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
 | |
|   switch (Ty->getTypeID()) {
 | |
|   default:
 | |
|     return false;         // These can't be represented as floating point!
 | |
| 
 | |
|     // TODO: Figure out how to test if a double can be cast to a float!
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID:
 | |
|     return true;          // This is the largest type...
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Factory Function Implementation
 | |
| 
 | |
| // ConstantCreator - A class that is used to create constants by
 | |
| // ValueMap*.  This class should be partially specialized if there is
 | |
| // something strange that needs to be done to interface to the ctor for the
 | |
| // constant.
 | |
| //
 | |
| namespace llvm {
 | |
|   template<class ConstantClass, class TypeClass, class ValType>
 | |
|   struct ConstantCreator {
 | |
|     static ConstantClass *create(const TypeClass *Ty, const ValType &V) {
 | |
|       return new ConstantClass(Ty, V);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<class ConstantClass, class TypeClass>
 | |
|   struct ConvertConstantType {
 | |
|     static void convert(ConstantClass *OldC, const TypeClass *NewTy) {
 | |
|       assert(0 && "This type cannot be converted!\n");
 | |
|       abort();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   template<class ValType, class TypeClass, class ConstantClass,
 | |
|            bool HasLargeKey = false  /*true for arrays and structs*/ >
 | |
|   class ValueMap : public AbstractTypeUser {
 | |
|   public:
 | |
|     typedef std::pair<const TypeClass*, ValType> MapKey;
 | |
|     typedef std::map<MapKey, ConstantClass *> MapTy;
 | |
|     typedef typename MapTy::iterator MapIterator;
 | |
|   private:
 | |
|     /// Map - This is the main map from the element descriptor to the Constants.
 | |
|     /// This is the primary way we avoid creating two of the same shape
 | |
|     /// constant.
 | |
|     MapTy Map;
 | |
|     
 | |
|     /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
 | |
|     /// from the constants to their element in Map.  This is important for
 | |
|     /// removal of constants from the array, which would otherwise have to scan
 | |
|     /// through the map with very large keys.
 | |
|     std::map<ConstantClass*, MapIterator> InverseMap;
 | |
| 
 | |
|     typedef std::map<const TypeClass*, MapIterator> AbstractTypeMapTy;
 | |
|     AbstractTypeMapTy AbstractTypeMap;
 | |
| 
 | |
|     friend void Constant::clearAllValueMaps();
 | |
|   private:
 | |
|     void clear(std::vector<Constant *> &Constants) {
 | |
|       for(MapIterator I = Map.begin(); I != Map.end(); ++I)
 | |
|         Constants.push_back(I->second);
 | |
|       Map.clear();
 | |
|       AbstractTypeMap.clear();
 | |
|       InverseMap.clear();
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     MapIterator map_end() { return Map.end(); }
 | |
|     
 | |
|     /// InsertOrGetItem - Return an iterator for the specified element.
 | |
|     /// If the element exists in the map, the returned iterator points to the
 | |
|     /// entry and Exists=true.  If not, the iterator points to the newly
 | |
|     /// inserted entry and returns Exists=false.  Newly inserted entries have
 | |
|     /// I->second == 0, and should be filled in.
 | |
|     MapIterator InsertOrGetItem(std::pair<MapKey, ConstantClass *> &InsertVal,
 | |
|                                    bool &Exists) {
 | |
|       std::pair<MapIterator, bool> IP = Map.insert(InsertVal);
 | |
|       Exists = !IP.second;
 | |
|       return IP.first;
 | |
|     }
 | |
|     
 | |
| private:
 | |
|     MapIterator FindExistingElement(ConstantClass *CP) {
 | |
|       if (HasLargeKey) {
 | |
|         typename std::map<ConstantClass*, MapIterator>::iterator
 | |
|             IMI = InverseMap.find(CP);
 | |
|         assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
 | |
|                IMI->second->second == CP &&
 | |
|                "InverseMap corrupt!");
 | |
|         return IMI->second;
 | |
|       }
 | |
|       
 | |
|       MapIterator I =
 | |
|         Map.find(MapKey((TypeClass*)CP->getRawType(), getValType(CP)));
 | |
|       if (I == Map.end() || I->second != CP) {
 | |
|         // FIXME: This should not use a linear scan.  If this gets to be a
 | |
|         // performance problem, someone should look at this.
 | |
|         for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
 | |
|           /* empty */;
 | |
|       }
 | |
|       return I;
 | |
|     }
 | |
| public:
 | |
|     
 | |
|     /// getOrCreate - Return the specified constant from the map, creating it if
 | |
|     /// necessary.
 | |
|     ConstantClass *getOrCreate(const TypeClass *Ty, const ValType &V) {
 | |
|       MapKey Lookup(Ty, V);
 | |
|       MapIterator I = Map.lower_bound(Lookup);
 | |
|       if (I != Map.end() && I->first == Lookup)
 | |
|         return I->second;  // Is it in the map?
 | |
| 
 | |
|       // If no preexisting value, create one now...
 | |
|       ConstantClass *Result =
 | |
|         ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
 | |
| 
 | |
|       /// FIXME: why does this assert fail when loading 176.gcc?
 | |
|       //assert(Result->getType() == Ty && "Type specified is not correct!");
 | |
|       I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
 | |
| 
 | |
|       if (HasLargeKey)  // Remember the reverse mapping if needed.
 | |
|         InverseMap.insert(std::make_pair(Result, I));
 | |
|       
 | |
|       // If the type of the constant is abstract, make sure that an entry exists
 | |
|       // for it in the AbstractTypeMap.
 | |
|       if (Ty->isAbstract()) {
 | |
|         typename AbstractTypeMapTy::iterator TI =
 | |
|           AbstractTypeMap.lower_bound(Ty);
 | |
| 
 | |
|         if (TI == AbstractTypeMap.end() || TI->first != Ty) {
 | |
|           // Add ourselves to the ATU list of the type.
 | |
|           cast<DerivedType>(Ty)->addAbstractTypeUser(this);
 | |
| 
 | |
|           AbstractTypeMap.insert(TI, std::make_pair(Ty, I));
 | |
|         }
 | |
|       }
 | |
|       return Result;
 | |
|     }
 | |
| 
 | |
|     void remove(ConstantClass *CP) {
 | |
|       MapIterator I = FindExistingElement(CP);
 | |
|       assert(I != Map.end() && "Constant not found in constant table!");
 | |
|       assert(I->second == CP && "Didn't find correct element?");
 | |
| 
 | |
|       if (HasLargeKey)  // Remember the reverse mapping if needed.
 | |
|         InverseMap.erase(CP);
 | |
|       
 | |
|       // Now that we found the entry, make sure this isn't the entry that
 | |
|       // the AbstractTypeMap points to.
 | |
|       const TypeClass *Ty = I->first.first;
 | |
|       if (Ty->isAbstract()) {
 | |
|         assert(AbstractTypeMap.count(Ty) &&
 | |
|                "Abstract type not in AbstractTypeMap?");
 | |
|         MapIterator &ATMEntryIt = AbstractTypeMap[Ty];
 | |
|         if (ATMEntryIt == I) {
 | |
|           // Yes, we are removing the representative entry for this type.
 | |
|           // See if there are any other entries of the same type.
 | |
|           MapIterator TmpIt = ATMEntryIt;
 | |
| 
 | |
|           // First check the entry before this one...
 | |
|           if (TmpIt != Map.begin()) {
 | |
|             --TmpIt;
 | |
|             if (TmpIt->first.first != Ty) // Not the same type, move back...
 | |
|               ++TmpIt;
 | |
|           }
 | |
| 
 | |
|           // If we didn't find the same type, try to move forward...
 | |
|           if (TmpIt == ATMEntryIt) {
 | |
|             ++TmpIt;
 | |
|             if (TmpIt == Map.end() || TmpIt->first.first != Ty)
 | |
|               --TmpIt;   // No entry afterwards with the same type
 | |
|           }
 | |
| 
 | |
|           // If there is another entry in the map of the same abstract type,
 | |
|           // update the AbstractTypeMap entry now.
 | |
|           if (TmpIt != ATMEntryIt) {
 | |
|             ATMEntryIt = TmpIt;
 | |
|           } else {
 | |
|             // Otherwise, we are removing the last instance of this type
 | |
|             // from the table.  Remove from the ATM, and from user list.
 | |
|             cast<DerivedType>(Ty)->removeAbstractTypeUser(this);
 | |
|             AbstractTypeMap.erase(Ty);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Map.erase(I);
 | |
|     }
 | |
| 
 | |
|     
 | |
|     /// MoveConstantToNewSlot - If we are about to change C to be the element
 | |
|     /// specified by I, update our internal data structures to reflect this
 | |
|     /// fact.
 | |
|     void MoveConstantToNewSlot(ConstantClass *C, MapIterator I) {
 | |
|       // First, remove the old location of the specified constant in the map.
 | |
|       MapIterator OldI = FindExistingElement(C);
 | |
|       assert(OldI != Map.end() && "Constant not found in constant table!");
 | |
|       assert(OldI->second == C && "Didn't find correct element?");
 | |
|       
 | |
|       // If this constant is the representative element for its abstract type,
 | |
|       // update the AbstractTypeMap so that the representative element is I.
 | |
|       if (C->getType()->isAbstract()) {
 | |
|         typename AbstractTypeMapTy::iterator ATI =
 | |
|             AbstractTypeMap.find(C->getType());
 | |
|         assert(ATI != AbstractTypeMap.end() &&
 | |
|                "Abstract type not in AbstractTypeMap?");
 | |
|         if (ATI->second == OldI)
 | |
|           ATI->second = I;
 | |
|       }
 | |
|       
 | |
|       // Remove the old entry from the map.
 | |
|       Map.erase(OldI);
 | |
|       
 | |
|       // Update the inverse map so that we know that this constant is now
 | |
|       // located at descriptor I.
 | |
|       if (HasLargeKey) {
 | |
|         assert(I->second == C && "Bad inversemap entry!");
 | |
|         InverseMap[C] = I;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     void refineAbstractType(const DerivedType *OldTy, const Type *NewTy) {
 | |
|       typename AbstractTypeMapTy::iterator I =
 | |
|         AbstractTypeMap.find(cast<TypeClass>(OldTy));
 | |
| 
 | |
|       assert(I != AbstractTypeMap.end() &&
 | |
|              "Abstract type not in AbstractTypeMap?");
 | |
| 
 | |
|       // Convert a constant at a time until the last one is gone.  The last one
 | |
|       // leaving will remove() itself, causing the AbstractTypeMapEntry to be
 | |
|       // eliminated eventually.
 | |
|       do {
 | |
|         ConvertConstantType<ConstantClass,
 | |
|                             TypeClass>::convert(I->second->second,
 | |
|                                                 cast<TypeClass>(NewTy));
 | |
| 
 | |
|         I = AbstractTypeMap.find(cast<TypeClass>(OldTy));
 | |
|       } while (I != AbstractTypeMap.end());
 | |
|     }
 | |
| 
 | |
|     // If the type became concrete without being refined to any other existing
 | |
|     // type, we just remove ourselves from the ATU list.
 | |
|     void typeBecameConcrete(const DerivedType *AbsTy) {
 | |
|       AbsTy->removeAbstractTypeUser(this);
 | |
|     }
 | |
| 
 | |
|     void dump() const {
 | |
|       std::cerr << "Constant.cpp: ValueMap\n";
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| //---- ConstantUInt::get() and ConstantSInt::get() implementations...
 | |
| //
 | |
| static ValueMap< int64_t, Type, ConstantSInt> SIntConstants;
 | |
| static ValueMap<uint64_t, Type, ConstantUInt> UIntConstants;
 | |
| 
 | |
| ConstantSInt *ConstantSInt::get(const Type *Ty, int64_t V) {
 | |
|   return SIntConstants.getOrCreate(Ty, V);
 | |
| }
 | |
| 
 | |
| ConstantUInt *ConstantUInt::get(const Type *Ty, uint64_t V) {
 | |
|   return UIntConstants.getOrCreate(Ty, V);
 | |
| }
 | |
| 
 | |
| ConstantInt *ConstantInt::get(const Type *Ty, unsigned char V) {
 | |
|   assert(V <= 127 && "Can only be used with very small positive constants!");
 | |
|   if (Ty->isSigned()) return ConstantSInt::get(Ty, V);
 | |
|   return ConstantUInt::get(Ty, V);
 | |
| }
 | |
| 
 | |
| //---- ConstantFP::get() implementation...
 | |
| //
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConstantCreator<ConstantFP, Type, uint64_t> {
 | |
|     static ConstantFP *create(const Type *Ty, uint64_t V) {
 | |
|       assert(Ty == Type::DoubleTy);
 | |
|       return new ConstantFP(Ty, BitsToDouble(V));
 | |
|     }
 | |
|   };
 | |
|   template<>
 | |
|   struct ConstantCreator<ConstantFP, Type, uint32_t> {
 | |
|     static ConstantFP *create(const Type *Ty, uint32_t V) {
 | |
|       assert(Ty == Type::FloatTy);
 | |
|       return new ConstantFP(Ty, BitsToFloat(V));
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ValueMap<uint64_t, Type, ConstantFP> DoubleConstants;
 | |
| static ValueMap<uint32_t, Type, ConstantFP> FloatConstants;
 | |
| 
 | |
| bool ConstantFP::isNullValue() const {
 | |
|   return DoubleToBits(Val) == 0;
 | |
| }
 | |
| 
 | |
| bool ConstantFP::isExactlyValue(double V) const {
 | |
|   return DoubleToBits(V) == DoubleToBits(Val);
 | |
| }
 | |
| 
 | |
| 
 | |
| ConstantFP *ConstantFP::get(const Type *Ty, double V) {
 | |
|   if (Ty == Type::FloatTy) {
 | |
|     // Force the value through memory to normalize it.
 | |
|     return FloatConstants.getOrCreate(Ty, FloatToBits(V));
 | |
|   } else {
 | |
|     assert(Ty == Type::DoubleTy);
 | |
|     return DoubleConstants.getOrCreate(Ty, DoubleToBits(V));
 | |
|   }
 | |
| }
 | |
| 
 | |
| //---- ConstantAggregateZero::get() implementation...
 | |
| //
 | |
| namespace llvm {
 | |
|   // ConstantAggregateZero does not take extra "value" argument...
 | |
|   template<class ValType>
 | |
|   struct ConstantCreator<ConstantAggregateZero, Type, ValType> {
 | |
|     static ConstantAggregateZero *create(const Type *Ty, const ValType &V){
 | |
|       return new ConstantAggregateZero(Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantAggregateZero, Type> {
 | |
|     static void convert(ConstantAggregateZero *OldC, const Type *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       Constant *New = ConstantAggregateZero::get(NewTy);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ValueMap<char, Type, ConstantAggregateZero> AggZeroConstants;
 | |
| 
 | |
| static char getValType(ConstantAggregateZero *CPZ) { return 0; }
 | |
| 
 | |
| Constant *ConstantAggregateZero::get(const Type *Ty) {
 | |
|   return AggZeroConstants.getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantAggregateZero::destroyConstant() {
 | |
|   AggZeroConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| //---- ConstantArray::get() implementation...
 | |
| //
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantArray, ArrayType> {
 | |
|     static void convert(ConstantArray *OldC, const ArrayType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       std::vector<Constant*> C;
 | |
|       for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|         C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|       Constant *New = ConstantArray::get(NewTy, C);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static std::vector<Constant*> getValType(ConstantArray *CA) {
 | |
|   std::vector<Constant*> Elements;
 | |
|   Elements.reserve(CA->getNumOperands());
 | |
|   for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
 | |
|     Elements.push_back(cast<Constant>(CA->getOperand(i)));
 | |
|   return Elements;
 | |
| }
 | |
| 
 | |
| typedef ValueMap<std::vector<Constant*>, ArrayType, 
 | |
|                  ConstantArray, true /*largekey*/> ArrayConstantsTy;
 | |
| static ArrayConstantsTy ArrayConstants;
 | |
| 
 | |
| Constant *ConstantArray::get(const ArrayType *Ty,
 | |
|                              const std::vector<Constant*> &V) {
 | |
|   // If this is an all-zero array, return a ConstantAggregateZero object
 | |
|   if (!V.empty()) {
 | |
|     Constant *C = V[0];
 | |
|     if (!C->isNullValue())
 | |
|       return ArrayConstants.getOrCreate(Ty, V);
 | |
|     for (unsigned i = 1, e = V.size(); i != e; ++i)
 | |
|       if (V[i] != C)
 | |
|         return ArrayConstants.getOrCreate(Ty, V);
 | |
|   }
 | |
|   return ConstantAggregateZero::get(Ty);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantArray::destroyConstant() {
 | |
|   ArrayConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| // ConstantArray::get(const string&) - Return an array that is initialized to
 | |
| // contain the specified string.  A null terminator is added to the specified
 | |
| // string so that it may be used in a natural way...
 | |
| //
 | |
| Constant *ConstantArray::get(const std::string &Str) {
 | |
|   std::vector<Constant*> ElementVals;
 | |
| 
 | |
|   for (unsigned i = 0; i < Str.length(); ++i)
 | |
|     ElementVals.push_back(ConstantSInt::get(Type::SByteTy, Str[i]));
 | |
| 
 | |
|   // Add a null terminator to the string...
 | |
|   ElementVals.push_back(ConstantSInt::get(Type::SByteTy, 0));
 | |
| 
 | |
|   ArrayType *ATy = ArrayType::get(Type::SByteTy, Str.length()+1);
 | |
|   return ConstantArray::get(ATy, ElementVals);
 | |
| }
 | |
| 
 | |
| /// isString - This method returns true if the array is an array of sbyte or
 | |
| /// ubyte, and if the elements of the array are all ConstantInt's.
 | |
| bool ConstantArray::isString() const {
 | |
|   // Check the element type for sbyte or ubyte...
 | |
|   if (getType()->getElementType() != Type::UByteTy &&
 | |
|       getType()->getElementType() != Type::SByteTy)
 | |
|     return false;
 | |
|   // Check the elements to make sure they are all integers, not constant
 | |
|   // expressions.
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     if (!isa<ConstantInt>(getOperand(i)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // getAsString - If the sub-element type of this array is either sbyte or ubyte,
 | |
| // then this method converts the array to an std::string and returns it.
 | |
| // Otherwise, it asserts out.
 | |
| //
 | |
| std::string ConstantArray::getAsString() const {
 | |
|   assert(isString() && "Not a string!");
 | |
|   std::string Result;
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
 | |
|     Result += (char)cast<ConstantInt>(getOperand(i))->getRawValue();
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- ConstantStruct::get() implementation...
 | |
| //
 | |
| 
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantStruct, StructType> {
 | |
|     static void convert(ConstantStruct *OldC, const StructType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       std::vector<Constant*> C;
 | |
|       for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|         C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|       Constant *New = ConstantStruct::get(NewTy, C);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
| 
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| typedef ValueMap<std::vector<Constant*>, StructType,
 | |
|                  ConstantStruct, true /*largekey*/> StructConstantsTy;
 | |
| static StructConstantsTy StructConstants;
 | |
| 
 | |
| static std::vector<Constant*> getValType(ConstantStruct *CS) {
 | |
|   std::vector<Constant*> Elements;
 | |
|   Elements.reserve(CS->getNumOperands());
 | |
|   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i)
 | |
|     Elements.push_back(cast<Constant>(CS->getOperand(i)));
 | |
|   return Elements;
 | |
| }
 | |
| 
 | |
| Constant *ConstantStruct::get(const StructType *Ty,
 | |
|                               const std::vector<Constant*> &V) {
 | |
|   // Create a ConstantAggregateZero value if all elements are zeros...
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|     if (!V[i]->isNullValue())
 | |
|       return StructConstants.getOrCreate(Ty, V);
 | |
| 
 | |
|   return ConstantAggregateZero::get(Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantStruct::get(const std::vector<Constant*> &V) {
 | |
|   std::vector<const Type*> StructEls;
 | |
|   StructEls.reserve(V.size());
 | |
|   for (unsigned i = 0, e = V.size(); i != e; ++i)
 | |
|     StructEls.push_back(V[i]->getType());
 | |
|   return get(StructType::get(StructEls), V);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantStruct::destroyConstant() {
 | |
|   StructConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| //---- ConstantPacked::get() implementation...
 | |
| //
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantPacked, PackedType> {
 | |
|     static void convert(ConstantPacked *OldC, const PackedType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       std::vector<Constant*> C;
 | |
|       for (unsigned i = 0, e = OldC->getNumOperands(); i != e; ++i)
 | |
|         C.push_back(cast<Constant>(OldC->getOperand(i)));
 | |
|       Constant *New = ConstantPacked::get(NewTy, C);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static std::vector<Constant*> getValType(ConstantPacked *CP) {
 | |
|   std::vector<Constant*> Elements;
 | |
|   Elements.reserve(CP->getNumOperands());
 | |
|   for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
 | |
|     Elements.push_back(CP->getOperand(i));
 | |
|   return Elements;
 | |
| }
 | |
| 
 | |
| static ValueMap<std::vector<Constant*>, PackedType,
 | |
|                 ConstantPacked> PackedConstants;
 | |
| 
 | |
| Constant *ConstantPacked::get(const PackedType *Ty,
 | |
|                               const std::vector<Constant*> &V) {
 | |
|   // If this is an all-zero packed, return a ConstantAggregateZero object
 | |
|   if (!V.empty()) {
 | |
|     Constant *C = V[0];
 | |
|     if (!C->isNullValue())
 | |
|       return PackedConstants.getOrCreate(Ty, V);
 | |
|     for (unsigned i = 1, e = V.size(); i != e; ++i)
 | |
|       if (V[i] != C)
 | |
|         return PackedConstants.getOrCreate(Ty, V);
 | |
|   }
 | |
|   return ConstantAggregateZero::get(Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantPacked::get(const std::vector<Constant*> &V) {
 | |
|   assert(!V.empty() && "Cannot infer type if V is empty");
 | |
|   return get(PackedType::get(V.front()->getType(),V.size()), V);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantPacked::destroyConstant() {
 | |
|   PackedConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| //---- ConstantPointerNull::get() implementation...
 | |
| //
 | |
| 
 | |
| namespace llvm {
 | |
|   // ConstantPointerNull does not take extra "value" argument...
 | |
|   template<class ValType>
 | |
|   struct ConstantCreator<ConstantPointerNull, PointerType, ValType> {
 | |
|     static ConstantPointerNull *create(const PointerType *Ty, const ValType &V){
 | |
|       return new ConstantPointerNull(Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantPointerNull, PointerType> {
 | |
|     static void convert(ConstantPointerNull *OldC, const PointerType *NewTy) {
 | |
|       // Make everyone now use a constant of the new type...
 | |
|       Constant *New = ConstantPointerNull::get(NewTy);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ValueMap<char, PointerType, ConstantPointerNull> NullPtrConstants;
 | |
| 
 | |
| static char getValType(ConstantPointerNull *) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
 | |
|   return NullPtrConstants.getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantPointerNull::destroyConstant() {
 | |
|   NullPtrConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| 
 | |
| //---- UndefValue::get() implementation...
 | |
| //
 | |
| 
 | |
| namespace llvm {
 | |
|   // UndefValue does not take extra "value" argument...
 | |
|   template<class ValType>
 | |
|   struct ConstantCreator<UndefValue, Type, ValType> {
 | |
|     static UndefValue *create(const Type *Ty, const ValType &V) {
 | |
|       return new UndefValue(Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<UndefValue, Type> {
 | |
|     static void convert(UndefValue *OldC, const Type *NewTy) {
 | |
|       // Make everyone now use a constant of the new type.
 | |
|       Constant *New = UndefValue::get(NewTy);
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();     // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| static ValueMap<char, Type, UndefValue> UndefValueConstants;
 | |
| 
 | |
| static char getValType(UndefValue *) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| UndefValue *UndefValue::get(const Type *Ty) {
 | |
|   return UndefValueConstants.getOrCreate(Ty, 0);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table.
 | |
| //
 | |
| void UndefValue::destroyConstant() {
 | |
|   UndefValueConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| //---- ConstantExpr::get() implementations...
 | |
| //
 | |
| typedef std::pair<unsigned, std::vector<Constant*> > ExprMapKeyType;
 | |
| 
 | |
| namespace llvm {
 | |
|   template<>
 | |
|   struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
 | |
|     static ConstantExpr *create(const Type *Ty, const ExprMapKeyType &V) {
 | |
|       if (V.first == Instruction::Cast)
 | |
|         return new UnaryConstantExpr(Instruction::Cast, V.second[0], Ty);
 | |
|       if ((V.first >= Instruction::BinaryOpsBegin &&
 | |
|            V.first < Instruction::BinaryOpsEnd) ||
 | |
|           V.first == Instruction::Shl || V.first == Instruction::Shr)
 | |
|         return new BinaryConstantExpr(V.first, V.second[0], V.second[1]);
 | |
|       if (V.first == Instruction::Select)
 | |
|         return new SelectConstantExpr(V.second[0], V.second[1], V.second[2]);
 | |
|       if (V.first == Instruction::ExtractElement)
 | |
|         return new ExtractElementConstantExpr(V.second[0], V.second[1]);
 | |
|       if (V.first == Instruction::InsertElement)
 | |
|         return new InsertElementConstantExpr(V.second[0], V.second[1],
 | |
|                                              V.second[2]);
 | |
| 
 | |
|       assert(V.first == Instruction::GetElementPtr && "Invalid ConstantExpr!");
 | |
| 
 | |
|       std::vector<Constant*> IdxList(V.second.begin()+1, V.second.end());
 | |
|       return new GetElementPtrConstantExpr(V.second[0], IdxList, Ty);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   template<>
 | |
|   struct ConvertConstantType<ConstantExpr, Type> {
 | |
|     static void convert(ConstantExpr *OldC, const Type *NewTy) {
 | |
|       Constant *New;
 | |
|       switch (OldC->getOpcode()) {
 | |
|       case Instruction::Cast:
 | |
|         New = ConstantExpr::getCast(OldC->getOperand(0), NewTy);
 | |
|         break;
 | |
|       case Instruction::Select:
 | |
|         New = ConstantExpr::getSelectTy(NewTy, OldC->getOperand(0),
 | |
|                                         OldC->getOperand(1),
 | |
|                                         OldC->getOperand(2));
 | |
|         break;
 | |
|       case Instruction::Shl:
 | |
|       case Instruction::Shr:
 | |
|         New = ConstantExpr::getShiftTy(NewTy, OldC->getOpcode(),
 | |
|                                      OldC->getOperand(0), OldC->getOperand(1));
 | |
|         break;
 | |
|       default:
 | |
|         assert(OldC->getOpcode() >= Instruction::BinaryOpsBegin &&
 | |
|                OldC->getOpcode() < Instruction::BinaryOpsEnd);
 | |
|         New = ConstantExpr::getTy(NewTy, OldC->getOpcode(), OldC->getOperand(0),
 | |
|                                   OldC->getOperand(1));
 | |
|         break;
 | |
|       case Instruction::GetElementPtr:
 | |
|         // Make everyone now use a constant of the new type...
 | |
|         std::vector<Value*> Idx(OldC->op_begin()+1, OldC->op_end());
 | |
|         New = ConstantExpr::getGetElementPtrTy(NewTy, OldC->getOperand(0), Idx);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       assert(New != OldC && "Didn't replace constant??");
 | |
|       OldC->uncheckedReplaceAllUsesWith(New);
 | |
|       OldC->destroyConstant();    // This constant is now dead, destroy it.
 | |
|     }
 | |
|   };
 | |
| } // end namespace llvm
 | |
| 
 | |
| 
 | |
| static ExprMapKeyType getValType(ConstantExpr *CE) {
 | |
|   std::vector<Constant*> Operands;
 | |
|   Operands.reserve(CE->getNumOperands());
 | |
|   for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
 | |
|     Operands.push_back(cast<Constant>(CE->getOperand(i)));
 | |
|   return ExprMapKeyType(CE->getOpcode(), Operands);
 | |
| }
 | |
| 
 | |
| static ValueMap<ExprMapKeyType, Type, ConstantExpr> ExprConstants;
 | |
| 
 | |
| Constant *ConstantExpr::getCast(Constant *C, const Type *Ty) {
 | |
|   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldCastInstruction(C, Ty))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> argVec(1, C);
 | |
|   ExprMapKeyType Key = std::make_pair(Instruction::Cast, argVec);
 | |
|   return ExprConstants.getOrCreate(Ty, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSignExtend(Constant *C, const Type *Ty) {
 | |
|   assert(C->getType()->isIntegral() && Ty->isIntegral() &&
 | |
|          C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
 | |
|          "This is an illegal sign extension!");
 | |
|   if (C->getType() != Type::BoolTy) {
 | |
|     C = ConstantExpr::getCast(C, C->getType()->getSignedVersion());
 | |
|     return ConstantExpr::getCast(C, Ty);
 | |
|   } else {
 | |
|     if (C == ConstantBool::True)
 | |
|       return ConstantIntegral::getAllOnesValue(Ty);
 | |
|     else
 | |
|       return ConstantIntegral::getNullValue(Ty);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getZeroExtend(Constant *C, const Type *Ty) {
 | |
|   assert(C->getType()->isIntegral() && Ty->isIntegral() &&
 | |
|          C->getType()->getPrimitiveSize() <= Ty->getPrimitiveSize() &&
 | |
|          "This is an illegal zero extension!");
 | |
|   if (C->getType() != Type::BoolTy)
 | |
|     C = ConstantExpr::getCast(C, C->getType()->getUnsignedVersion());
 | |
|   return ConstantExpr::getCast(C, Ty);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSizeOf(const Type *Ty) {
 | |
|   // sizeof is implemented as: (ulong) gep (Ty*)null, 1
 | |
|   return getCast(
 | |
|     getGetElementPtr(getNullValue(PointerType::get(Ty)),
 | |
|                  std::vector<Constant*>(1, ConstantInt::get(Type::UIntTy, 1))),
 | |
|     Type::ULongTy);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getPtrPtrFromArrayPtr(Constant *C) {
 | |
|   // pointer from array is implemented as: getelementptr arr ptr, 0, 0
 | |
|   static std::vector<Constant*> Indices(2, ConstantUInt::get(Type::UIntTy, 0));
 | |
| 
 | |
|   return ConstantExpr::getGetElementPtr(C, Indices);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
 | |
|                               Constant *C1, Constant *C2) {
 | |
|   if (Opcode == Instruction::Shl || Opcode == Instruction::Shr)
 | |
|     return getShiftTy(ReqTy, Opcode, C1, C2);
 | |
|   // Check the operands for consistency first
 | |
|   assert((Opcode >= Instruction::BinaryOpsBegin &&
 | |
|           Opcode < Instruction::BinaryOpsEnd) &&
 | |
|          "Invalid opcode in binary constant expression");
 | |
|   assert(C1->getType() == C2->getType() &&
 | |
|          "Operand types in binary constant expression should match");
 | |
| 
 | |
|   if (ReqTy == C1->getType() || (Instruction::isRelational(Opcode) &&
 | |
|                                  ReqTy == Type::BoolTy))
 | |
|     if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
 | |
|       return FC;          // Fold a few common cases...
 | |
| 
 | |
|   std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
 | |
|   ExprMapKeyType Key = std::make_pair(Opcode, argVec);
 | |
|   return ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2) {
 | |
| #ifndef NDEBUG
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add: case Instruction::Sub:
 | |
|   case Instruction::Mul: case Instruction::Div:
 | |
|   case Instruction::Rem:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert((C1->getType()->isInteger() || C1->getType()->isFloatingPoint() ||
 | |
|             isa<PackedType>(C1->getType())) &&
 | |
|            "Tried to create an arithmetic operation on a non-arithmetic type!");
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     assert((C1->getType()->isIntegral() || isa<PackedType>(C1->getType())) &&
 | |
|            "Tried to create a logical operation on a non-integral type!");
 | |
|     break;
 | |
|   case Instruction::SetLT: case Instruction::SetGT: case Instruction::SetLE:
 | |
|   case Instruction::SetGE: case Instruction::SetEQ: case Instruction::SetNE:
 | |
|     assert(C1->getType() == C2->getType() && "Op types should be identical!");
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::Shr:
 | |
|     assert(C2->getType() == Type::UByteTy && "Shift should be by ubyte!");
 | |
|     assert((C1->getType()->isInteger() || isa<PackedType>(C1->getType())) &&
 | |
|            "Tried to create a shift operation on a non-integer type!");
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if (Instruction::isRelational(Opcode))
 | |
|     return getTy(Type::BoolTy, Opcode, C1, C2);
 | |
|   else
 | |
|     return getTy(C1->getType(), Opcode, C1, C2);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getSelectTy(const Type *ReqTy, Constant *C,
 | |
|                                     Constant *V1, Constant *V2) {
 | |
|   assert(C->getType() == Type::BoolTy && "Select condition must be bool!");
 | |
|   assert(V1->getType() == V2->getType() && "Select value types must match!");
 | |
|   assert(V1->getType()->isFirstClassType() && "Cannot select aggregate type!");
 | |
| 
 | |
|   if (ReqTy == V1->getType())
 | |
|     if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
 | |
|       return SC;        // Fold common cases
 | |
| 
 | |
|   std::vector<Constant*> argVec(3, C);
 | |
|   argVec[1] = V1;
 | |
|   argVec[2] = V2;
 | |
|   ExprMapKeyType Key = std::make_pair(Instruction::Select, argVec);
 | |
|   return ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| /// getShiftTy - Return a shift left or shift right constant expr
 | |
| Constant *ConstantExpr::getShiftTy(const Type *ReqTy, unsigned Opcode,
 | |
|                                    Constant *C1, Constant *C2) {
 | |
|   // Check the operands for consistency first
 | |
|   assert((Opcode == Instruction::Shl ||
 | |
|           Opcode == Instruction::Shr) &&
 | |
|          "Invalid opcode in binary constant expression");
 | |
|   assert(C1->getType()->isIntegral() && C2->getType() == Type::UByteTy &&
 | |
|          "Invalid operand types for Shift constant expr!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> argVec(1, C1); argVec.push_back(C2);
 | |
|   ExprMapKeyType Key = std::make_pair(Opcode, argVec);
 | |
|   return ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtrTy(const Type *ReqTy, Constant *C,
 | |
|                                            const std::vector<Value*> &IdxList) {
 | |
|   assert(GetElementPtrInst::getIndexedType(C->getType(), IdxList, true) &&
 | |
|          "GEP indices invalid!");
 | |
| 
 | |
|   if (Constant *FC = ConstantFoldGetElementPtr(C, IdxList))
 | |
|     return FC;          // Fold a few common cases...
 | |
| 
 | |
|   assert(isa<PointerType>(C->getType()) &&
 | |
|          "Non-pointer type for constant GetElementPtr expression");
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec;
 | |
|   ArgVec.reserve(IdxList.size()+1);
 | |
|   ArgVec.push_back(C);
 | |
|   for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
 | |
|     ArgVec.push_back(cast<Constant>(IdxList[i]));
 | |
|   const ExprMapKeyType &Key = std::make_pair(Instruction::GetElementPtr,ArgVec);
 | |
|   return ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtr(Constant *C,
 | |
|                                          const std::vector<Constant*> &IdxList){
 | |
|   // Get the result type of the getelementptr!
 | |
|   std::vector<Value*> VIdxList(IdxList.begin(), IdxList.end());
 | |
| 
 | |
|   const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), VIdxList,
 | |
|                                                      true);
 | |
|   assert(Ty && "GEP indices invalid!");
 | |
|   return getGetElementPtrTy(PointerType::get(Ty), C, VIdxList);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getGetElementPtr(Constant *C,
 | |
|                                          const std::vector<Value*> &IdxList) {
 | |
|   // Get the result type of the getelementptr!
 | |
|   const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
 | |
|                                                      true);
 | |
|   assert(Ty && "GEP indices invalid!");
 | |
|   return getGetElementPtrTy(PointerType::get(Ty), C, IdxList);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
 | |
|                                             Constant *Idx) {
 | |
|   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
 | |
|     return FC;          // Fold a few common cases...
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec(1, Val);
 | |
|   ArgVec.push_back(Idx);
 | |
|   const ExprMapKeyType &Key = std::make_pair(Instruction::ExtractElement,ArgVec);
 | |
|   return ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
 | |
|   assert(isa<PackedType>(Val->getType()) &&
 | |
|          "Tried to create extractelement operation on non-packed type!");
 | |
|   assert(Idx->getType() == Type::UIntTy &&
 | |
|          "Extractelement index must be uint type!");
 | |
|   return getExtractElementTy(cast<PackedType>(Val->getType())->getElementType(),
 | |
|                              Val, Idx);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
 | |
|                                            Constant *Elt, Constant *Idx) {
 | |
|   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
 | |
|     return FC;          // Fold a few common cases...
 | |
|   // Look up the constant in the table first to ensure uniqueness
 | |
|   std::vector<Constant*> ArgVec(1, Val);
 | |
|   ArgVec.push_back(Elt);
 | |
|   ArgVec.push_back(Idx);
 | |
|   const ExprMapKeyType &Key = std::make_pair(Instruction::InsertElement,ArgVec);
 | |
|   return ExprConstants.getOrCreate(ReqTy, Key);
 | |
| }
 | |
| 
 | |
| Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
 | |
|                                          Constant *Idx) {
 | |
|   assert(isa<PackedType>(Val->getType()) &&
 | |
|          "Tried to create insertelement operation on non-packed type!");
 | |
|   assert(Elt->getType() == cast<PackedType>(Val->getType())->getElementType()
 | |
|          && "Insertelement types must match!");
 | |
|   assert(Idx->getType() == Type::UIntTy &&
 | |
|          "Insertelement index must be uint type!");
 | |
|   return getInsertElementTy(cast<PackedType>(Val->getType())->getElementType(),
 | |
|                             Val, Elt, Idx);
 | |
| }
 | |
| 
 | |
| // destroyConstant - Remove the constant from the constant table...
 | |
| //
 | |
| void ConstantExpr::destroyConstant() {
 | |
|   ExprConstants.remove(this);
 | |
|   destroyConstantImpl();
 | |
| }
 | |
| 
 | |
| const char *ConstantExpr::getOpcodeName() const {
 | |
|   return Instruction::getOpcodeName(getOpcode());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                replaceUsesOfWithOnConstant implementations
 | |
| 
 | |
| void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                 Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *ToC = cast<Constant>(To);
 | |
| 
 | |
|   unsigned OperandToUpdate = U-OperandList;
 | |
|   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
 | |
| 
 | |
|   std::pair<ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
 | |
|   Lookup.first.first = getType();
 | |
|   Lookup.second = this;
 | |
| 
 | |
|   std::vector<Constant*> &Values = Lookup.first.second;
 | |
|   Values.reserve(getNumOperands());  // Build replacement array.
 | |
| 
 | |
|   // Fill values with the modified operands of the constant array.  Also, 
 | |
|   // compute whether this turns into an all-zeros array.
 | |
|   bool isAllZeros = false;
 | |
|   if (!ToC->isNullValue()) {
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
 | |
|       Values.push_back(cast<Constant>(O->get()));
 | |
|   } else {
 | |
|     isAllZeros = true;
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | |
|       Constant *Val = cast<Constant>(O->get());
 | |
|       Values.push_back(Val);
 | |
|       if (isAllZeros) isAllZeros = Val->isNullValue();
 | |
|     }
 | |
|   }
 | |
|   Values[OperandToUpdate] = ToC;
 | |
|   
 | |
|   Constant *Replacement = 0;
 | |
|   if (isAllZeros) {
 | |
|     Replacement = ConstantAggregateZero::get(getType());
 | |
|   } else {
 | |
|     // Check to see if we have this array type already.
 | |
|     bool Exists;
 | |
|     ArrayConstantsTy::MapIterator I =
 | |
|       ArrayConstants.InsertOrGetItem(Lookup, Exists);
 | |
|     
 | |
|     if (Exists) {
 | |
|       Replacement = I->second;
 | |
|     } else {
 | |
|       // Okay, the new shape doesn't exist in the system yet.  Instead of
 | |
|       // creating a new constant array, inserting it, replaceallusesof'ing the
 | |
|       // old with the new, then deleting the old... just update the current one
 | |
|       // in place!
 | |
|       ArrayConstants.MoveConstantToNewSlot(this, I);
 | |
|       
 | |
|       // Update to the new value.
 | |
|       setOperand(OperandToUpdate, ToC);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|  
 | |
|   // Otherwise, I do need to replace this with an existing value.
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                  Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *ToC = cast<Constant>(To);
 | |
| 
 | |
|   unsigned OperandToUpdate = U-OperandList;
 | |
|   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
 | |
| 
 | |
|   std::pair<StructConstantsTy::MapKey, ConstantStruct*> Lookup;
 | |
|   Lookup.first.first = getType();
 | |
|   Lookup.second = this;
 | |
|   std::vector<Constant*> &Values = Lookup.first.second;
 | |
|   Values.reserve(getNumOperands());  // Build replacement struct.
 | |
|   
 | |
|   
 | |
|   // Fill values with the modified operands of the constant struct.  Also, 
 | |
|   // compute whether this turns into an all-zeros struct.
 | |
|   bool isAllZeros = false;
 | |
|   if (!ToC->isNullValue()) {
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O)
 | |
|       Values.push_back(cast<Constant>(O->get()));
 | |
|   } else {
 | |
|     isAllZeros = true;
 | |
|     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
 | |
|       Constant *Val = cast<Constant>(O->get());
 | |
|       Values.push_back(Val);
 | |
|       if (isAllZeros) isAllZeros = Val->isNullValue();
 | |
|     }
 | |
|   }
 | |
|   Values[OperandToUpdate] = ToC;
 | |
|   
 | |
|   Constant *Replacement = 0;
 | |
|   if (isAllZeros) {
 | |
|     Replacement = ConstantAggregateZero::get(getType());
 | |
|   } else {
 | |
|     // Check to see if we have this array type already.
 | |
|     bool Exists;
 | |
|     StructConstantsTy::MapIterator I =
 | |
|       StructConstants.InsertOrGetItem(Lookup, Exists);
 | |
|     
 | |
|     if (Exists) {
 | |
|       Replacement = I->second;
 | |
|     } else {
 | |
|       // Okay, the new shape doesn't exist in the system yet.  Instead of
 | |
|       // creating a new constant struct, inserting it, replaceallusesof'ing the
 | |
|       // old with the new, then deleting the old... just update the current one
 | |
|       // in place!
 | |
|       StructConstants.MoveConstantToNewSlot(this, I);
 | |
|       
 | |
|       // Update to the new value.
 | |
|       setOperand(OperandToUpdate, ToC);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantPacked::replaceUsesOfWithOnConstant(Value *From, Value *To,
 | |
|                                                  Use *U) {
 | |
|   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
 | |
|   
 | |
|   std::vector<Constant*> Values;
 | |
|   Values.reserve(getNumOperands());  // Build replacement array...
 | |
|   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
 | |
|     Constant *Val = getOperand(i);
 | |
|     if (Val == From) Val = cast<Constant>(To);
 | |
|     Values.push_back(Val);
 | |
|   }
 | |
|   
 | |
|   Constant *Replacement = ConstantPacked::get(getType(), Values);
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
 | |
|                                                Use *U) {
 | |
|   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
 | |
|   Constant *To = cast<Constant>(ToV);
 | |
|   
 | |
|   Constant *Replacement = 0;
 | |
|   if (getOpcode() == Instruction::GetElementPtr) {
 | |
|     std::vector<Constant*> Indices;
 | |
|     Constant *Pointer = getOperand(0);
 | |
|     Indices.reserve(getNumOperands()-1);
 | |
|     if (Pointer == From) Pointer = To;
 | |
|     
 | |
|     for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|       Constant *Val = getOperand(i);
 | |
|       if (Val == From) Val = To;
 | |
|       Indices.push_back(Val);
 | |
|     }
 | |
|     Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
 | |
|   } else if (getOpcode() == Instruction::Cast) {
 | |
|     assert(getOperand(0) == From && "Cast only has one use!");
 | |
|     Replacement = ConstantExpr::getCast(To, getType());
 | |
|   } else if (getOpcode() == Instruction::Select) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     Constant *C3 = getOperand(2);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     if (C3 == From) C3 = To;
 | |
|     Replacement = ConstantExpr::getSelect(C1, C2, C3);
 | |
|   } else if (getOpcode() == Instruction::ExtractElement) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     Replacement = ConstantExpr::getExtractElement(C1, C2);
 | |
|   } else if (getNumOperands() == 2) {
 | |
|     Constant *C1 = getOperand(0);
 | |
|     Constant *C2 = getOperand(1);
 | |
|     if (C1 == From) C1 = To;
 | |
|     if (C2 == From) C2 = To;
 | |
|     Replacement = ConstantExpr::get(getOpcode(), C1, C2);
 | |
|   } else {
 | |
|     assert(0 && "Unknown ConstantExpr type!");
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   assert(Replacement != this && "I didn't contain From!");
 | |
|   
 | |
|   // Everyone using this now uses the replacement.
 | |
|   uncheckedReplaceAllUsesWith(Replacement);
 | |
|   
 | |
|   // Delete the old constant!
 | |
|   destroyConstant();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// clearAllValueMaps - This method frees all internal memory used by the
 | |
| /// constant subsystem, which can be used in environments where this memory
 | |
| /// is otherwise reported as a leak.
 | |
| void Constant::clearAllValueMaps() {
 | |
|   std::vector<Constant *> Constants;
 | |
| 
 | |
|   DoubleConstants.clear(Constants);
 | |
|   FloatConstants.clear(Constants);
 | |
|   SIntConstants.clear(Constants);
 | |
|   UIntConstants.clear(Constants);
 | |
|   AggZeroConstants.clear(Constants);
 | |
|   ArrayConstants.clear(Constants);
 | |
|   StructConstants.clear(Constants);
 | |
|   PackedConstants.clear(Constants);
 | |
|   NullPtrConstants.clear(Constants);
 | |
|   UndefValueConstants.clear(Constants);
 | |
|   ExprConstants.clear(Constants);
 | |
| 
 | |
|   for (std::vector<Constant *>::iterator I = Constants.begin(),
 | |
|        E = Constants.end(); I != E; ++I)
 | |
|     (*I)->dropAllReferences();
 | |
|   for (std::vector<Constant *>::iterator I = Constants.begin(),
 | |
|        E = Constants.end(); I != E; ++I)
 | |
|     (*I)->destroyConstantImpl();
 | |
|   Constants.clear();
 | |
| }
 | |
| 
 | |
| /// getStringValue - Turn an LLVM constant pointer that eventually points to a
 | |
| /// global into a string value.  Return an empty string if we can't do it.
 | |
| /// Parameter Chop determines if the result is chopped at the first null
 | |
| /// terminator.
 | |
| ///
 | |
| std::string Constant::getStringValue(bool Chop, unsigned Offset) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(this)) {
 | |
|     if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) {
 | |
|       ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
 | |
|       if (Init->isString()) {
 | |
|         std::string Result = Init->getAsString();
 | |
|         if (Offset < Result.size()) {
 | |
|           // If we are pointing INTO The string, erase the beginning...
 | |
|           Result.erase(Result.begin(), Result.begin()+Offset);
 | |
| 
 | |
|           // Take off the null terminator, and any string fragments after it.
 | |
|           if (Chop) {
 | |
|             std::string::size_type NullPos = Result.find_first_of((char)0);
 | |
|             if (NullPos != std::string::npos)
 | |
|               Result.erase(Result.begin()+NullPos, Result.end());
 | |
|           }
 | |
|           return Result;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else if (Constant *C = dyn_cast<Constant>(this)) {
 | |
|     if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | |
|       return GV->getStringValue(Chop, Offset);
 | |
|     else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | |
|       if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|         // Turn a gep into the specified offset.
 | |
|         if (CE->getNumOperands() == 3 &&
 | |
|             cast<Constant>(CE->getOperand(1))->isNullValue() &&
 | |
|             isa<ConstantInt>(CE->getOperand(2))) {
 | |
|           Offset += cast<ConstantInt>(CE->getOperand(2))->getRawValue();
 | |
|           return CE->getOperand(0)->getStringValue(Chop, Offset);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return "";
 | |
| }
 | |
| 
 |